A quartic CM field field K is represented by invariants [D,A,B], where
K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real
quadratic subfield (hence A2-4B = m2D for some m).
Class number:
[Non-normal]
[Cyclic]
Class number 208 non-normal (D4) quartic CM field invariants: 28630 fields
K |
Quartic invariants |
Cl(OK) |
Igusa invariants |
Kr |
Reflex invariants |
Cl(OKr) |
Igusa invariants |
1) |
[5, 886, 190469] |
C2 x C104 |
|
27007) |
[190469, 443, 1445] |
C2 x C104 |
2) |
[5, 1104, 294124] |
C2 x C104 |
|
13829) |
[556, 552, 2645] |
C2 x C2 x C52 |
3) |
[5, 1314, 386524] |
C2 x C104 |
|
---) |
[386524, 748, 43245] |
C8 x C104 |
4) |
[5, 608, 90611] |
C2 x C2 x C52 |
|
15771) |
[1004, 1216, 7220] |
C2 x C2 x C52 |
5) |
[5, 3174, 2414889] |
C2 x C104 |
|
27383) |
[268321, 1587, 25920] |
C2 x C104 |
6) |
[5, 994, 247004] |
C208 |
|
---) |
[247004, 748, 78125] |
C1040 |
7) |
[5, 763, 145481] |
C4 x C52 |
|
19467) |
[2969, 581, 48020] |
C2 x C2 x C2 x C26 |
8) |
[5, 3806, 3001889] |
C2 x C104 |
|
23718) |
[24809, 1903, 154880] |
C4 x C52 |
9) |
[5, 3597, 3211821] |
C208 |
|
27620) |
[356869, 2529, 796005] |
C2 x C104 |
10) |
[5, 7381, 13503509] |
C2 x C2 x C52 |
|
19883) |
[3629, 5917, 5376845] |
C4 x C52 |
11) |
[5, 695, 119845] |
C2 x C2 x C52 |
|
---) |
[119845, 555, 47045] |
C2 x C4 x C104 |
12) |
[5, 2198, 1066681] |
C2 x C104 |
|
23459) |
[21769, 1099, 35280] |
C2 x C104 |
13) |
[5, 2854, 2035609] |
C2 x C104 |
|
---) |
[2035609, 1427, 180] |
C8 x C104 |
14) |
[5, 2470, 1513705] |
C2 x C104 |
|
---) |
[1513705, 1235, 2880] |
C2 x C2 x C208 |
15) |
[5, 1684, 632084] |
C2 x C104 |
|
---) |
[158021, 842, 19220] |
C2 x C208 |
16) |
[5, 2686, 1570369] |
C208 |
|
28400) |
[1570369, 1343, 58320] |
C208 |
17) |
[5, 2901, 1845169] |
C208 |
|
---) |
[1845169, 1607, 184320] |
C416 |
18) |
[5, 2950, 2088505] |
C2 x C104 |
|
---) |
[2088505, 1475, 21780] |
C8 x C728 |
19) |
[5, 553, 74551] |
C208 |
|
27465) |
[298204, 1106, 7605] |
C208 |
20) |
[5, 1646, 673949] |
C2 x C2 x C52 |
|
---) |
[673949, 823, 845] |
C2 x C2 x C104 |
21) |
[5, 778, 151196] |
C208 |
|
26730) |
[151196, 596, 51005] |
C208 |
22) |
[5, 3645, 3289905] |
C2 x C2 x C52 |
|
---) |
[365545, 2535, 784080] |
C2 x C4 x C936 |
23) |
[5, 2589, 1548529] |
C2 x C104 |
|
---) |
[1548529, 1543, 208080] |
C2 x C2 x C104 |
24) |
[5, 3694, 3283409] |
C2 x C2 x C52 |
|
---) |
[3283409, 1847, 32000] |
C2 x C4 x C104 |
25) |
[5, 1582, 567361] |
C2 x C104 |
|
---) |
[567361, 791, 14580] |
C2 x C208 |
26) |
[5, 750, 139645] |
C2 x C2 x C52 |
|
---) |
[139645, 375, 245] |
C2 x C4 x C104 |
27) |
[5, 1175, 317405] |
C2 x C2 x C2 x C26 |
|
---) |
[317405, 695, 41405] |
C2 x C2 x C4 x C104 |
28) |
[5, 2837, 2007181] |
C208 |
|
28464) |
[2007181, 2049, 547805] |
C208 |
29) |
[5, 3486, 2473569] |
C2 x C2 x C52 |
|
20717) |
[5609, 1743, 141120] |
C2 x C2 x C2 x C26 |
30) |
[5, 795, 151345] |
C2 x C104 |
|
---) |