Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C933 non-normal (D4) quartic CM field invariants: 106 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [8, 6542, 10698929] C933 ---) [10698929, 3271, 128] C6531
2) [8, 5726, 8178337] C933 101) [8178337, 2863, 4608] C933
3) [13, 9081, 20387909] C933 106) [20387909, 16753, 24292957] C933
4) [17, 3326, 2761217] C933 95) [2761217, 1663, 1088] C933
5) [37, 3342, 2328113] C933 93) [2328113, 1671, 116032] C933
6) [53, 3982, 3960689] C933 98) [3960689, 1991, 848] C933
7) [73, 2510, 1196593] C933 ---) [1196593, 1255, 94608] C4665
8) [97, 1334, 406089] C933 85) [45121, 667, 9700] C933
9) [181, 3774, 2402369] C933 94) [2402369, 1887, 289600] C933
10) [241, 1547, 591012] C933 73) [16417, 1963, 926404] C933
11) [293, 2374, 940169] C933 91) [940169, 1187, 117200] C933
12) [449, 430, 17489] C933 77) [17489, 215, 7184] C933
13) [617, 1258, 333941] C933 89) [333941, 629, 15425] C933
14) [761, 1242, 17317] C933 ---) [17317, 621, 92081] C311
15) [761, 1067, 275300] C933 ---) [2753, 1003, 3044] C311
16) [941, 1793, 577637] C933 ---) [577637, 3586, 904301] C3 x C933
17) [977, 2271, 1136704] C933 81) [17761, 3883, 35172] C933
18) [1489, 635, 55764] C933 ---) [1549, 1270, 180169] C311
19) [1609, 411, 41828] C933 ---) [10457, 822, 1609] C3 x C933
20) [2381, 1621, 442025] C933 80) [17681, 3242, 859541] C933
21) [2633, 2846, 508321] C933 38) [4201, 1423, 379152] C933
22) [2729, 2966, 2155625] C933 29) [3449, 1483, 10916] C933
23) [2801, 1346, 441725] C933 79) [17669, 673, 2801] C933
24) [2897, 771, 26212] C933 54) [6553, 1542, 489593] C933
25) [2917, 405, 5273] C933 ---) [5273, 810, 142933] C2177
26) [3169, 2031, 269888] C933 40) [4217, 4062, 3045409] C933
27) [3221, 322, 13037] C933 ---) [13037, 161, 3221] C311
28) [3313, 4551, 4381952] C933 75) [17117, 8173, 5569153] C933
29) [3449, 1483, 10916] C933 22) [2729, 2966, 2155625] C933
30) [3457, 5831, 1654416] C933 61) [11489, 3431, 2710288] C933
31) [3541, 2153, 74421] C933 58) [8269, 4306, 4337725] C933
32) [3673, 2983, 2201616] C933 71) [15289, 5966, 91825] C933
33) [3877, 261, 16061] C933 ---) [16061, 522, 3877] C311
34) [4049, 6707, 1324900] C933 65) [13249, 4383, 1619600] C933
35) [4073, 267, 16804] C933 39) [4201, 534, 4073] C933
36) [4093, 6649, 4338757] C933 69) [15013, 4861, 5603317] C933
37) [4153, 1979, 429876] C933 63) [11941, 3958, 2196937] C933
38) [4201, 1423, 379152] C933 21) [2633, 2846, 508321] C933
39) [4201, 534, 4073] C933 35) [4073, 267, 16804] C933
40) [4217, 4062, 3045409] C933 26) [3169, 2031, 269888] C933
41) [4273, 7855, 13800448] C933 66) [13477, 4429, 1234897] C933
42) [4597, 2405, 341577] C933 ---) [4217, 4810, 4417717] C311
43) [4649, 2703, 1630132] C933 ---) [8317, 5406, 785681] C311
44) [4721, 4983, 3600400] C933 59) [9001, 4295, 2719296] C933
45) [4789, 9293, 4061025] C933 82) [18049, 6851, 6206544] C933
46) [4817, 3035, 76148] C933 84) [19037, 6070, 8906633] C933
47) [4861, 7009, 10433125] C933 74) [16693, 8761, 10737949] C933
48) [4937, 5627, 2701076] C933 67) [13781, 8477, 597377] C933
49) [5077, 5897, 7626213] C933 76) [17293, 7505, 3701133] C933
50) [5081, 307, 22292] C933 ---) [5573, 614, 5081] C311
51) [5393, 651, 72244] C933 83) [18061, 1302, 134825] C933
52) [5581, 1209, 364025] C933 68) [14561, 2418, 5581] C933
