Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C987 non-normal (D4) quartic CM field invariants: 153 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [13, 7309, 11874589] C987 150) [11874589, 10597, 1356277] C987
2) [17, 3422, 2714273] C987 137) [2714273, 1711, 53312] C987
3) [37, 3694, 2644177] C987 135) [2644177, 1847, 191808] C987
4) [37, 5118, 6510593] C987 143) [6510593, 2559, 9472] C987
5) [181, 2166, 1126553] C987 121) [1126553, 1083, 11584] C987
6) [181, 4262, 4124137] C987 140) [4124137, 2131, 104256] C987
7) [229, 810, 163109] C987 ---) [163109, 405, 229] C329
8) [281, 939, 183268] C987 102) [45817, 1878, 148649] C987
9) [293, 2326, 1052537] C987 119) [1052537, 1163, 75008] C987
10) [317, 2974, 567841] C987 115) [567841, 1487, 410832] C987
11) [397, 1590, 530393] C987 113) [530393, 795, 25408] C987
12) [509, 1454, 495953] C987 112) [495953, 727, 8144] C987
13) [577, 187, 7444] C987 ---) [1861, 374, 5193] C141
14) [577, 759, 143876] C987 ---) [35969, 1518, 577] C141
15) [577, 386, 16477] C987 ---) [16477, 193, 5193] C3 x C141
16) [701, 1337, 446717] C987 111) [446717, 2674, 701] C987
17) [733, 313, 9649] C987 ---) [9649, 626, 59373] C329
18) [733, 1130, 292837] C987 ---) [292837, 565, 6597] C329
19) [733, 653, 104953] C987 ---) [104953, 1306, 6597] C329
20) [797, 1078, 175753] C987 ---) [175753, 539, 28692] C4935
21) [797, 1465, 536357] C987 114) [536357, 2930, 797] C987
22) [881, 374, 20873] C987 96) [20873, 187, 3524] C987
23) [1049, 1326, 171025] C987 64) [6841, 663, 67136] C987
24) [1181, 1213, 332117] C987 108) [332117, 2426, 142901] C987
25) [1237, 1245, 387197] C987 109) [387197, 2490, 1237] C987
26) [2017, 1211, 281412] C987 ---) [7817, 2422, 340873] C4935
27) [2029, 2757, 134525] C987 ---) [5381, 3245, 586381] C141
28) [2113, 4459, 4779972] C987 82) [14753, 3523, 414148] C987
29) [2129, 766, 10433] C987 73) [10433, 383, 34064] C987
30) [2213, 273, 4801] C987 ---) [4801, 546, 55325] C329
31) [2213, 381, 9181] C987 ---) [9181, 762, 108437] C1645
32) [2213, 261, 16477] C987 86) [16477, 522, 2213] C987
33) [2273, 1247, 224528] C987 80) [14033, 2494, 656897] C987
34) [2281, 587, 85572] C987 35) [2377, 1174, 2281] C987
35) [2377, 1174, 2281] C987 34) [2281, 587, 85572] C987
36) [2593, 483, 42116] C987 74) [10529, 966, 64825] C987
37) [2689, 438, 4937] C987 53) [4937, 219, 10756] C987
38) [2857, 2251, 888912] C987 ---) [6173, 4502, 1511353] C329
39) [2897, 2095, 1038592] C987 48) [4057, 2919, 741632] C987
40) [2953, 4859, 1968336] C987 79) [13669, 5057, 5979825] C987
41) [3089, 663, 72052] C987 92) [18013, 1326, 151361] C987
42) [3089, 2403, 1313092] C987 ---) [2713, 1747, 111204] C3 x C987
43) [3301, 1309, 361525] C987 81) [14461, 2618, 267381] C987
44) [3329, 5347, 5608772] C987 68) [8297, 3263, 2609936] C987
45) [3361, 1595, 332676] C987 69) [9241, 3190, 1213321] C987
46) [3821, 6001, 8925625] C987 ---) [14281, 5875, 6740244] C4935
47) [3877, 6630, 10741097] C987 ---) [11177, 3315, 62032] C329
48) [4057, 2919, 741632] C987 39) [2897, 2095, 1038592] C987
49) [4229, 477, 5077] C987 ---) [5077, 954, 207221] C141
50) [4513, 3887, 2692944] C987 ---) [18701, 7774, 4336993] C3 x C987
