Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

### Class number 3 non-normal (D4) quartic CM field invariants: 134 fields

 K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants 1) [5, 101, 2549] C3 ■ 132) [2549, 77, 845] C3 ■ 2) [5, 37, 281] C3 ■ 84) [281, 19, 20] C3 ■ 3) [5, 101, 2269] C3 ■ 129) [2269, 57, 245] C3 ■ 4) [5, 106, 2789] C3 ■ 133) [2789, 53, 5] C3 ■ 5) [5, 41, 409] C3 ■ 93) [409, 27, 80] C3 ■ 6) [5, 57, 661] C3 ■ 101) [661, 29, 45] C3 ■ 7) [5, 33, 241] C3 ■ 81) [241, 31, 180] C3 ■ 8) [5, 97, 1901] C3 ■ ---) [1901, 49, 125] C3 x C3 ■ 9) [5, 49, 569] C3 ■ 97) [569, 43, 320] C3 ■ 10) [5, 46, 449] C3 ■ 95) [449, 23, 20] C3 ■ 11) [5, 53, 701] C3 ■ 103) [701, 41, 245] C3 ■ 12) [5, 61, 929] C3 ■ 109) [929, 47, 320] C3 ■ 13) [5, 106, 2309] C3 ■ 130) [2309, 53, 125] C3 ■ 14) [5, 81, 1429] C3 ■ ---) [1429, 77, 1125] C15 ■ 15) [5, 61, 829] C3 ■ 107) [829, 57, 605] C3 ■ 16) [5, 42, 421] C3 ■ 94) [421, 21, 5] C3 ■ 17) [5, 58, 821] C3 ■ 106) [821, 29, 5] C3 ■ 18) [5, 66, 1069] C3 ■ 113) [1069, 33, 5] C3 ■ 19) [5, 73, 1181] C3 ■ 117) [1181, 41, 125] C3 ■ 20) [5, 89, 1949] C3 ■ 128) [1949, 73, 845] C3 ■ 21) [8, 26, 97] C3 ■ 69) [97, 13, 18] C3 ■ 22) [8, 70, 1097] C3 ■ 114) [1097, 35, 32] C3 ■ 23) [8, 86, 1049] C3 ■ 112) [1049, 43, 200] C3 ■ 24) [8, 98, 1433] C3 ■ 121) [1433, 49, 242] C3 ■ 25) [8, 50, 617] C3 ■ 100) [617, 25, 2] C3 ■ 26) [8, 82, 1033] C3 ■ 111) [1033, 41, 162] C3 ■ 27) [8, 118, 2969] C3 ■ 134) [2969, 59, 128] C3 ■ 28) [8, 86, 1721] C3 ■ 125) [1721, 43, 32] C3 ■ 29) [8, 82, 1481] C3 ■ 123) [1481, 41, 50] C3 ■ 30) [8, 70, 937] C3 ■ 110) [937, 35, 72] C3 ■ 31) [8, 70, 1193] C3 ■ 118) [1193, 35, 8] C3 ■ 32) [8, 114, 2857] C3 ■ ---) [2857, 57, 98] C3 x C3 ■ 33) [8, 98, 2393] C3 ■ 131) [2393, 49, 2] C3 ■ 34) [8, 54, 601] C3 ■ 98) [601, 27, 32] C3 ■ 35) [13, 33, 113] C3 ■ 76) [113, 35, 52] C3 ■ 36) [13, 101, 1117] C3 ■ 115) [1117, 73, 1053] C3 ■ 37) [13, 77, 1453] C3 ■ 122) [1453, 125, 637] C3 ■ 38) [13, 53, 673] C3 ■ 102) [673, 83, 208] C3 ■ 39) [13, 42, 389] C3 ■ 92) [389, 21, 13] C3 ■ 40) [13, 33, 269] C3 ■ 83) [269, 61, 325] C3 ■ 41) [13, 98, 1933] C3 ■ 127) [1933, 49, 117] C3 ■ 42) [17, 175, 7652] C3 ■ 126) [1913, 139, 4352] C3 ■ 43) [17, 167, 