Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class number 935 non-normal (D4) quartic CM field invariants: 105 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 12806, 39903289] C935 102) [39903289, 6403, 273780] C935
2) [5, 14806, 54788729] C935 105) [54788729, 7403, 3920] C935
3) [5, 12766, 37606369] C935 101) [37606369, 6383, 784080] C935
4) [5, 14686, 53242529] C935 104) [53242529, 7343, 169280] C935
5) [5, 13366, 42588809] C935 103) [42588809, 6683, 518420] C935
6) [13, 6222, 9677489] C935 100) [9677489, 3111, 208] C935
7) [17, 2078, 599713] C935 88) [599713, 1039, 119952] C935
8) [17, 3214, 2369201] C935 97) [2369201, 1607, 53312] C935
9) [17, 2398, 1159073] C935 94) [1159073, 1199, 69632] C935
10) [37, 3582, 3056129] C935 99) [3056129, 1791, 37888] C935
11) [197, 2854, 1015081] C935 93) [1015081, 1427, 255312] C935
12) [197, 3494, 2434217] C935 98) [2434217, 1747, 154448] C935
13) [281, 1927, 683792] C935 74) [42737, 3407, 2378384] C935
14) [281, 3022, 107057] C935 ---) [107057, 1511, 544016] C5 x C935
15) [349, 1549, 561373] C935 87) [561373, 3098, 153909] C935
16) [389, 1637, 648061] C935 89) [648061, 3274, 87525] C935
17) [397, 1314, 430061] C935 ---) [430061, 657, 397] C11 x C935
18) [401, 778, 21397] C935 ---) [21397, 389, 32481] C187
19) [401, 626, 19373] C935 ---) [19373, 313, 19649] C187
20) [661, 1461, 525533] C935 86) [525533, 2922, 32389] C935
21) [809, 526, 17393] C935 69) [17393, 263, 12944] C935
22) [821, 1389, 423013] C935 ---) [423013, 2778, 237269] C17 x C935
23) [881, 3727, 247952] C935 65) [15497, 1999, 902144] C935
24) [1181, 1153, 308437] C935 84) [308437, 2306, 95661] C935
25) [1297, 614, 11241] C935 ---) [1249, 307, 20752] C85
26) [1657, 694, 93897] C935 60) [10433, 347, 6628] C935
27) [2069, 709, 83773] C935 78) [83773, 1418, 167589] C935
28) [2081, 1559, 457268] C935 ---) [2333, 1693, 2081] C187
29) [2081, 422, 11225] C935 ---) [449, 211, 8324] C187
30) [2417, 3647, 105104] C935 51) [6569, 2231, 966800] C935
31) [2521, 3402, 2641301] C935 ---) [15629, 1701, 63025] C8415
32) [2521, 3918, 1256177] C935 52) [7433, 1959, 645376] C935
33) [2689, 1167, 146192] C935 56) [9137, 2334, 777121] C935
34) [2897, 4723, 4689476] C935 57) [9689, 3059, 11588] C935
35) [3181, 1061, 261549] C935 ---) [3229, 2122, 79525] C561
36) [3209, 4039, 3942800] C935 59) [9857, 5263, 6212624] C935
37) [3313, 3275, 354852] C935 58) [9857, 6267, 649348] C935
38) [3469, 2054, 999225] C935 ---) [4441, 1027, 13876] C5 x C935
39) [3613, 273, 17729] C935 70) [17729, 546, 3613] C935
40) [3733, 2661, 1500521] C935 ---) [12401, 5322, 1078837] C2805
41) [3881, 555, 76036] C935 72) [19009, 1110, 3881] C935
42) [4049, 4795, 3876356] C935 53) [8009, 3475, 1959716] C935
43) [4357, 2841, 3797] C935 ---) [3797, 3229, 1572877] C187
44) [4513, 2531, 1194192] C935 54) [8293, 5062, 1629193] C935
45) [4993, 7655, 10594192] C935 64) [13513, 4411, 1617732] C935
46) [5237, 2789, 686441] C935 ---) [14009, 5578, 5032757] C11 x C935
47) [5437, 7490, 10349613] C935 ---) [14197, 3745, 918853] C2805
48) [5569, 7623, 7509200] C935 ---) [18773, 7921, 15643321] C5 x C935
49) [5669, 6077, 387425] C935 66) [15497, 7243, 11995604] C935
50) [5801, 7835, 5831716] C935 62) [12049, 6159, 371264] C935
51) [6569, 2231, 966800] C935 30) [2417, 3647, 105104] C935
