Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class number 208 non-normal (D4) quartic CM field invariants: 28630 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 886, 190469] C2 x C104 27007) [190469, 443, 1445] C2 x C104
2) [5, 1104, 294124] C2 x C104 13829) [556, 552, 2645] C2 x C2 x C52
3) [5, 1314, 386524] C2 x C104 ---) [386524, 748, 43245] C8 x C104
4) [5, 608, 90611] C2 x C2 x C52 15771) [1004, 1216, 7220] C2 x C2 x C52
5) [5, 3174, 2414889] C2 x C104 27383) [268321, 1587, 25920] C2 x C104
6) [5, 994, 247004] C208 ---) [247004, 748, 78125] C1040
7) [5, 763, 145481] C4 x C52 19467) [2969, 581, 48020] C2 x C2 x C2 x C26
8) [5, 3806, 3001889] C2 x C104 23718) [24809, 1903, 154880] C4 x C52
9) [5, 3597, 3211821] C208 27620) [356869, 2529, 796005] C2 x C104
10) [5, 7381, 13503509] C2 x C2 x C52 19883) [3629, 5917, 5376845] C4 x C52
11) [5, 695, 119845] C2 x C2 x C52 ---) [119845, 555, 47045] C2 x C4 x C104
12) [5, 2198, 1066681] C2 x C104 23459) [21769, 1099, 35280] C2 x C104
13) [5, 2854, 2035609] C2 x C104 ---) [2035609, 1427, 180] C8 x C104
14) [5, 2470, 1513705] C2 x C104 ---) [1513705, 1235, 2880] C2 x C2 x C208
15) [5, 1684, 632084] C2 x C104 ---) [158021, 842, 19220] C2 x C208
16) [5, 2686, 1570369] C208 28400) [1570369, 1343, 58320] C208
17) [5, 2901, 1845169] C208 ---) [1845169, 1607, 184320] C416
18) [5, 2950, 2088505] C2 x C104 ---) [2088505, 1475, 21780] C8 x C728
19) [5, 553, 74551] C208 27465) [298204, 1106, 7605] C208
20) [5, 1646, 673949] C2 x C2 x C52 ---) [673949, 823, 845] C2 x C2 x C104
21) [5, 778, 151196] C208 26730) [151196, 596, 51005] C208
22) [5, 3645, 3289905] C2 x C2 x C52 ---) [365545, 2535, 784080] C2 x C4 x C936
23) [5, 2589, 1548529] C2 x C104 ---) [1548529, 1543, 208080] C2 x C2 x C104
24) [5, 3694, 3283409] C2 x C2 x C52 ---) [3283409, 1847, 32000] C2 x C4 x C104
25) [5, 1582, 567361] C2 x C104 ---) [567361, 791, 14580] C2 x C208
26) [5, 750, 139645] C2 x C2 x C52 ---) [139645, 375, 245] C2 x C4 x C104
27) [5, 1175, 317405] C2 x C2 x C2 x C26 ---) [317405, 695, 41405] C2 x C2 x C4 x C104
28) [5, 2837, 2007181] C208 28464) [2007181, 2049, 547805] C208
29) [5, 3486, 2473569] C2 x C2 x C52 20717) [5609, 1743, 141120] C2 x C2 x C2 x C26
30) [5, 795, 151345] C2 x C104 ---)