6628] C3 ■ 124) [1657, 107, 2448] C3 ■ 44) [17, 111, 3076] C3 ■ 105) [769, 87, 1700] C3 ■ 45) [17, 26, 101] C3 ■ 71) [101, 13, 17] C3 ■ 46) [17, 86, 761] C3 ■ ---) [761, 43, 272] C3 x C3 ■ 47) [17, 103, 2308] C3 ■ ---) [577, 55, 612] C21 ■ 48) [17, 78, 1249] C3 ■ 119) [1249, 39, 68] C3 ■ 49) [29, 34, 173] C3 ■ 78) [173, 17, 29] C3 ■ 50) [29, 65, 701] C3 ■ 104) [701, 130, 1421] C3 ■ 51) [29, 89, 349] C3 ■ 89) [349, 57, 725] C3 ■ 52) [37, 137, 613] C3 ■ 99) [613, 113, 1813] C3 ■ 53) [37, 41, 337] C3 ■ 86) [337, 82, 333] C3 ■ 54) [37, 45, 53] C3 ■ 64) [53, 25, 37] C3 ■ 55) [37, 33, 41] C3 ■ 59) [41, 31, 148] C3 ■ 56) [37, 77, 733] C3 ■ ---) [733, 154, 2997] C3 x C3 ■ 57) [37, 202, 10053] C3 ■ 116) [1117, 101, 37] C3 ■ 58) [37, 21, 101] C3 ■ 72) [101, 42, 37] C3 ■ 59) [41, 31, 148] C3 ■ 55) [37, 33, 41] C3 ■ 60) [41, 118, 857] C3 ■ 108) [857, 59, 656] C3 ■ 61) [41, 111, 1348] C3 ■ 87) [337, 79, 1476] C3 ■ 62) [41, 151, 5444] C3 ■ 120) [1361, 211, 2624] C3 ■ 63) [41, 103, 1412] C3 ■ 90) [353, 107, 656] C3 ■ 64) [53, 25, 37] C3 ■ 54) [37, 45, 53] C3 ■ 65) [61, 29, 73] C3 ■ 66) [73, 58, 549] C3 ■ 66) [73, 58, 549] C3 ■ 65) [61, 29, 73] C3 ■ 67) [73, 78, 353] C3 ■ 91) [353, 39, 292] C3 ■ 68) [89, 78, 97] C3 ■ 70) [97, 39, 356] C3 ■ 69) [97, 13, 18] C3 ■ 21) [8, 26, 97] C3 ■ 70) [97, 39, 356] C3 ■ 68) [89, 78, 97] C3 ■ 71) [101, 13, 17] C3 ■ 45) [17, 26, 101] C3 ■ 72) [101, 42, 37] C3 ■ 58) [37, 21, 101] C3 ■ 73) [109, 161, 349] C3 ■ 88) [349, 145, 981] C3 ■ 74) [113, 119, 1252] C3 ■ 85) [313, 171, 7232] C3 ■ 75) [113, 94, 401] C3 ■ ---) [401, 47, 452] C15 ■ 76) [113, 35, 52] C3 ■ 35) [13, 33, 113] C3 ■ 77) [137, 103, 1796] C3 ■ 96) [449, 206, 3425] C3 ■ 78) [173, 17, 29] C3 ■ 49) [29, 34, 173] C3 ■ 79) [193, 131, 3856] C3 ■ 80) [241, 199, 6948] C3 ■ 80) [241, 199, 6948] C3 ■ 79) [193, 131, 3856] C3 ■ 81) [241, 31, 180] C3 ■ 7) [5, 33, 241] C3 ■ 82) [257, 23, 68] C3 ■ ---) [17, 46, 257] C1 ■ 83) [269, 61, 325] C3 ■ 40) [13, 33, 269] C3 ■ 84) [281, 19, 20] C3 ■ 2) [5, 37, 281] C3 ■ 85) [313, 171, 7232] C3 ■ 74) [113, 119, 1252] C3 ■ 86) [337, 82, 333] C3 ■ 53) [37, 41, 337] C3 ■ 87) [337, 79, 1476] C3 ■ 61) [41, 111, 1348] C3 ■ 88) [349, 145, 981] C3 ■ 73) [109, 161, 349] C3 ■ 89) [349, 