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Summary

In this work, we investigate methods for computing equations of
Humbert surfaces – moduli spaces for principally polarized abelian surfaces
having endomorphism ring isomorphic to a real quadratic order. Our main
approach is to use Fourier expansions of modular forms and apply ‘Runge’s
method’ to find relations among them. We find equations of Humbert com-
ponents in a number of different models including the Rosenhain model, the
symmetric Satake model, Runge’s model and level 1 models. We then take
intersections of Humbert surfaces to produce equations describing Shimura
curves. For small discriminants, we find parametrizations of Humbert com-
ponents which allow us to construct rational points. Amongst these we
search for modular Jacobian surfaces defined over the rationals. We reduce
our Humbert equations modulo p to study ‘congruence primes’ – primes at
which the reduction mod p of a modular Jacobian surface splits as a product
of elliptic curves. In the final chapter, we compute (3, 3)-isogeny relations
which are used to improve the CRT-method to compute Igusa class polyno-
mials; Humbert surfaces are shown to significantly improve this algorithm.

Statement

This thesis contains no material which has been accepted for the award of
any other degree or diploma. All work in this thesis, except where duly
attributed to another person, is believed to be original.



CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1. Abelian Varieties and their Moduli Spaces . . . . . . . . . . . 1
1.1. Complex tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Projective embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. The Appell-Humbert theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4. The dual abelian variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5. Polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6. The Rosati involution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7. Endomorphisms of abelian varieties . . . . . . . . . . . . . . . . . . . . . . . 13
1.8. Classification of endomorphism algebras . . . . . . . . . . . . . . . . . . . 14
Moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.9. The Riemann relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.10. The Siegel upper half space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.11. Classical theta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.12. Satake compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.13. Hilbert modular surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 2. Humbert Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1. Real multiplication and Humbert surfaces . . . . . . . . . . . . . . . . . . 28
2.2. Humbert surface embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3. Computing Humbert Surfaces . . . . . . . . . . . . . . . . . . . . . . 35
3.1. Fourier expansions of theta functions . . . . . . . . . . . . . . . . . . . . . . 35
3.2. Degree formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3. Runge’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4. Satake models of level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5. Rosenhain models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6. Descent to level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 4. Shimura Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1. Quaternion algebras and orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2. Shimura curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3. Shimura curve embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

iii



iv CONTENTS

Chapter 5. Computing Shimura Curves . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1. Discriminant matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2. Shimura curves contained in H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3. Level 2 Shimura components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4. Level 1 calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 6. Parametrizing Humbert Surfaces . . . . . . . . . . . . . . . . . . . 78
6.1. The Satake sextic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2. Rational parametrizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3. Modular abelian surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4. Congruence primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 7. Explicit CM-theory in Dimension 2 . . . . . . . . . . . . . . . . . 90
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2. CM-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3. Computing the CM-action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4. Smaller functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5. The CM-action and level structure . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.6. The CM-action over finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.7. Examples and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.8. Obstruction to isogeny volcanos . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.9. An improvement to the CM method. . . . . . . . . . . . . . . . . . . . . . . . 113

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



Acknowledgements

First and foremost, I wish to thank my supervisor David Kohel for his
encouragement, kindness, infinite patience and unwavering dedication to
my doctoral endeavours. I shall cherish the many mathematical expeditions
we went on, both abroad and in the Carslaw building.

I am indebted to the School of Mathematics and Statistics and the Uni-
versity of Sydney which has been a wonderful provider over the years. Also
to Shona Yu for making the maths postgrads one big happy family - it’s not
the same without you.

To the number theory seminar postgrads who have contributed to my
mathematical development: Hai-Trung Ho, Stephen Meagher, Ben Smith
and Steve Enright-Ward. Also Ley Wilson who has helped me remove 80%
of the grammatical errors (finding the remaining 20% has been left as an
exercise for the reader).

Special thanks to the postdocs passing through Sydney who’ve helped
me along the way: Claus Fieker, Martine Girard, Robert Carls, John Voight
and Steve Donnelly. Also to the Magma group for their computer algebra
software which I use intensively.

To Kristin Lauter for inviting me to Microsoft Research to do a summer
internship this year. Together with Reinier Bröker we accomplished a great
deal and I had a lot of fun at the same time. I thank Microsoft Research for
its hospitality.

One of the best things that eventuated as a result of starting a PhD at
Sydney University was getting invited to tutor at the National Mathematics
Summer School (NMSS). I’ve met the most amazing people down there and
hold them in high esteem.

Last but not least, to my family for their love which sustains me.

v



Introduction

Georges Humbert (1859–1921) obtained a doctorate in mathematics in
1885 for his thesis “Sur les courbes de genre un”. Since that time, the
study of elliptic curves has grown immensely and with the help of modern
computers, conjectures like Birch and Swinnerton-Dyer conjecture encour-
age further investigations both theoretical and computational. For higher
genus curves on the other hand, less has been achieved in terms of explicit
calculation. In relatively recent times more attention has been focused on
computing with genus 2 curves, beginning in 1989 when hyperelliptic curve
cryptography was proposed by Koblitz [42]. By virtue of the zeta function,
all genus 2 curves over a finite field have complex multiplication by a quar-
tic CM field and as a consequente, CM-points have been intensely studied.
Less attention has been given to genus 2 Jacobians having different endo-
morphism algebras, for example indefinite Q-quaternion algebras or real
quadratic fields. Humbert [29] found relations (defining a surface) in terms
of hyperelliptic roots which determine when a principally polarized abelian
surface has endomorphism ring isomorphic to a quadratic order of discrim-
imant ∆ for values ∆ = 1, 4, 5, 8. Humbert surface equations were later
studied by Hecke [26] and Franke [15] in their dissertations. By the early
1980’s, the theory of Humbert surfaces was well and truly established [72],
yet it would take another 17 years before anybody computed a new Humbert
surface explicitly (admittedly, many equations were calculated for Hilbert
modular surfaces which are closely related). In 1999, Runge [64] com-
puted models of components of Humbert surfaces, which included models
for five new discriminants. His motivation was to compute Shimura curves
(quaternionic multiplication) in the intersection of Humbert surfaces. Our
motivation is somewhat broader, for we also apply the results to explicit
CM-theory, endomorphism computations and the investigation of modular
abelian surfaces. The fact that every quartic CM field contains a real qua-
dratic field means that a CM point can be identified as a point on a Humbert
surface. This can be used to great effect in speeding up the CRT method for
computing Igusa class polynomials and speeding up endomorphism ring
computations (Section 7.9).

vi



INTRODUCTION vii

Chapter 1 provides reference to the background material on abelian
varieties and moduli spaces. Here we describe classical theta functions
and Satake compactifications as well as provide some examples of mod-
uli spaces of abelian surfaces having a real multiplication (RM) structure
(Hilbert modular surfaces).