53) [5749, 9930, 2552069] C933 70) [15101, 4965, 5524789] C933
54) [6553, 1542, 489593] C933 24) [2897, 771, 26212] C933
55) [6997, 2629, 46881] C933 ---) [5209, 5258, 6724117] C311
56) [7753, 155, 4068] C933 ---) [113, 310, 7753] C311
57) [8069, 4185, 4037641] C933 ---) [4801, 4631, 290484] C311
58) [8269, 4306, 4337725] C933 31) [3541, 2153, 74421] C933
59) [9001, 4295, 2719296] C933 44) [4721, 4983, 3600400] C933
60) [10301, 3205, 1638341] C933 ---) [5669, 6410, 3718661] C311
61) [11489, 3431, 2710288] C933 30) [3457, 5831, 1654416] C933
62) [11821, 3369, 990509] C933 ---) [5861, 6738, 7388125] C311
63) [11941, 3958, 2196937] C933 37) [4153, 1979, 429876] C933
64) [12821, 4249, 3971813] C933 ---) [4133, 6373, 3705269] C311
65) [13249, 4383, 1619600] C933 34) [4049, 6707, 1324900] C933
66) [13477, 4429, 1234897] C933 41) [4273, 7855, 13800448] C933
67) [13781, 8477, 597377] C933 48) [4937, 5627, 2701076] C933
68) [14561, 2418, 5581] C933 52) [5581, 1209, 364025] C933
69) [15013, 4861, 5603317] C933 36) [4093, 6649, 4338757] C933
70) [15101, 4965, 5524789] C933 53) [5749, 9930, 2552069] C933
71) [15289, 5966, 91825] C933 32) [3673, 2983, 2201616] C933
72) [15773, 541, 37681] C933 ---) [769, 1082, 141957] C311
73) [16417, 1963, 926404] C933 10) [241, 1547, 591012] C933
74) [16693, 8761, 10737949] C933 47) [4861, 7009, 10433125] C933
75) [17117, 8173, 5569153] C933 28) [3313, 4551, 4381952] C933
76) [17293, 7505, 3701133] C933 49) [5077, 5897, 7626213] C933
77) [17489, 215, 7184] C933 12) [449, 430, 17489] C933
78) [17609, 1758, 490897] C933 ---) [4057, 879, 70436] C311
79) [17669, 673, 2801] C933 23) [2801, 1346, 441725] C933
80) [17681, 3242, 859541] C933 20) [2381, 1621, 442025] C933
81) [17761, 3883, 35172] C933 17) [977, 2271, 1136704] C933
82) [18049, 6851, 6206544] C933 45) [4789, 9293, 4061025] C933
83) [18061, 1302, 134825] C933 51) [5393, 651, 72244] C933
84) [19037, 6070, 8906633] C933 46) [4817, 3035, 76148] C933
85) [45121, 667, 9700] C933 8) [97, 1334, 406089] C933
86) [45641, 2815, 52724] C933 ---) [269, 2449, 1141025] C311
87) [100469, 1298, 19325] C933 ---) [773, 649, 100469] C311
88) [209357, 505, 11417] C933 ---) [233, 1010, 209357] C311
89) [333941, 629, 15425] C933 13) [617, 1258, 333941] C933
90) [807113, 931, 14912] C933 ---) [233, 1862, 807113] C311
91) [940169, 1187, 117200] C933 11) [293, 2374, 940169] C933
92) [1945729, 1727, 259200] C933 ---) [8, 3454, 1945729] C311
93) [2328113, 1671, 116032] C933 5) [37, 3342, 2328113] C933
94) [2402369, 1887, 289600] C933 9) [181, 3774, 2402369] C933
95) [2761217, 1663, 1088] C933 4) [17, 3326, 2761217] C933
96) [3069769, 1987, 219600] C933 ---) [61, 3974, 3069769] C311
97) [3342601, 1891, 58320] C933 ---) [5, 3782, 3342601] C311
98) [3960689, 1991, 848] C933 6) [53, 3982, 3960689] C933
99) [4032361, 2323, 340992] C933 ---) [37, 4646, 4032361] C311
100) [4480361, 2291, 192080] C933 ---) [5, 4582, 4480361] C311
101) [8178337, 2863, 4608] C933 2) [8, 5726, 8178337] C933
102) [10970777, 3515, 346112] C933 ---) [8, 7030, 10970777] C311
103) [11279969, 3407, 81920] C933 ---) [5, 6814, 11279969] C311
104) [15163033, 3899, 9792] C933 ---) [17, 7798, 15163033] C311
105) [15936329, 4579, 1257728] C933 ---) [17, 9158, 15936329] C311
106) [20387909, 16753, 24292957] C933 3) [13, 9081, 20387909] C933