57, 725] C3 ■ 51) [29, 89, 349] C3 ■ 90) [353, 107, 656] C3 ■ 63) [41, 103, 1412] C3 ■ 91) [353, 39, 292] C3 ■ 67) [73, 78, 353] C3 ■ 92) [389, 21, 13] C3 ■ 39) [13, 42, 389] C3 ■ 93) [409, 27, 80] C3 ■ 5) [5, 41, 409] C3 ■ 94) [421, 21, 5] C3 ■ 16) [5, 42, 421] C3 ■ 95) [449, 23, 20] C3 ■ 10) [5, 46, 449] C3 ■ 96) [449, 206, 3425] C3 ■ 77) [137, 103, 1796] C3 ■ 97) [569, 43, 320] C3 ■ 9) [5, 49, 569] C3 ■ 98) [601, 27, 32] C3 ■ 34) [8, 54, 601] C3 ■ 99) [613, 113, 1813] C3 ■ 52) [37, 137, 613] C3 ■ 100) [617, 25, 2] C3 ■ 25) [8, 50, 617] C3 ■ 101) [661, 29, 45] C3 ■ 6) [5, 57, 661] C3 ■ 102) [673, 83, 208] C3 ■ 38) [13, 53, 673] C3 ■ 103) [701, 41, 245] C3 ■ 11) [5, 53, 701] C3 ■ 104) [701, 130, 1421] C3 ■ 50) [29, 65, 701] C3 ■ 105) [769, 87, 1700] C3 ■ 44) [17, 111, 3076] C3 ■ 106) [821, 29, 5] C3 ■ 17) [5, 58, 821] C3 ■ 107) [829, 57, 605] C3 ■ 15) [5, 61, 829] C3 ■ 108) [857, 59, 656] C3 ■ 60) [41, 118, 857] C3 ■ 109) [929, 47, 320] C3 ■ 12) [5, 61, 929] C3 ■ 110) [937, 35, 72] C3 ■ 30) [8, 70, 937] C3 ■ 111) [1033, 41, 162] C3 ■ 26) [8, 82, 1033] C3 ■ 112) [1049, 43, 200] C3 ■ 23) [8, 86, 1049] C3 ■ 113) [1069, 33, 5] C3 ■ 18) [5, 66, 1069] C3 ■ 114) [1097, 35, 32] C3 ■ 22) [8, 70, 1097] C3 ■ 115) [1117, 73, 1053] C3 ■ 36) [13, 101, 1117] C3 ■ 116) [1117, 101, 37] C3 ■ 57) [37, 202, 10053] C3 ■ 117) [1181, 41, 125] C3 ■ 19) [5, 73, 1181] C3 ■ 118) [1193, 35, 8] C3 ■ 31) [8, 70, 1193] C3 ■ 119) [1249, 39, 68] C3 ■ 48) [17, 78, 1249] C3 ■ 120) [1361, 211, 2624] C3 ■ 62) [41, 151, 5444] C3 ■ 121) [1433, 49, 242] C3 ■ 24) [8, 98, 1433] C3 ■ 122) [1453, 125, 637] C3 ■ 37) [13, 77, 1453] C3 ■ 123) [1481, 41, 50] C3 ■ 29) [8, 82, 1481] C3 ■ 124) [1657, 107, 2448] C3 ■ 43) [17, 167, 6628] C3 ■ 125) [1721, 43, 32] C3 ■ 28) [8, 86, 1721] C3 ■ 126) [1913, 139, 4352] C3 ■ 42) [17, 175, 7652] C3 ■ 127) [1933, 49, 117] C3 ■ 41) [13, 98, 1933] C3 ■ 128) [1949, 73, 845] C3 ■ 20) [5, 89, 1949] C3 ■ 129) [2269, 57, 245] C3 ■ 3) [5, 101, 2269] C3 ■ 130) [2309, 53, 125] C3 ■ 13) [5, 106, 2309] C3 ■ 131) [2393, 49, 2] C3 ■ 33) [8, 98, 2393] C3 ■ 132) [2549, 77, 845] C3 ■ 1) [5, 101, 2549] C3 ■ 133) [2789, 53, 5] C3 ■ 4) [5, 106, 2789] C3 ■ 134) [2969, 59, 128] C3 ■ 27) [8, 118, 2969] C3 ■