Chapter 2 is an overview of Humbert surfaces. The main result of Sec-
tion 2.1 is Humbert’s Lemma (Theorem 2.9) which says that the locus H∆

of principally polarized abelian surfaces having real multiplication by a qua-
dratic order of discriminant ∆ is a two dimensional irreducible subvariety
(called a Humbert surface) of the Siegel modular threefold H2/Sp4(Z) and
can be described in H2 by a single linear relation:

τ3 = kτ1 + `τ2

where τ = ( τ1 τ2
τ2 τ3 ) ∈ H2 and ∆ = 4k + `. In Section 2.2 we see that

Humbert surfaces are degree 2 quotients of Hilbert modular surfaces.
We then detail our Humbert surface computations in Chapter 3. The

method used to find Humbert relations involves Fourier expansions of mod-
ular forms. These expansions are constructed using theta constants for
which explicit expansions are known. Finding an algebraic relation between
these modular forms reduces to searching for a linear relation between
monomials, each represented as a power series. This algorithm (“Runge’s
method” [64]) is applied to various models of moduli spaces with level
structure, for example the Rosenhain model which has level 2 structure.
Another level 2 model which we investigate is the symmetric Satake model
X[2] in P5 due to van der Geer [72]. The projection map down to level 1 is
a Galois cover by the group S6, where S6 acts by permutations on the coor-
dinate functions of P5. Geometric properties (stabilizer of a component in
S6, number of components, degree) are known for Humbert components in
this model and assist with their computation.

Chapter 4 summarizes the arithmetic theory of quaternion algebras and
paves the way for Chapter 5 where we identify ‘Shimura curves’ – curves
appearing in the intersection of Humbert surfaces. Technically speaking
these are quotients of Shimura curves by Atkin-Lehner subgroups, the pre-
cise groups determined by Victor Rotger in his PhD thesis [60]. This method
was given by Hashimoto and Murabayashi in [25] who found Shimura
curves of discriminant 6 and 10 using Humbert’s original equations for H5

and H8. At the time, the only other known equations of Humbert surfaces
were H1 and H4 which limited the method. Using the symmetric Satake
model, Besser [6] computed Shimura curves of discriminants 6, 10 and 15
by hand, where the discriminant 15 curve appears in the intersection of two
distinct Humbert components of discriminant 8. Using yet another model,
Runge [64] extended the list of discriminants of Humbert components but
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did not publish any Shimura curve equations. We provide algorithms to
automate the process and produce some equations for larger examples.

In Chapter 6 we parametrize some of our Humbert components and find
2-parameter families of points on level 1 Humbert surfaces. Using these we
can find rational points on level 1 Humbert surfaces. We also find rational
points for which the RM is defined overQ. The recently proven generalized
Shimura-Taniyama conjecture implies that these abelian surfaces are mod-
ular, i.e. isogenous to a 2-dimensional factor of J0(N) for some N . We then
work in the other direction and study the reduction of modular Jacobians at
primes p using Humbert surfaces mod p.

The final chapter is joint work with Kristin Lauter and Reinier Bröker
at Microsoft Research and is essentially self contained. Using the Fourier
expansions method of Chapter 3, we compute (3, 3)-isogeny relations. We
use them to make the Galois action on the CM-moduli explicit, improv-
ing the CRT-method to compute Igusa class polynomials. The last section
demonstrates that Humbert surfaces can be used to speed up parts of the
algorithms even further.

The cover picture is a connected component of the (3, 3)-isogeny graph
for the quartic CM field K = Q[X]/(X4 + 22X2 + 73). The white dots
represent principally polarized abelian surfaces over F1609 whose endomor-
phism ring is isomorphic to the ring of integers of K. See Example 7.17 for
the details.

Many of the computations are too large to include in this thesis. For
convenience, the data has been made accessible online at

http://echidna.maths.usyd.edu.au/∼davidg/thesis.html .



CHAPTER 1

Abelian Varieties and their Moduli Spaces

This chapter is divided into two parts. The first part provides reference
for the theory of complex abelian varieties and the classification of their
endomorphism algebras. The second part describes moduli spaces of abe-
lian varieties. Our exposition is based on Birkenhake-Lange [7], and Rosen
[59].

Definition 1.1. An abelian variety A defined over a field k is a projective
group variety over k.

It can be shown that the group law on an abelian variety is necessarily
commutative. Considered as a variety over the complex numbers, an abe-
lian variety is analytically isomorphic to a complex torus. The converse is
not true: in dimensions greater than one, not all complex tori are abelian va-
rieties. We undertake a study of the precise conditions as to when a complex
torus is an abelian variety.

1.1. Complex tori

Definition 1.2. A complex torus of dimension g is a quotient V/Λ where V
is a complex vector space of dimension g and Λ is a lattice (discrete free
Z-module) of rank 2g.

Let us study complex analytic morphisms between complex tori. Since
translations are clearly morphisms, we can compose an arbitrary morphism
with a translation so it suffices to restrict our attention to homomorphisms -
morphisms that send 0 to 0.

Lemma 1.3. Let T1 = V1/Λ1 and T2 = V2/Λ2 be complex tori and let
α : T1 −→ T2 be a holomorphic map with α(0) = 0. Then α is a ho-
momorphism that is induced by a C-linear map α̃ : V1 −→ V2 satisfying
α̃(Λ1) ⊆ Λ2. We call α̃ the analytic representation of α.

1



2 1. ABELIAN VARIETIES AND THEIR MODULI SPACES

Proof. By the universal property of the projection map π2 : V2 −→ T2, the
map α ◦ π1 lifts to a holomorphic map α̃ : V1 −→ V2 which makes the fol-
lowing diagram commutative.

V1
α̃−−−→ V2

π1

y
yπ2

T1
α−−−→ T2

We necessarily have α̃(Λ1) ⊆ Λ2 and α̃ is uniquely determined mod Λ2, so
if we specify α̃(0) = 0 then α̃ is unique. From the commutative diagram
α̃(v + λ) ≡ α̃(v) mod Λ2 if λ is in Λ1 so ∂α̃

∂vi
(v + λ) = ∂α̃

∂vi
(v) for all λ in

Λ1. So for i = 1, . . . , g we have that ∂α̃
∂vi

is a holomorphic function on the
compact complex manifold T1, hence by Liouville’s Theorem all the partial
derivatives are constant, so α̃ is linear. Hence α̃ is a homomorphism and
therefore α is as well. ¤
Proposition 1.4. If α : T1 −→ T2 is a homomorphism then α(T1) is a sub-
torus of T2 and ker α is a closed subgroup of T1. The connected component
(ker α)0 is a subtorus and is of finite index in ker α.

Proof. See Birkenhake-Lange [7, Proposition 1.2.4]. ¤
If f : T1−→T2 is a nonzero homomorphism, then nf is nonzero for all

nonzero integers n. Hence there is a natural embedding

Hom(T1, T2) −→ Hom(T1, T2)⊗Q =: Hom0(T1, T2) .

Definition 1.5. A homomorphism α : T1−→T2 of complex tori is called an
isogeny if it is surjective and has finite kernel. The cardinality of the kernel
is called the degree of α.

Example 1.6. (multiplication by n). Let T = V/Λ be a complex torus of
dimension g. The map [n]T : T −→ T, x 7→ nx is an isogeny with kernel
equal to ( 1

n
Λ)/Λ ∼= (Z/nZ)2g.

The following lemma demonstrates the importance of multiplication
maps.

Lemma 1.7. Let T1, T2 be complex tori and let α : T1−→T2 be an isogeny
of degree d. There exists a unique isogeny α : T2−→T1 satisfying α ◦ α =
[d]T2 and α ◦ α = [d]T1 .