51) [4549, 1110, 16889] C987 89) [16889, 555, 72784] C987
52) [4937, 6334, 2130689] C987 ---) [17609, 3167, 1974800] C3 x C987
53) [4937, 219, 10756] C987 37) [2689, 438, 4937] C987
54) [5009, 2283, 1091392] C987 ---) [17053, 4566, 846521] C3 x C987
55) [5273, 1827, 10576] C987 ---) [661, 1333, 47457] C141
56) [5273, 147, 4084] C987 ---) [1021, 294, 5273] C141
57) [5581, 1493, 53577] C987 62) [5953, 2986, 2014741] C987
58) [5581, 6033, 4878641] C987 61) [5801, 3295, 2701204] C987
59) [5669, 6821, 10088125] C987 ---) [16141, 8937, 7760861] C3 x C987
60) [5701, 2561, 1467225] C987 63) [6521, 5122, 689821] C987
61) [5801, 3295, 2701204] C987 58) [5581, 6033, 4878641] C987
62) [5953, 2986, 2014741] C987 57) [5581, 1493, 53577] C987
63) [6521, 5122, 689821] C987 60) [5701, 2561, 1467225] C987
64) [6841, 663, 67136] C987 23) [1049, 1326, 171025] C987
65) [7537, 823, 16708] C987 ---) [4177, 1646, 610497] C329
66) [7537, 2823, 181568] C987 ---) [2837, 4313, 1273753] C329
67) [8069, 5890, 4767629] C987 ---) [5669, 2945, 976349] C329
68) [8297, 3263, 2609936] C987 44) [3329, 5347, 5608772] C987
69) [9241, 3190, 1213321] C987 45) [3361, 1595, 332676] C987
70) [9413, 2041, 3637] C987 ---) [3637, 4082, 4151133] C329
71) [10313, 4550, 2535497] C987 ---) [4793, 2275, 660032] C141
72) [10357, 5465, 7443253] C987 ---) [5437, 5269, 838917] C141
73) [10433, 383, 34064] C987 29) [2129, 766, 10433] C987
74) [10529, 966, 64825] C987 36) [2593, 483, 42116] C987
75) [11821, 6553, 3639897] C987 ---) [4993, 5299, 6808896] C329
76) [12269, 1846, 655625] C987 ---) [1049, 923, 49076] C329
77) [13049, 5403, 91792] C987 ---) [5737, 7787, 7516224] C141
78) [13313, 1571, 214292] C987 ---) [317, 1813, 13313] C141
79) [13669, 5057, 5979825] C987 40) [2953, 4859, 1968336] C987
80) [14033, 2494, 656897] C987 33) [2273, 1247, 224528] C987
81) [14461, 2618, 267381] C987 43) [3301, 1309, 361525] C987
82) [14753, 3523, 414148] C987 28) [2113, 4459, 4779972] C987
83) [15061, 6394, 39573] C987 ---) [4397, 3197, 2545309] C329
84) [15737, 2779, 1045504] C987 ---) [1021, 3237, 15737] C329
85) [15737, 4099, 419636] C987 ---) [2141, 5377, 393425] C329
86) [16477, 522, 2213] C987 32) [2213, 261, 16477] C987
87) [16477, 7633, 14363829] C987 ---) [4421, 6741, 10298125] C329
88) [16661, 1873, 772901] C987 ---) [2141, 3746, 416525] C329
89) [16889, 555, 72784] C987 51) [4549, 1110, 16889] C987
90) [16901, 1241, 279389] C987 ---) [2309, 2482, 422525] C141
91) [17569, 10078, 11617425] C987 ---) [5737, 5039, 3443524] C141
92) [18013, 1326, 151361] C987 41) [3089, 663, 72052] C987
93) [18661, 1690, 42229] C987 ---) [349, 845, 167949] C329
94) [19081, 323, 21312] C987 ---) [37, 646, 19081] C141
95) [19469, 866, 109613] C987 ---) [2237, 433, 19469] C329
96) [20873, 187, 3524] C987 22) [881, 374, 20873] C987
97) [25301, 625, 40729] C987 ---) [241, 1250, 227709] C329
98) [28309, 841, 113125] C987 ---) [181, 1682, 254781] C329
99) [32833, 703, 115344] C987 ---) [89, 1406, 32833] C329
100) [33941, 738, 397] C987 ---) [397, 369, 33941] C141
101) [41597, 209, 521] C987 ---) [521, 418, 41597] C329
102) [45817, 1878, 148649] C987 8) [281, 939, 183268] C987