52) [7433, 1959, 645376] C935 32) [2521, 3918, 1256177] C935
53) [8009, 3475, 1959716] C935 42) [4049, 4795, 3876356] C935
54) [8293, 5062, 1629193] C935 44) [4513, 2531, 1194192] C935
55) [8689, 3414, 2357753] C935 ---) [4457, 1707, 139024] C187
56) [9137, 2334, 777121] C935 33) [2689, 1167, 146192] C935
57) [9689, 3059, 11588] C935 34) [2897, 4723, 4689476] C935
58) [9857, 6267, 649348] C935 37) [3313, 3275, 354852] C935
59) [9857, 5263, 6212624] C935 36) [3209, 4039, 3942800] C935
60) [10433, 347, 6628] C935 26) [1657, 694, 93897] C935
61) [10613, 1597, 40621] C935 ---) [829, 3194, 2387925] C187
62) [12049, 6159, 371264] C935 50) [5801, 7835, 5831716] C935
63) [12301, 2726, 86425] C935 ---) [3457, 1363, 442836] C187
64) [13513, 4411, 1617732] C935 45) [4993, 7655, 10594192] C935
65) [15497, 1999, 902144] C935 23) [881, 3727, 247952] C935
66) [15497, 7243, 11995604] C935 49) [5669, 6077, 387425] C935
67) [15889, 1051, 240400] C935 ---) [601, 2102, 143001] C187
68) [16333, 1781, 756241] C935 ---) [409, 1931, 261328] C85
69) [17393, 263, 12944] C935 21) [809, 526, 17393] C935
70) [17729, 546, 3613] C935 39) [3613, 273, 17729] C935
71) [18433, 4467, 3324944] C935 ---) [4241, 8771, 4718848] C187
72) [19009, 1110, 3881] C935 41) [3881, 555, 76036] C935
73) [35593, 943, 142228] C935 ---) [37, 937, 35593] C187
74) [42737, 3407, 2378384] C935 13) [281, 1927, 683792] C935
75) [47657, 1531, 2192] C935 ---) [137, 2419, 762512] C55
76) [55697, 325, 12482] C935 ---) [8, 650, 55697] C55
77) [57809, 271, 3908] C935 ---) [977, 542, 57809] C187
78) [83773, 1418, 167589] C935 27) [2069, 709, 83773] C935
79) [124981, 1442, 19917] C935 ---) [2213, 721, 124981] C2805
80) [157049, 2999, 1266944] C935 ---) [101, 3361, 157049] C187
81) [204613, 1834, 22437] C935 ---) [277, 917, 204613] C187
82) [229637, 501, 5341] C935 ---) [109, 1002, 229637] C187
83) [294337, 543, 128] C935 ---) [8, 1086, 294337] C187
84) [308437, 2306, 95661] C935 24) [1181, 1153, 308437] C935
85) [450473, 2858, 240149] C935 ---) [29, 1429, 450473] C187
86) [525533, 2922, 32389] C935 20) [661, 1461, 525533] C935
87) [561373, 3098, 153909] C935 15) [349, 1549, 561373] C935
88) [599713, 1039, 119952] C935 7) [17, 2078, 599713] C935
89) [648061, 3274, 87525] C935 16) [389, 1637, 648061] C935
90) [831769, 913, 450] C935 ---) [8, 1826, 831769] C85
91) [867617, 943, 5408] C935 ---) [8, 1886, 867617] C187
92) [941453, 1041, 35557] C935 ---) [37, 2082, 941453] C187
93) [1015081, 1427, 255312] C935 11) [197, 2854, 1015081] C935
94) [1159073, 1199, 69632] C935 9) [17, 2398, 1159073] C935
95) [1736681, 1433, 79202] C935 ---) [8, 2866, 1736681] C85
96) [2206649, 1793, 252050] C935 ---) [8, 3586, 2206649] C187
97) [2369201, 1607, 53312] C935 8) [17, 3214, 2369201] C935
98) [2434217, 1747, 154448] C935 12) [197, 3494, 2434217] C935
99) [3056129, 1791, 37888] C935 10) [37, 3582, 3056129] C935
100) [9677489, 3111, 208] C935 6) [13, 6222, 9677489] C935
101) [37606369, 6383, 784080] C935 3) [5, 12766, 37606369] C935
102) [39903289, 6403, 273780] C935 1) [5, 12806, 39903289] C935
103) [42588809, 6683, 518420] C935 5) [5, 13366, 42588809] C935
104) [53242529, 7343, 169280] C935 4) [5, 14686, 53242529] C935
105) [54788729, 7403, 3920] C935 2) [5, 14806, 54788729] C935