Proof. See Birkenhake-Lange [7, Proposition 1.2.6]. ¤
Note that the above lemma tells us that an isogeny f in Hom(T1, T2) has

an inverse in Hom(T2, T1)⊗Q, namely (deg f)−1f .
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1.2. Projective embeddings

A complex torus A = V/Λ is an abelian variety if and only if it can
be embedded into projective space. To do this, one needs to find an ample
divisor on A. First we briefly describe the necessary divisor theory.

A Cartier divisor on a complex manifold M is given by an equivalence
class of families {(Uα, fα)} where the Uα form an open covering of M ,
where fα 6= 0 is meromorphic on Uα, and fα/fβ is holomorphic on Uα ∪
Uβ for all α, β. Two families {(Uα, fα)} and {(Uβ, gβ)} are equivalent if
fα/gβ is nowhere zero and holomorphic on Uα ∪ Uβ . A divisor D is said
to be effective (or positive), written D ≥ 0, if the defining functions fα are
holomorphic for all α. One can check this property is independent of the
choice of representative.

The sum of two divisors is

{(Uα, fα) : α ∈ I}+{(Uβ, gβ) : β ∈ J} = {(Uα∩Uβ, fαgβ) : α ∈ I, β ∈ J} .

The set of divisors on M form an abelian group, written as Div(M). We
define the set of principal divisors Prin(M) ⊂ Div(M) to be the divisors
of the form

div(f) = {(f, M)} .

Let N be another complex manifold. A complex analytic map p : M−→
N induces a map

p∗ : Div(N) −→ Div(M)

{(Wα, gα)} 7−→ {(p−1Wα, gα ◦ p)}
called the pullback of p.

LetC(M) to be the set of meromorphic functions on M . For any divisor
D we have the associated the vector space of meromorphic functions

L(D) = {f ∈ C(M) : (f) + D ≥ 0} .

Write `(D) for the dimension ofL(D) and let f0, . . . , fn be a basis ofL(D).
Then we obtain a complex analytic map

ϕD : X −→ Pn

x 7−→ (f0(x) : . . . : fn(x))

where n = `(D)− 1. Note that ϕD is only well defined if `(D) ≥ 1.

Theorem 1.8. (Cousin’s Theorem) Every divisor on Cg is principal.

Proof. See Birkenhake-Lange [7, Lemma 2.1.1]. ¤
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Let T = V/Λ be a complex torus and π : V −→ T be the natural pro-
jection map. Given a meromorphic function f : T −→ C, we have that
π∗f = f ◦ π : V −→C. Write g = π∗f , then g(v + λ) = g(v) for all λ in
Λ hence g is Λ-periodic. Let ta : V −→ V, x 7→ x + a be translation by a.
Let D′ = {(fi, Ui)} be a divisor on T , then D = π∗D′ = {(π∗fi, π

−1Ui)}
is a divisor on V which satisfies t∗λD = D for all λ ∈ Λ. By Cousin’s The-
orem, D = div(f) for some f in C(V ). So t∗λD = D gives us f(z + λ) =
Uλ(z)f(z) for all λ in Λ, where Uλ(z) is a nowhere vanishing holomorphic
function (called a factor of automorphy). We can write Uλ(z) = e(hλ(z))
where e(z) = exp(2πiz). The function hλ(z) must satisfy

hλ1+λ2(z) = hλ1(z + λ2) + hλ2(z) mod Z .

The simplest and most important example is

hλ(z) = L(z, λ) + J(λ)

where L(z, λ) is linear in z. These define factors of automorphy of theta
functions.

Definition 1.9. (Theta functions) Let L : V × Λ−→C and J : Λ−→C be
maps as above. A theta function of type (L, J) is a meromorphic function θ
on V such that

θ(z + λ) = e(L(z, λ) + J(λ))θ(z)

for all z ∈ V and λ ∈ Λ.

The following theorem is a sharper form of Cousin’s Theorem for com-
plex tori and indicates the important rôle theta functions will play.

Theorem 1.10. (Poincaré) Let D′ be a divisor on T . Then π∗D′ = div(θ)
where θ is a meromorphic theta function.

Proof. See Lang [45, Ch. X §1]. ¤
Proposition 1.11. Let θ1 and θ2 be theta functions with respect to a lattice
Λ, and suppose they define the same divisor. Then there exists a quadratic
form Q, a linear form R and a constant S such that

(1.12) θ1(z)/θ2(z) = exp(Q(z) + R(z) + S) .

A theta function of the form exp(Q(z) + R(z) + S) is called a trivial theta
function.

Proof. See Hindry-Silverman [27, Lemma A.5.2.3]. ¤
Corollary 1.13. We have div(θ1) = div(θ2θ) as divisors on V , where θ is
any trivial theta function.

Definition 1.14. A Riemann form on V/Λ is a Hermitian form H : V ×
V −→C with the property that Im H(Λ, Λ) ⊆ Z.
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Lemma 1.15. There is a one-to-one correspondence between Hermitian
forms H : V × V −→ C and alternating forms E : V × V −→ R which
satisfy E(ix, iy) = E(x, y) given by

E = Im H , H(x, y) = E(ix, y) + iE(x, y) .

Proof. See Birkenhake-Lange [7, Lemma 2.1.7]. ¤

For this reason, some authors define a Riemann form to be Im H instead
of H . From the functional equation of the theta function, one can show that
L(z, λ) is Z-linear, and since V = Λ⊗ R, it can be extended to give a map
L : V × V −→ C which is R-linear in the second variable and C-linear in
the first variable.

Proposition 1.16. Let θ be a theta function of type (L, J) with respect to
the the lattice Λ. Define E(z, w) := L(z, w) − L(w, z). Then E is a real
valued bilinear alternating form and takes integral values on Λ×Λ. Hence
H(x, y) = E(ix, y) + iE(x, y) defines a Riemann form on V/Λ. Further-
more, H depends only on the divisor D = div(θ). Given two divisors D
and D′ we have that HD+D′ = HD + HD′ , that is to say the map D → HD

is a group homomorphism.

Proof. See Hindry-Silverman [27, p. 99]. ¤

As an immediate corollary of the previous Proposition and Corollary
1.13 we have:

Corollary 1.17. The Riemann form corresponding to a trivial theta function
is zero.

We now study the homomorphism D → HD more closely.

Lemma 1.18. Let θ0 be a theta function with respect to a lattice Λ and let
H be its Riemann form. Then there exists a theta function θ with the same
divisor (hence the same Riemann form) such that the functional equation is

θ(z + λ) = exp(πH(z, λ) +
π

2
H(λ, λ) + 2πiK(λ))θ(z) ,

where K : Λ−→R is a function satisfying

e(K(λ + µ)) = e(K(λ))e(K(µ))e(
1

2
E(λ, µ)) .

Proof. See Hindry-Silverman [27, Lemma A.5.2.6]. ¤

Let L(θ) be the vector space of all theta functions with the same func-
tional equation as θ. Note that L(div(θ)) ∼= L(θ) via θ 7→ θ/θ0 where
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θ0 can be taken to be any fixed element of L(θ). Hence choosing a basis
θ0, . . . , θn for L(θ), we get a holomorphic map

φD : V/Λ −→ Pn

z 7−→ (θ0(z) : . . . : θn(z))

Definition 1.19. A divisor D on a complex torus is said to be very ample if
φD is an embedding. We say D is ample if some positive multiple of D is
very ample.

If a complex torus can be embedded into projective space, then one can
apply Chow’s theorem [21, p. 167] which says that a complex submanifold
of projective space is a projective algebraic variety.

