Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C957 non-normal (D4) quartic CM field invariants: 118 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 11542, 27472441] C957 ---) [27472441, 5771, 1458000] C16269
2) [5, 12982, 41998601] C957 ---) [41998601, 6491, 33620] C3 x C957
3) [5, 13934, 48089089] C957 ---) [48089089, 6967, 112500] C3 x C957
4) [5, 9493, 19675361] C957 117) [19675361, 5231, 1922000] C957
5) [8, 6542, 10681009] C957 ---) [10681009, 3271, 4608] C3 x C2871
6) [13, 6582, 10789913] C957 113) [10789913, 3291, 10192] C957
7) [13, 6606, 10896497] C957 114) [10896497, 3303, 3328] C957
8) [17, 1934, 826289] C957 104) [826289, 967, 27200] C957
9) [17, 2350, 1028113] C957 105) [1028113, 1175, 88128] C957
10) [53, 3334, 1137161] C957 107) [1137161, 1667, 410432] C957
11) [61, 2358, 1327577] C957 108) [1327577, 1179, 15616] C957
12) [181, 3862, 3543417] C957 ---) [393713, 1931, 46336] C3 x C2871
13) [197, 2014, 900577] C957 ---) [900577, 1007, 28368] C3 x C957
14) [229, 634, 26293] C957 ---) [26293, 317, 18549] C319
15) [229, 453, 48497] C957 ---) [48497, 906, 11221] C319
16) [229, 3894, 2852825] C957 ---) [114113, 1947, 234496] C319
17) [281, 995, 92324] C957 84) [23081, 1990, 620729] C957
18) [521, 1815, 238864] C957 71) [14929, 2187, 1102436] C957
19) [773, 1046, 224057] C957 95) [224057, 523, 12368] C957
20) [857, 1475, 70628] C957 78) [17657, 2950, 1893113] C957
21) [953, 994, 243197] C957 97) [243197, 497, 953] C957
22) [1297, 539, 69712] C957 ---) [4357, 1078, 11673] C435
23) [1609, 1798, 164601] C957 80) [18289, 899, 160900] C957
24) [2269, 1082, 65781] C957 53) [7309, 541, 56725] C957
25) [2377, 2923, 205264] C957 69) [12829, 5473, 3995737] C957
26) [2417, 4670, 4833473] C957 55) [9137, 2335, 154688] C957
27) [2557, 2497, 23913] C957 ---) [2657, 2167, 163648] C319
28) [2593, 2651, 70852] C957 79) [17713, 5302, 6744393] C957
29) [2689, 2239, 607248] C957 38) [4217, 2823, 43024] C957
30) [2833, 6650, 165573] C957 81) [18397, 3325, 2722513] C957
31) [3041, 4631, 4205200] C957 60) [10513, 3851, 109476] C957
32) [3109, 1822, 382225] C957 72) [15289, 911, 111924] C957
33) [3617, 3691, 41156] C957 58) [10289, 5111, 5787200] C957
34) [3701, 3357, 18481] C957 82) [18481, 6714, 11195525] C957
35) [3853, 2165, 1009017] C957 66) [12457, 4330, 651157] C957
36) [3889, 2734, 1619793] C957 ---) [3673, 1367, 62224] C319
37) [3889, 3171, 1182800] C957 ---) [2957, 2121, 1123921] C319
38) [4217, 2823, 43024] C957 29) [2689, 2239, 607248] C957
39) [4241, 5683, 7301200] C957 ---) [18253, 8289, 14762921] C4785
40) [4621, 7102, 114417] C957 67) [12713, 3551, 3123796] C957
41) [4721, 6506, 10563125] C957 ---) [16901, 3253, 4721] C6699
42) [4729, 514, 47133] C957 ---) [5237, 257, 4729] C319
43) [4789, 697, 91521] C957 57) [10169, 1394, 119725] C957
44) [5021, 2917, 2095841] C957 76) [17321, 5834, 125525] C957
45) [5209, 4623, 1685012] C957 ---) [8597, 4909, 2755561] C3 x C957
46) [5261, 4881, 5954725] C957 ---) [4861, 3861, 3288125] C319
47) [5333, 1109, 7489] C957 ---) [7489, 2218, 1199925] C319
48) [5333, 401, 6869] C957 ---) [6869, 802, 133325] C319
49) [5477, 394, 16901] C957 ---) [16901, 197, 5477] C2233
50) [5569, 2627, 1111300] C957 61) [11113, 5254, 2455929] C957
51) [5653, 3561, 557081] C957 64) [11369, 7122, 10452397] C957
52) [5869, 4142, 3913425] C957 77) [17393, 2071, 93904] C957
53) [7309, 541, 56725] C957 24) [2269, 1082, 65781] C957
54) [8837, 3386, 3061] C957 ---) [3061, 1693, 715797] C319
55) [9137, 2335, 154688] C957 26) [2417, 4670, 4833473] C957
56) [9413, 6745, 810017] C957 ---) [4793, 4703, 150608] C319
57) [10169, 1394, 119725] C957 43) [4789, 697, 91521] C957
58) [10289, 5111, 5787200] C957 33) [3617, 3691, 41156] C957
