Genus 2 Curves Database | Igusa CM Invariants Database | Quartic CM Fields Database |
A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).
[1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] | [12] | [13] | [14] | [15] | [16] | [17] | [18] | [19] | [20] | [21] | [22] | [23] | [24] |
[25] | [26] | [27] | [28] | [29] | [30] | [31] | [32] | [33] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] | [42] | [43] | [44] | [45] | [46] | [47] | [48] |
[49] | [50] | [51] | [52] | [53] | [54] | [55] | [56] | [57] | [58] | [59] | [60] | [61] | [62] | [63] | [64] | [65] | [66] | [67] | [68] | [69] | [70] | [71] | [72] |
[73] | [74] | [75] | [76] | [77] | [78] | [79] | [80] | [81] | [82] | [83] | [84] | [85] | [86] | [87] | [88] | [89] | [90] | [91] | [92] | [93] | [94] | [95] | [96] |
[97] | [98] | [99] | [100] | [101] | [102] | [103] | [104] | [105] | [106] | [107] | [108] | [109] | [110] | [111] | [112] | [113] | [114] | [115] | [116] | [117] | [118] | [119] | [120] |
[121] | [122] | [123] | [124] | [125] | [126] | [127] | [128] | [129] | [130] | [131] | [132] | [133] | [134] | [135] | [136] | [137] | [138] | [139] | [140] | [141] | [142] | [143] | [144] |
[145] | [146] | [147] | [148] | [149] | [150] | [151] | [152] | [153] | [154] | [155] | [156] | [157] | [158] | [159] | [160] | [161] | [162] | [163] | [164] | [165] | [166] | [167] | [168] |
[169] | [170] | [171] | [172] | [173] | [174] | [175] | [176] | [177] | [178] | [179] | [180] | [181] | [182] | [183] | [184] | [185] | [186] | [187] | [188] | [189] | [190] | [191] | [192] |
[193] | [194] | [195] | [196] | [197] | [198] | [199] | [200] | [201] | [202] | [203] | [204] | [205] | [206] | [207] | [208] | [209] | [210] | [211] | [212] | [213] | [214] | [215] | [216] |
[217] | [218] | [219] | [220] | [221] | [222] | [223] | [224] | [225] | [226] | [227] | [228] | [229] | [230] | [231] | [232] | [233] | [234] | [235] | [236] | [237] | [238] | [239] | [240] |
[241] | [242] | [243] | [244] | [245] | [246] | [247] | [248] | [249] | [250] | [251] | [252] | [253] | [254] | [255] | [256] | [257] | [258] | [259] | [260] | [261] | [262] | [263] | [264] |
[265] | [266] | [267] | [268] | [269] | [270] | [271] | [272] | [273] | [274] | [275] | [276] | [277] | [278] | [279] | [280] | [281] | [282] | [283] | [284] | [285] | [286] | [287] | [288] |
[289] | [290] | [291] | [292] | [293] | [294] | [295] | [296] | [297] | [298] | [299] | [300] | [301] | [302] | [303] | [304] | [305] | [306] | [307] | [308] | [309] | [310] | [311] | [312] |
[313] | [314] | [315] | [316] | [317] | [318] | [319] | [320] | [321] | [322] | [323] | [324] | [325] | [326] | [327] | [328] | [329] | [330] | [331] | [332] | [333] | [334] | [335] | [336] |
[337] | [338] | [339] | [340] | [341] | [342] | [343] | [344] | [345] | [346] | [347] | [348] | [349] | [350] | [351] | [352] | [353] | [354] | [355] | [356] | [357] | [358] | [359] | [360] |
[361] | [362] | [363] | [364] | [365] | [366] | [367] | [368] | [369] | [370] | [371] | [372] | [373] | [374] | [375] | [376] | [377] | [378] | [379] | [380] | [381] | [382] | [383] | [384] |
[385] | [386] | [387] | [388] | [389] | [390] | [391] | [392] | [393] | [394] | [395] | [396] | [397] | [398] | [399] | [400] | [401] | [402] | [403] | [404] | [405] | [406] | [407] | [408] |
[409] | [410] | [411] | [412] | [413] | [414] | [415] | [416] | [417] | [418] | [419] | [420] | [421] | [422] | [423] | [424] | [425] | [426] | [427] | [428] | [429] | [430] | [431] | [432] |
[433] | [434] | [435] | [436] | [437] | [438] | [439] | [440] | [441] | [442] | [443] | [444] | [445] | [446] | [447] | [448] | [449] | [450] | [451] | [452] | [453] | [454] | [455] | [456] |
[457] | [458] | [459] | [460] | [461] | [462] | [463] | [464] | [465] | [466] | [467] | [468] | [469] | [470] | [471] | [472] | [473] | [474] | [475] | [476] | [477] | [478] | [479] | [480] |
[481] | [482] | [483] | [484] | [485] | [486] | [487] | [488] | [489] | [490] | [491] | [492] | [493] | [494] | [495] | [496] | [497] | [498] | [499] | [500] | [501] | [502] | [503] | [504] |
[505] | [506] | [507] | [508] | [509] | [510] | [511] | [512] | [513] | [514] | [515] | [516] | [517] | [518] | [519] | [520] | [521] | [522] | [523] | [524] | [525] | [526] | [527] | [528] |
[529] | [530] | [531] | [532] | [533] | [534] | [535] | [536] | [537] | [538] | [539] | [540] | [541] | [542] | [543] | [544] | [545] | [546] | [547] | [548] | [549] | [550] | [551] | [552] |
[553] | [554] | [555] | [556] | [557] | [558] | [559] | [560] | [561] | [562] | [563] | [564] | [565] | [566] | [567] | [568] | [569] | [570] | [571] | [572] | [573] | [574] | [575] | [576] |
K | Quartic invariants | Cl(OK) | Igusa invariants | |
1) | [5, 465, 43245] | C2 x C2 x C4 | ■ | |
2) | [5, 505, 51005] | C4 x C4 | ■ | |
3) | [5, 95, 1805] | C2 x C2 x C4 | ■ | |
4) | [5, 385, 29645] | C2 x C2 x C4 | ■ | |
5) | [5, 110, 2420] | C2 x C2 x C4 | ■ | |
6) | [8, 84, 882] | C2 x C2 x C4 | ■ | |
7) | [8, 124, 1922] | C4 x C4 | ■ | |
8) | [13, 429, 14157] | C2 x C2 x C4 | ■ | |
9) | [13, 78, 468] | C2 x C2 x C4 | ■ | |
10) | [13, 689, 36517] | C4 x C4 | ■ | |
11) | [17, 85, 1700] | C2 x C2 x C4 | ■ | |
12) | [17, 663, 103428] | C2 x C2 x C4 | ■ | |
13) | [17, 102, 2448] | C2 x C2 x C4 | ■ | |
14) | [17, 799, 150212] | C4 x C4 | ■ | |
15) | [29, 609, 12789] | C2 x C2 x C4 | ■ | |
16) | [37, 111, 2997] | C2 x C2 x C4 | ■ | |
17) | [40, 60, 90] | C2 x C2 x C4 | ■ | |
18) | [41, 615, 36900] | C2 x C2 x C4 | ■ | |
19) | [65, 65, 260] | C2 x C2 x C4 | ■ | |
20) | [65, 455, 12740] | C2 x C2 x C4 | ■ | |
21) | [73, 146, 4672] | C4 x C4 | ■ | |
22) | [113, 113, 1808] | C4 x C4 | ■ | |
23) | [181, 905, 113125] | C4 x C4 | ■ | |
24) | [193, 1351, 340452] | C4 x C4 | ■ |