Proposition 1.20. The Riemann form associated to a theta function is pos-
itive definite.

Proof. See Hindry-Silverman [27, Proposition A.5.2.5(a)]. ¤
Theorem 1.21. Let D be an effective divisor on a complex torus. The Rie-
mann form attached to D is nondegenerate if and only if D is ample

Proof. See Hindry-Silverman [27, Theorem A.5.2.7]. ¤
Remark 1.22. If D is degenerate then L(θD) consists of degenerate theta
functions. Such functions give embeddings of subtori of strictly smaller
dimension. See Lang [45].

The dimension of L(θ) for a nondegenerate theta function is given by
Frobenius’ Theorem. First, a lemma.

Lemma 1.23. (Frobenius) Let Λ be a free abelian group of rank 2g. Let E
be a nondegenerate bilinear alternating form on Λ with values in Z. There
exist positive integers d1, . . . , dg (called the invariants of E) with di | di+1

and a basis e1, . . . , eg, f1, . . . , fg of Λ such that

E(ei, ej) = E(fi, fj) = 0 and E(ei, fj) = diδij .

The product d1 · · · dg =: Pf(E) is the square root of the determinant of E
and is called the Pfaffian of E. A basis with the properties above is called a
symplectic (or Frobenius) basis for Λ. If we set M = diag(d1, . . . , dg)
then the matrix of E with respect to the symplectic basis has the form(

0 M
−M 0

)
.

Proof. See Hindry-Silverman [27, Lemma A.5.3.1]. ¤
Theorem 1.24. (Frobenius) Let θ be a theta function with nondegenerate
Riemann form H for the complex torus V/Λ. Let {e1, . . . , eg, f1, . . . , fg} be
a symplectic basis for the form E = Im H on Λ and let d1, . . . , dg be the
associated invariants. Then
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a) The sets {e1, . . . , eg} and {f1, . . . , fg} both form C-bases of V ,
b) After multiplication by a suitable trivial theta function, the func-

tional equation of θ takes the form

θ(z + fi) = θ(z) and θ(z + ei) = θ(z)e(dizi + ci) ,

Such functions are known as classical theta functions.
c) dim L(θ) = Pf(E) .

Proof. See Hindry-Silverman [27, Lemma A.5.3.2, Theorem A.5.3.3]. ¤
Remark 1.25. There is a similar theorem for degenerate theta functions.
See Lang [45].

1.3. The Appell-Humbert theorem

In the previous section we showed that there was a correspondence
between divisors on complex tori and theta functions of a certain type.
Namely, given a divisor on T = V/Λ we can construct a normalised theta
function with factor of automorphy χ(λ) ·exp(πH(z, λ)+ π

2
H(λ, λ)) where

χ(λ) := e(K(λ)) satisfies

χ(λ + µ) = (−1)E(λ,µ)χ(λ)χ(µ) .

Definition 1.26. Write C1 for the complex numbers with absolute value
equal to 1. A function χ : Λ−→C1 satisfying the above relation is called a
semicharacter for H .

We now set up the notation needed to describe the Appell-Humbert The-
orem. Define P(V/Λ) to be the set of pairs (H, χ) where H is a Riemann
form on V and χ is a semicharacter for H . The correspondence is simply

D 7−→ π∗D = div(θ) 7−→ (H, χ) .

From now on write Dt to denote the divisor D translated by t. Let T =
V/Λ be a complex torus. Recall that Prin(T ) is the set of principal divisors
on T . Such divisors are of the form div(f) where f is a meromorphic
function on T . The pullback π∗(f) to V is Λ-periodic hence has trivial
factor of automorphy so (H, χ) = (0, 1). We say two divisors are linearly
equivalent if their difference is in Prin(T ). Define Divalg(T ) ⊂ Div(T ) to
be

{D′ ∈ Div(T )|D′ is linearly equivalent to Dt −D, D ∈ Div(T ), t ∈ V } ,

elements of which are said to be algebraically equivalent to 0. It is clear
from the correspondence that such divisors have Riemann form equal to
0. We have Prin(T ) ⊂ Divalg(T ) ⊂ Div(T ). We say two divisors are
algebraically equivalent if their difference is in Divalg(T ).
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Define the following groups:

The Néron-Severi group: NS(T ) = Div(T )/Divalg(T ) ,

the Picard group: Pic(T ) = Div(T )/Prin(T ) ,

and Pic0(T ) = Divalg(T )/Prin(T ) .

It follows immediately that the sequence below is exact:

0 −→ Pic0(T ) −→ Pic(T ) −→ NS(T ) −→ 0 .

The following theorem fully describes the divisor-theta function corre-
spondence.

Theorem 1.27. (Appell-Humbert) The following diagram is commutative,
where the rows are exact sequences.

1 // Hom(Λ,C1)
α //

∼=
²²

P(V/Λ)
β //

L ∼=
²²

NS(T ) //

=

²²

0

1 // Pic0(T ) // Pic(T ) // NS(T ) // 0

The map α sends χ to (0, χ) and the map β sends (H, χ) to a divisor corre-
sponding to H under the middle vertical isomorphism.

Proof. See Birkenhake-Lange [7, §2.2]. ¤

1.4. The dual abelian variety

Let T = V/Λ be a complex torus of dimension g. The exponential map
e :R−→C1 gives rise to an exact sequence

0 −→ HomZ(Λ,Z) −→ HomR(V,R)
e−→ Hom(Λ,C1) −→ 1 ,

thus Hom(Λ,C1) is isomorphic to HomR(V,R)/HomZ(Λ,Z) ∼= R2g/Z2g.
Below we show that HomR(V,R) can be given a complex structure (so that
it becomes a complex vector space) hence Pic0(T ) ∼= Hom(Λ,C1) is a
complex torus called the dual complex torus.

Consider the space HomC(V,C) of antilinear functionals on V ,

HomC(V,C) := {f ∈ HomR(V,C) : f(αt) = αf(t), α ∈ C, t ∈ V } .

This vector space is isomorphic to HomR(V,R) via the isomorphism

HomR(V,R)
ϕ−→ HomC(V,C)

g(z) 7−→ f(z) = −g(iz) + ig(z)

Im f(z) = g(z) ←− f(z) .
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Under this map, the complex structure of HomC(V,C) gets transferred to
HomR(V,R), so Hom(Λ,C1) ∼= V ∗/Λ∗ where

V ∗ = ϕ(HomR(V,R)) = HomC(V,C) and

Λ∗ = ϕ(HomZ(Λ,Z)) = {f ∈ V ∗ | Im f(Λ) ⊆ Z}
is a lattice in V ∗. Explicitly we have the following:

Lemma 1.28. The map ζ : V ∗/Λ∗ −→ Hom(Λ,C1) defined by

f 7−→ e(Im f(·))
is an isomorphism.

Lemma 1.29. Let v̄ be an element of T with representative v. For any
divisor D = L(H,χ) in Pic(X) we have

Dv̄ = L(H, χ · e(Im H(v, ·))
Proof. See Birkenhake-Lange [7, Lemma 3.2]. ¤
Corollary 1.30. Every element of Hom(Λ,C1) is of the form

λ 7→ e(Im H(v, λ))

for some v in V .

We now construct a map from T to Pic0(T ).

Proposition 1.31. Given a divisor X on T , define φX : T −→ Pic0(T ) by
φX(t) = X − Xt. If X is ample then φX is surjective with finite kernel of
order det(E) = Pf(E)2.