59) [10457, 1043, 269348] C957 ---) [233, 1187, 41828] C319
60) [10513, 3851, 109476] C957 31) [3041, 4631, 4205200] C957
61) [11113, 5254, 2455929] C957 50) [5569, 2627, 1111300] C957
62) [11197, 1437, 43169] C957 ---) [881, 2874, 1892293] C319
63) [11197, 2249, 1261701] C957 ---) [2861, 4498, 11197] C319
64) [11369, 7122, 10452397] C957 51) [5653, 3561, 557081] C957
65) [12281, 1134, 124993] C957 ---) [1033, 567, 49124] C87
66) [12457, 4330, 651157] C957 35) [3853, 2165, 1009017] C957
67) [12713, 3551, 3123796] C957 40) [4621, 7102, 114417] C957
68) [12821, 7810, 11095021] C957 ---) [4621, 3905, 1038501] C319
69) [12829, 5473, 3995737] C957 25) [2377, 2923, 205264] C957
70) [13537, 7027, 11935188] C957 ---) [4093, 4429, 1096497] C319
71) [14929, 2187, 1102436] C957 18) [521, 1815, 238864] C957
72) [15289, 911, 111924] C957 32) [3109, 1822, 382225] C957
73) [15641, 1315, 240704] C957 ---) [3761, 2630, 766409] C319
74) [16477, 2661, 1271801] C957 ---) [929, 4167, 4218112] C319
75) [16661, 874, 124325] C957 ---) [4973, 437, 16661] C319
76) [17321, 5834, 125525] C957 44) [5021, 2917, 2095841] C957
77) [17393, 2071, 93904] C957 52) [5869, 4142, 3913425] C957
78) [17657, 2950, 1893113] C957 20) [857, 1475, 70628] C957
79) [17713, 5302, 6744393] C957 28) [2593, 2651, 70852] C957
80) [18289, 899, 160900] C957 23) [1609, 1798, 164601] C957
81) [18397, 3325, 2722513] C957 30) [2833, 6650, 165573] C957
82) [18481, 6714, 11195525] C957 34) [3701, 3357, 18481] C957
83) [18661, 4210, 773469] C957 ---) [1061, 2105, 914389] C319
84) [23081, 1990, 620729] C957 17) [281, 995, 92324] C957
85) [34157, 1937, 519569] C957 ---) [281, 2483, 546512] C319
86) [34157, 874, 54341] C957 ---) [1109, 437, 34157] C319
87) [48481, 1370, 275301] C957 ---) [181, 685, 48481] C319
88) [56857, 273, 4418] C957 ---) [8, 546, 56857] C33
89) [59093, 1458, 295069] C957 ---) [1021, 729, 59093] C319
90) [63317, 389, 22001] C957 ---) [449, 778, 63317] C319
91) [70621, 917, 51325] C957 ---) [2053, 1834, 635589] C319
92) [117281, 397, 10082] C957 ---) [8, 794, 117281] C87
93) [155777, 415, 4112] C957 ---) [257, 830, 155777] C3 x C957
94) [157013, 1802, 183749] C957 ---) [509, 901, 157013] C319
95) [224057, 523, 12368] C957 19) [773, 1046, 224057] C957
96) [231821, 489, 1825] C957 ---) [73, 978, 231821] C319
97) [243197, 497, 953] C957 21) [953, 994, 243197] C957
98) [250409, 947, 161600] C957 ---) [101, 1894, 250409] C319
99) [284593, 1447, 452304] C957 ---) [349, 2894, 284593] C319
100) [329801, 739, 54080] C957 ---) [5, 1177, 329801] C87
101) [346877, 665, 23837] C957 ---) [197, 1330, 346877] C319
102) [371573, 669, 18997] C957 ---) [157, 1338, 371573] C319
103) [814097, 2843, 188944] C957 ---) [241, 5686, 7326873] C319
104) [826289, 967, 27200] C957 8) [17, 1934, 826289] C957
105) [1028113, 1175, 88128] C957 9) [17, 2350, 1028113] C957
106) [1089457, 1365, 193442] C957 ---) [8, 2730, 1089457] C319
107) [1137161, 1667, 410432] C957 10) [53, 3334, 1137161] C957
108) [1327577, 1179, 15616] C957 11) [61, 2358, 1327577] C957
109) [1407037, 1217, 18513] C957 ---) [17, 2434, 1407037] C319
110) [2364361, 1571, 25920] C957 ---) [5, 3142, 2364361] C319
111) [3262681, 1819, 11520] C957 ---) [5, 3638, 3262681] C319
112) [5270129, 3047, 1003520] C957 ---) [5, 4661, 5270129] C319
113) [10789913, 3291, 10192] C957 6) [13, 6582, 10789913] C957
114) [10896497, 3303, 3328] C957 7) [13, 6606, 10896497] C957
115) [12432569, 3563, 65600] C957 ---) [41, 7126, 12432569] C319
116) [16409417, 4067, 32768] C957 ---) [8, 8134, 16409417] C319
117) [19675361, 5231, 1922000] C957 4) [5, 9493, 19675361] C957
118) [20271577, 4507, 10368] C957 ---) [8, 9014, 20271577] C319