103) [113041, 471, 27200] C987 ---) [17, 942, 113041] C329
104) [128521, 361, 450] C987 ---) [8, 722, 128521] C47
105) [229949, 1922, 3725] C987 ---) [149, 961, 229949] C141
106) [241261, 625, 37341] C987 ---) [461, 1250, 241261] C329
107) [301153, 551, 612] C987 ---) [17, 1102, 301153] C47
108) [332117, 2426, 142901] C987 24) [1181, 1213, 332117] C987
109) [387197, 2490, 1237] C987 25) [1237, 1245, 387197] C987
110) [418657, 655, 2592] C987 ---) [8, 1310, 418657] C329
111) [446717, 2674, 701] C987 16) [701, 1337, 446717] C987
112) [495953, 727, 8144] C987 12) [509, 1454, 495953] C987
113) [530393, 795, 25408] C987 11) [397, 1590, 530393] C987
114) [536357, 2930, 797] C987 21) [797, 1465, 536357] C987
115) [567841, 1487, 410832] C987 10) [317, 2974, 567841] C987
116) [700277, 909, 31501] C987 ---) [109, 1818, 700277] C329
117) [954257, 2939, 12352] C987 ---) [193, 5878, 8588313] C329
118) [1045117, 1025, 1377] C987 ---) [17, 2050, 1045117] C329
119) [1052537, 1163, 75008] C987 9) [293, 2326, 1052537] C987
120) [1064473, 1147, 62784] C987 ---) [109, 2294, 1064473] C329
121) [1126553, 1083, 11584] C987 5) [181, 2166, 1126553] C987
122) [1382177, 1263, 53248] C987 ---) [13, 2526, 1382177] C329
123) [1405493, 1189, 2057] C987 ---) [17, 2378, 1405493] C329
124) [1440533, 1205, 2873] C987 ---) [17, 2410, 1440533] C329
125) [1640057, 1803, 402688] C987 ---) [13, 3606, 1640057] C329
126) [1676993, 1295, 8] C987 ---) [8, 2590, 1676993] C329
127) [1692017, 1333, 21218] C987 ---) [8, 2666, 1692017] C329
128) [1807577, 1531, 134096] C987 ---) [29, 3062, 1807577] C329
129) [1853081, 1467, 74752] C987 ---) [73, 2934, 1853081] C329
130) [1958233, 1595, 146448] C987 ---) [113, 3190, 1958233] C329
131) [2030053, 1429, 2997] C987 ---) [37, 2858, 2030053] C329
132) [2078621, 2329, 836405] C987 ---) [5, 2897, 2078621] C141
133) [2122873, 3083, 1845504] C987 ---) [89, 6166, 2122873] C329
134) [2348081, 1543, 8192] C987 ---) [8, 3086, 2348081] C329
135) [2644177, 1847, 191808] C987 3) [37, 3694, 2644177] C987
136) [2662697, 1715, 69632] C987 ---) [17, 3430, 2662697] C141
137) [2714273, 1711, 53312] C987 2) [17, 3422, 2714273] C987
138) [2869033, 1843, 131904] C987 ---) [229, 3686, 2869033] C3 x C987
139) [3966329, 2123, 135200] C987 ---) [8, 4246, 3966329] C141
140) [4124137, 2131, 104256] C987 6) [181, 4262, 4124137] C987
141) [5537689, 2363, 11520] C987 ---) [5, 4726, 5537689] C329
142) [6058049, 2527, 81920] C987 ---) [5, 5054, 6058049] C329
143) [6510593, 2559, 9472] C987 4) [37, 5118, 6510593] C987
144) [6547753, 2611, 67392] C987 ---) [13, 5222, 6547753] C329
145) [6743609, 2603, 8000] C987 ---) [5, 5206, 6743609] C329
146) [6755129, 2603, 5120] C987 ---) [5, 5206, 6755129] C329
147) [7411021, 3921, 1990805] C987 ---) [5, 5453, 7411021] C329
148) [8914153, 2995, 13968] C987 ---) [97, 5990, 8914153] C329
149) [10744873, 3379, 168192] C987 ---) [73, 6758, 10744873] C329
150) [11874589, 10597, 1356277] C987 1) [13, 7309, 11874589] C987
151) [12019769, 3467, 80] C987 ---) [5, 6934, 12019769] C329
152) [12977369, 3611, 15488] C987 ---) [8, 7222, 12977369] C329
153) [16435049, 4243, 392000] C987 ---) [5, 8486, 16435049] C329