Proof. All that needs to be proved is the kernel claim. Using the isomor-
phism Pic(T ) ∼= Hom(Λ,C1) we have that

ker(φX) ∼= {v ∈ V : E(t, λ) ∈ Z for all λ ∈ Λ}/Λ .

Let {e1, . . . , eg, f1, . . . , fg} be a symplectic basis so the matrix of E has the

form
(

0 D
−D 0

)
where D = diag(d1, . . . , dg) where g is the dimension of

T . Identifying Λ with Z2g we have

ker(φX) = (D−1Z/Z)2 ∼= (Z/d1Z⊕ . . .⊕ Z/dgZ)2 ,

a finite group of the desired order. ¤
If H is a nondegenerate Riemann form on T , then φH : t 7→ H(t, ·) is

an isomorphism of V with V ∗ as complex vector spaces. One checks that
φH(Λ) ⊂ Λ∗ so we have a surjective homomorphism V/Λ → V ∗/Λ∗.

Proposition 1.32. Suppose X = L(χ,H). The map φH : V −→HomC(V,C)
above is the analytic representation of φX : T −→Pic0(T ).
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Proof. The claim follows immediately from the commutative diagram

T
φH−−−→ V ∗/Λ∗

φX

y ∼=
yζ

Pic0(T )
∼=−−−→ Hom(Λ,C1)

where ζ is the isomorphism in Lemma 1.28 and the bottom isomorphism is
given by the Appell-Humbert Theorem 1.27. ¤
Proposition 1.33. If A is a complex abelian variety, then Pic0(A) is a com-
plex abelian variety called the dual abelian variety.

Proof. Let A ∼= V/Λ and let H be a nondegenerate Riemann form with
respect to A. Let ϕ denote the isomorphism t 7→ H(t, ·) inducing φH .
Define

H∗(ξ, η) = H(ϕ−1
H (ξ), ϕ−1

H (η)) for ξ, η in V .

While H∗ is certainly a Hermitian form on V ∗, the imaginary part Im H∗

need not be integer valued on Λ∗ × Λ∗. Since ker(φH) is finite (by the
previous two propositions), it follows that φ−1

H (Λ∗)/Λ is a finite abelian
group, having exponent k say. Since ku is in Λ for any u in φ−1

H (Λ∗), it
follows that kH∗ is a Riemann form, proving that Pic0(A) is a complex
abelian variety. ¤

Write Â := Pic0(A) to denote the dual abelian variety of A. We list
some properties of the dual.

Proposition 1.34. Let A,A1, A2 and A3 be complex abelian varieties.

a) ̂̂
A ∼= A by double anti-duality.

b) If f : A1 −→ A2 is a homomorphism then the f̂ : Â2 −→ Â1 is a
homomorphism induced by pulling back divisors.

c) If 0 → A1 → A2 → A3 → 0 is an exact sequence of complex
abelian varieties then 0 → Â3 → Â2 → Â1 → 0 is also exact.

d) If f : A1−→A2 is an isogeny then f̂ : Â2−→ Â1 is an isogeny of the
same degree.

Proof. See Birkenhake-Lange [7, §2.4]. ¤

1.5. Polarizations

Let A be an abelian variety. Loosely speaking, a polarization on A is
a set of projective embeddings of A, each differing only by a translation
(algebraic equivalence).

Definition 1.35. A polarization is a set C(H) = {rH : r ∈ Q+} where H
is a positive definite nondegenerate Riemann form.
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The map φH : A−→ Â is an isogeny with analytic representation t 7→
H(t, ·). Let n be a positive integer. The analytic representation of φnH

factors as t 7→ nt 7→ H(nt, ·) = nH(t, ·) hence φnH factors through an
isogeny φH [n].

Remark 1.36. In the algebraic setting, a polarization is an equivalence class
C(X) of divisors in NS(A) where X and Y are equivalent if and only if
there exist positive integers m,n satisfying mX = nY .

Since Riemann forms must take integer values on the lattice, there is a
“smallest” Riemann form H ′ in C(H) for which all integer multiples of H ′

are Riemann forms. A divisor Y corresponding to H ′ is called a basic polar
divisor. It has the property that C(Y ) = {mY : m ∈ Z>0} and that for any
H in C(H ′) we have φH = φH′ [n] for some positive integer n.

Definition 1.37. A morphism of polarized complex abelian varieties

ϕ : (A1, C(H1))−→(A2, C(H2))

is a morphism ϕ : A1−→A2 such that the pullback ϕ∗H2 defined by

ϕ∗H2(z, w) := H2(ϕ(z), ϕ(w))

is in C(H1).

Abusing notation, we shall write Hom(A1, A2) for the set of morphisms
of polarized abelian varieties when the polarizations on A1, A2 are known.
Similarly, write End(A) for the endomorphism ring of a polarized abelian
variety when the polarization on A is understood.

Theorem 1.38. The automorphism group of a polarized abelian variety is
finite.

Proof. See Lang [46, p. 70]. ¤

If (A, C(H)) is a polarized complex abelian variety, then φH : A−→ Â
is an isogeny of degree det E = Pf(E)2 where E = Im H . A principally
polarized abelian variety is a polarized abelian variety (A, C(H)) for which
there exists a (unique) Riemann form H ′ in C(H) satisfying Pf(Im H ′) = 1.
This induces an isomorphism between A and its dual.

Proposition 1.39. Every polarized complex abelian variety is isogenous to
a principally polarized abelian variety.

Proof. Let (A, C(H)) be a polarized abelian variety of dimension g. As
usual we have A ∼= V/Λ and E = Im H being integer valued on Λ×Λ. Let
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{λ1, . . . , λ2g} be a symplectic basis for Λ. In particular, E(λj, λg+j) = dj

for some positive integers d1| · · · |dg. Define a new lattice

Λ′ =
g∑

j=1

1

dj

λjZ+

g∑
j=1

λg+jZ ,

then E as an alternating form on Λ′ is integer valued and has determinant 1.
Let A′ = V/Λ′, then the natural projection A → A′ is an isogeny of degree
d1 · · · dg and A′ is principally polarized by E. ¤

1.6. The Rosati involution

Let (A, C) be a polarized abelian variety. Define

End0(A) := End(A)⊗Q.

This is known as the the endomorphism algebra of (A, C). Let X be an
ample divisor in C. Then φX : A−→ Â is an isogeny, hence has an inverse
in Hom(Â, A)⊗Q. Every endomorphism ρ : A−→A has a dual morphism
ρ̂ : Â−→ Â, and the map ρ 7→ ρ̂ extends to a map End0(A) 7→ End0(Â).
Define the Rosati involution (with respect to C) to be ρ† := φ−1

X ◦ ρ̂ ◦ φX .
This formula for ρ† is independent of the choice of X , since

φ−1
nX ρ̂φnX = n−1φ−1

X ρ̂nφX = ρ†

as multiplication by n commutes with all endomorphisms.
It is easily seen that (ρ1◦ρ2)

† = ρ†2◦ρ†1, and combined with the following
proposition we can prove that ρ 7→ ρ† is an involution on End0(A).

Proposition 1.40. H(ρz, w) = H(z, ρ†w) for all z, w in V . That is, ρ† is
the adjoint of ρ with respect to H . Hence ρ†† = ρ.

Proof. We have a nondegenerate pairing V × V ∗ → C given by 〈z, g〉 =
g(z). If ρ is in End(A) then its dual satisfies 〈ρz, g〉 = 〈z, ρ̂g〉. We have
that 〈z, φHw〉 = H(w, z) for all z, w in V , so

H(ρ†w, z) = H(φ−1
H ρ̂φXw, z) = 〈z, ρ̂φHw〉 = 〈ρz, φHw〉 = H(w, ρz) .

Taking complex conjugates of both sides produces the desired equality. ¤

Remark 1.41. If (A, C) is principally polarized, then by taking X to be the
basic polar divisor, the map φX : A−→ Â is an isomorphism in which case
the Rosati involution is an involution of the endomorphism ring End(A) as
well as the endomorphism algebra.

The Rosati involution plays a crucial rôle in the classification of endo-
morphism algebras of abelian varieties.
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Theorem 1.42. Let Tr denote the trace map on the Q-algebra End0(A).
Then Tr(ρρ†) > 0 for all nonzero ρ in End0(A).

Proof. See Birkenhake-Lange [7, Theorem 5.1.8]. ¤
It follows that an endomorphism algebra of a polarized abelian variety

must have an involution f 7→ f † such that f 7→ Tr(f †f) is a positive definite
quadratic form.

1.7. Endomorphisms of abelian varieties

Let A = V/Λ and A′ = V ′/Λ′ be abelian varieties. Recall Lemma 1.3
which says that we have an injective homomorphism of abelian groups

ρa : Hom(A,A′) −→ HomC(V, V ′)

f 7−→ f̃

called the analytic representation of Hom(A,A′). The restriction of f̃ to the
lattice Λ is Z-linear. In fact f̃ |Λ determines f and f̃ completely, thus we get
an injective homomorphism

ρr : Hom(A,A′) −→ HomC(Λ, Λ′)

f 7−→ f̃ |Λ
called the rational representation of Hom(A,A′).

Suppose dim A = g and dim A′ = g′. Then choosing bases for Λ and
Λ′, a homomorphism Λ → Λ′ is given by a 2g × 2g′ integral matrix and
conversely, so HomZ(Λ, Λ′) ∼= Z4gg′ . Therefore, since any subgroup of
HomZ(Λ, Λ′) must be isomorphic to Zm, the injectivity of ρr implies the
following.

Proposition 1.43. Hom(A,A′) ∼= Zm for some m ≤ 4gg′.

Let A′′ = V ′′/Λ′′ be a third abelian variety. If f : A−→A′ and f ′ : A′−→
A′′ are homomorphisms then the uniqueness of lifts gives us the identity
ρa(f

′)ρa(f) = ρa(f
′f). It follows that if A = A′ then ρa and ρr are repre-

sentations of the ring End(A) and End0(A).

Definition 1.44. Let V/Λ be a complex torus. Fix a C-basis e1, . . . , eg for
V and fix a Z-basis λ1, . . . , λ2g for Λ. Let Π denote the g × 2g matrix
whose column vectors are given by λ1, . . . , λ2g with repect to the ei basis.
Explicitly, write each λj =

∑g
i=1 wjiei, then Π = (wij). The matrix Π is

called a period matrix.

Remark 1.45. It is clear that a period matrix is dependent on the bases
chosen for V and Λ. Some authors prefer to interchange rows and columns
and their period matrices have dimensions 2g × g. We shall make every
effort to be consistent according to our definition above.
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Proposition 1.46. Π is a period matrix of a complex torus of dimension g
if and only if the complex 2g × 2g matrix

(
Π
Π

)
is nonsingular.

Proof. See Birkenhake-Lange [7, Proposition 1.1.2]. ¤
Suppose A = V/Λ has a period matrix Π and A′ = V ′/Λ′ has period

matrix Π′ with respect to some bases of V, Λ and V ′, Λ′ respectively. Let
f : A−→A′ be a homomorphism. Then the linear transformation ρa(f) can
be written as a g × g′ complex matrix Ra with respect to the chosen bases.
Similarly ρr(f) is represented by a 2g × 2g′ integral matrix Rr. In terms of
matrices, the condition ρa(f)(Λ) ⊂ Λ′ corresponds to the relation

(1.47) RaΠ = Π′Rr .

Conversely any complex g × g′ matrix Ra and integral 2g × 2g′ matrix Rr

satisfying the above relation defines a homomorphism A → A′.

Proposition 1.48. The extended rational representation

ρr ⊗ C→ End0(A)⊗ C→ EndC(Λ⊗ C) ∼= EndC(V × V )

is equivalent to ρa ⊕ ρa.

Proof. Fix bases for V and Λ and let Π denote the corresponding period
matrix of A = V/Λ. Let f be an endomorphism of A. If C and R are
matrices of ρa and ρr with respect to the chosen bases respectively, then by
the relation (1.47) we have(

C 0
0 C

)(
Π
Π

)
=

(
Π
Π

)
R .

Since
(
Π
Π

)
is nonsingular by Proposition 1.46, we are done. ¤

Let f : A−→A′ be an isogeny. Then the degree of f is the cardinality of
ker(f) which equals the index of the subgroup ρr(f)(Λ) in Λ. In the special
case where f is an endomorphism of A we have Λ = Λ′ and thus

deg(f) = det ρr(f) .

From this we deduce that deg(f ′f) = deg(f ′) deg(f) when f ′, f are isoge-
nies and their composition is well defined.

1.8. Classification of endomorphism algebras

For the most part we state the classification theorems of this section
without proof. Proofs can be found in Birkenhake-Lange [7, Ch. 5].

An abelian variety is called simple is it does not contain any abelian
subvarieties other than itself and 0. We can now state Poincaré’s Complete
Reducibility Theorem.
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Theorem 1.49. (Poincaré) Given an abelian variety X there is an isogeny

X −→ Xn1
1 × . . .×Xnr

r

where the Xi are simple abelian varieties not isogenous to each other.
Moreover, the Xi and ni are uniquely determined up to isogenies and per-
mutations.

Proof. See Birkenhake-Lange [7, Theorem 5.3.7]. ¤

Corollary 1.50. End0(X) is a semisimpleQ-algebra: if X → Xn1
1 × . . .×

Xnr
r is an isogeny then

End0(X) ∼= Mn1(F1)⊕ . . .⊕Mnr(Fr)

where Fi = End0(Xi) are skew fields of finite dimension over Q.

Proof. Without loss of generality we may assume that X = Xn1
1 ×. . .×Xnr

r

where the Xi are simple and non-isogenous. We have

End0(X) =
r⊕

i,j=1

Hom0(X
ni
i , X

nj

j ) ,

=
⊕

i6=j

Hom0(Xi, Xj)
⊕ninj ⊕

r⊕
i=1

Mni
(End0(Xi)) .

If f : Xi −→ Xj is a homomorphism with i 6= j then the image of f is
an abelian subvariety of X

nj

j . Since Xi is simple, the connected part of the
kernel of f is either zero (in other words ker(f) is finite) or Xi. If the kernel
is finite then f is an isogeny which contradicts the hypothesis, therefore f
is the zero map. We have shown that Hom0(Xi, Xj) = 0 for i 6= j. All
that is left to show is that End0(Xi) is a skew field. Let f be a nonzero
endomorphism of Xi. Since Xi is simple, the kernel of f must be finite and
the image of f must be Xi. That is, f is an isogeny hence has an inverse
in End0(Xi). Finally, End0(Xi) is finite dimensional by Proposition 1.43,
completing the proof. ¤

The classification of endomorphism algebras of abelian varieties re-
duces to that of simple abelian varieties by the corollary above. Let X
be a simple abelian variety of dimension g and let C be a polarization on
X . Then F = End0(X) is a skew field of finite dimension over Q. With
respect to the polarization, the Rosati involution f 7→ f † is an involution
such that f 7→ Trr(f

†f) is a positive definite quadratic form.

Lemma 1.51. Any finite dimensional simple R-algebra B is isomorphic to
M where M is eitherMr(R),Mr(C) orMr(H) whereH is the skew field of
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Hamiltonian quaternions. Each of these three matrix algebras has a natural
involution x 7→ x∗ given by

x∗ =

{
tx for Mr(R)
tx̄ for Mr(C) andMr(H).

Any isomorphism B ∼= M can be composed with an automorphism of M
to obtain an isomorphism ϕ : B → M satisfying ϕ(x′) = ϕ(x)∗ where
x 7→ x′ is some involution on B.

Proof. See Birkenhake-Lange [7, Lemma 5.5.1]. ¤

For the rest of this section let (F, ′ ) be a skew field F of finite dimen-
sion over Q equipped with a positive nvolution ′ : F −→F . The involution
restricts to an involution on the center K of F , whose fixed field we denote
by K0.

Lemma 1.52. K0 is a totally real number field.

Proof. See Birkenhake-Lange [7, Lemma 5.5.2]. ¤

Definition 1.53. We say that (F, ′ ) is of the first kind if K = K0. Otherwise
we say (F, ′ ) is of the second kind.

A skew field F is called a quaternion algebra over K if [K : Q] = 4.
Such an algebra has a canonical involution x 7→ x = TrF/K(x)− x.

Theorem 1.54. (F, ′ ) is a skew field of finite dimension overQwith positive
involution of the first kind if and only if K is a totally real number field and
one of the following cases holds:

a) F = K and x′ = x for all x in F ,
b) F is a quaternion algebra over K and for every embedding σ :

K ↪→ R
F ⊗σ R ∼= M2(R) .

Such an algebra is called a totally indefinite quaternion algebra.
Moreover, there is an element a in F with a2 totally negative in K
such that the involution is given by x 7→ x′ = a−1xa.

c) F is a quaternion algebra over K and for every embedding σ :
K ↪→ R

F ⊗σ R ∼= H .

Such an algebra is called a totally definite quaternion algebra. More-
over the involution is given by x 7→ x′ = x.

Proof. See Birkenhake-Lange [7, Lemma 5.5.3]. ¤
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Lemma 1.55. Suppose (F, ′ ) is of the second kind. Then the center K is
totally complex and the restriction of the involution to K is complex conju-
gation.

Proof. See Birkenhake-Lange [7, Lemma 5.5.4]. ¤
For any skew field F , the degree [F : K] of F over its center K is

always a square, say d2.

Theorem 1.56. Let (F, ′ ) be a skew field of finite dimension over Q with
positive involution x 7→ x′ of the second kind. Then for every embedding
σ : K ↪→ C we have an isomorphism

ϕ : F ⊗σ C −→Md(C)

such that x 7→ x′ extends via ϕ to the canonical involution X 7→ tX on
Md(C).

Proof. See Birkenhake-Lange [7, Theorem 5.5.6]. ¤
The following proposition gives restrictions on the possible pairs (F, ′ ).

Proposition 1.57. Let (X, C) be a simple polarized abelian variety of di-
mension g. Then F = End0(X) is a skew field of finite dimension over Q
with positive involution x 7→ x†, the Rosati involution with respect to C.
Let K denote the center of F and K0 the fixed field of the Rosati involution
restricted to K. Denote

[F : K] = d2, [K : Q] = e, and [K0 : Q] = e0 .

Then we have the following restrictions for these values:

F = End0(X) d e0 restriction
totally real number field 1 e e | g

quaternion algebra 2 e 2e | g
(F, ′ ) of the second kind d 1

2
e e0d

2 | g

Proof. See Birkenhake-Lange [7, Proposition 5.5.7]. ¤
We now have necessary conditions for a pair (F, ′ ) to be the endomor-

phism algebra of a simple abelian variety. The example below shows that
these conditions are not sufficient. Even so, for fixed g, apart from some
exceptions, one can construct simple abelian varieties for each type of en-
domorphism algebra listed in the table. See Birkenhake-Lange [7, Chapter
9] or Shimura [66] for details.

Example 1.58. (Classification of endomorphism algebras of abelian sur-
faces) Let A be an abelian surface. If A is simple then End0(A) can be
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a) Q
b) a real quadratic field
c) a purely imaginary extension of a real quadratic field (CM field)
d) an totally indefinite quaternion algebra over Q

If A is not simple then it is isogenous to a product of elliptic curves E1×E2.
If E1 is not isogenous to E2 then End0(A) = Q×Q. If E1 is isogenous to
E2 then End0(A) = M2(k), where k equals either Q or an imaginary qua-
dratic field, the latter occuring when the Ei have complex multiplication.
Note that the endomorphism algebra cannot be a totally definite quaternion
algebra, and that an abelian surface which has CM by an imaginary qua-
dratic field K has an endomorphism ring strictly containing K (either an
indefinite quaternion algebra orM2(K)).

In this thesis we shall study abelian varieties of dimension two, the main
focus being on principally polarized abelian surfaces whose endomorphism
algebra is a real quadratic field.

Moduli spaces

For the rest of this chapter we review the theory of moduli spaces of
complex abelian varieties, mainly using Birkenhake-Lange [7] as our refer-
ence.

A (coarse) moduli space for a set of complex abelian varieties with
additional structure is a complex analytic space whose points correspond to
elements of the set. Most commonly the sets used are isomorphism classes
of abelian varieties with a given polarization and level structure.

The original definition of a polarization as an equivalence class, which
we used in the previous chapter and was given by Weil in the 1940’s, is
not well suited for studying moduli problems. When studying isomorphism
classes of abelian varieties it is essential to fix a Riemann form which pro-
duces a projective embedding. From now on, a polarization will refer to a
Riemann form rather than an equivalence class.

1.9. The Riemann relations

We need criteria to determine whether two abelian varieties are isomor-
phic to each other. This can be done by looking at period matrices.

Let X = V/Λ be a complex torus of dimension g. By fixing bases of V
and Λ, we can write down a period matrix Ω for X . The Riemann relations
provide necessary and sufficient conditions for Ω to be the period matrix of
a polarized abelian variety.

Theorem 1.59. X = Cg/ΩZ2g is an abelian variety if and only if there is a
nondegenerate alternating 2g × 2g matrix A with integer entries such that
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a) ΩA−1 tΩ = 0 ,
b) i ΩA−1 tΩ > 0 .

These two equations are known as the Riemann relations. The matrix A is
the alternating form defining a polarization on X .

Proof. Suppose that there exists a nondegenerate integer-valued alternating
form E on Λ. Denote by A the matrix of E with respect to a fixed basis of Λ.
Extend E to Λ⊗R = V . We know from Lemma 1.15 that H : V ×V −→C
defined by

H(z, w) = E(iz, w) + iE(z, w)

is a Hermitian form. The theorem follows immediately from the following
lemma. ¤
Lemma 1.60.

a) H is a Hermitian form on Cg if and only if ΩA−1 tΩ = 0 ,
b) H is positive definite if and only if i ΩA−1 tΩ > 0 .

Proof. See Birkenhake-Lange [7, Lemmas 4.2.2 and 4.2.3]. ¤
In the special case where the basis for Λ is a Frobenius basis, the matrix

of A is
(

0 D
−D 0

)
and the Riemann relations are

Ω2D
−1 tΩ1 − Ω1D

−1 tΩ2 = 0 ,

iΩ2D
−1 tΩ1 − iΩ1D

−1 tΩ2 > 0 ,

where Ω = (Ω1 Ω2).

1.10. The Siegel upper half space

In this section, we show how to identify a polarized abelian variety of
dimension g with a point in Siegel’s upper half space Hg.

Suppose X = V/Λ is an abelian variety of dimension g with a polar-
ization H of type D = diag(d1, . . . dg). Let λ1, . . . , λg, µ1, . . . , µg be a
symplectic basis for Im H . Take ei = 1

di
µi. Then by Frobenius’ Theorem

1.24, the ei form a basis of V . With respect to the chosen bases, we have
period matrix (Z, D) where Z is a g × g complex matrix. The Riemann
relations say that

tZ − Z = 0 ,

i(tZ − Z) > 0

and so Z is a point in the complex analytic space

Hg = {Z ∈Mg(C) | tZ = Z and Im Z > 0} ,
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known as the Siegel upper half space of degree g. Conversely, given a
matrix Z in Hg, we can construct a complex torus XZ = Cg/(Z D)Z2g

which is an abelian variety of polarization type D thanks to the Riemann
relations.

We have shown the following:

Proposition 1.61. Given a polarization type D, the Siegel upper half space
Hg is a moduli space for polarized abelian varieties of type D with sym-
plectic basis.

We now find a moduli space for the set of isomorphism classes of abe-
lian varieties with polarization type D. The equivalence classes of isomor-
phic abelian varieties will be orbits of points in Hg under the action of a
subgroup of Sp2g(R). To begin we first reacquaint the reader with symplec-
tic groups.

For any ring R the symplectic groups are defined to be the sets

Sp2g(R) =
{

M ∈ GL2g(R) | tM
(

0 Ig

−Ig 0

)
M =

(
0 Ig

−Ig 0

)}
.

We have the following useful lemma which can be easily verified.

Lemma 1.62.
a) Sp2g(R) is closed under transposition.
b) Let M =

(
α β
γ δ

) ∈ GL2g(R) where α is a g × g matrix. Then the
following are equivalent:

(i) M ∈ Sp2g(R),
(ii) tαγ and tβδ are symmetric and tαδ − tγβ = Ig,

(iii) αtβ and γtδ are symmetric and αtδ − βtγ = Ig.

Proposition 1.63. The group Sp2g(R) acts biholomorphically from the left
on Hg by

Z 7→ M(Z) := (αZ + β)(γZ + δ)−1

for all M =
(

α β
γ δ

)
in Sp2g(R).

Proof. See Birkenhake-Lange [7, Proposition 8.2.2] ¤

Proposition 1.64. Let Z,Z ′ be in Hg. Then the following are equivalent:
a) (XZ , HZ) ∼= (XZ′ , HZ′) are isomorphic abelian varieties of polar-

ization type D.
b) Z ′ = M(Z) for some M in GD, where

GD := {M ∈ Sp2g(Q)|tMΛD ⊆ ΛD} ,

and ΛD =
(

0 D
−D 0

)
Z2g.
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Proof. Suppose ϕ : (XZ′ , HZ′) → (XZ , HZ) is an isomorphism. Choose
symplectic bases so that the period matrices are (Z ′ D) and (Z D) respec-
tively. Write Ra, Rr for the transformation matrices of the analytic and ra-
tional representations of ϕ respectively. From (1.47) we have Ra(Z

′ D) =
(Z D)Rr where both Ra and Rr are invertible. Rewrite this equation as

Ra(Z
′ Ig) = (Z Ig)

(
Ig 0
0 D

)
Rr

(
Ig 0
0 D

)−1
.

Write N =
(

Ig 0
0 D

)
Rr

(
Ig 0
0 D

)−1
= t

(
α β
γ δ

)
(the transpose is an artifact of

our choice of notation for period matrices being g × 2g instead of 2g × g).
Then (RaZ

′ Ra) = (Ztα + tβ Ztγ + tδ). Since Ra is invertible, it fol-
lows that Z ′ = (Ztγ + tδ)−1(Ztα + tβ). Taking transposes of both sides
and remembering that both Z and Z ′ are symmetric matrices, we obtain
Z ′ = (αZ + β)(γZ + δ)−1 = tN(Z). Since ϕ∗HZ′ = HZ we have
tRr

(
0 D
−D 0

)
Rr =

(
0 D
−D 0

)
, or equivalently tN

(
0 Ig

−Ig 0

)
N =

(
0 Ig

−Ig 0

)
,

hence N is a symplectic matrix with rational entries. Moreover we have
NΛD ⊆ ΛD by definition of N . Taking M = tN proves the first implica-
tion. For the converse, if Z ′ = M(Z) then the matrix

(
Ig 0
0 D

)−1
M

(
Ig 0
0 D

)
is the rational representation of an isomorphism (XZ′ , HZ′) → (XZ , HZ)
with respect to the symplectic bases determined by Z and Z ′. ¤
Corollary 1.65. The quotient space Hg/GD is a moduli space for isomor-
phism classes of abelian varieties of polarization type D. In particular,
Hg/Sp2g(Z) is a moduli space for isomorphism classes of principally po-
larized abelian varieties.

Remark 1.66. From the above proof, observe that for any Z ∈ Hg and(
α β
γ δ

)
in GD, the isomorphism µ : XZ → XM(Z) has representation matri-

ces

ρa(µ) = t(γZ + δ)−1

ρr(µ) =
(

Ig 0
0 D

)−1 tM−1
(

Ig 0
0 D

)

with respect to the chosen bases.

1.11. Classical theta functions

We now describe the classical Riemann theta functions. These functions
have highly desirable properties. Their explicit presentation makes them
ideal for computations, and the fact that they depend holomorphically on
τ ∈ Hg means they can be used in constructions of projective embeddings
of moduli spaces.

Let τ be an element ofHg. Suppose θ′ is a theta function with respect to
the lattice Λτ = τZg⊕Zg having automorphy factor f(z, λ). By Frobenius’



22 1. ABELIAN VARIETIES AND THEIR MODULI SPACES

Theorem 1.24, dim L(θ′) = 1. That is to say θ′ is the unique theta function
(up to a scalar factor) for the lattice Λτ with automorphy factor f .

Define the Riemann theta function to be

θ(z, τ) =
∑

m∈Zg

e

(
1

2
mτ tm + mtz

)
.

Up to a scalar, it is the unique theta function with respect to Λτ having
automorphy factor f0(z, τa + b) = e(−1

2
aτ ta− zta).

Let c1, c2 ∈ Rg be row vectors. Define the (classical) theta function
with characteristic (c1, c2) to be

θ[ c1
c2 ] (z, τ) =

∑

m∈Zg

e

(
1

2
(m + c1)τ

t(m + c1) + (m + c1)
t(z + c2)

)
.

It satisfies the functional equation

θ[ c1
c2 ] (z + τa + b, τ) = e

(
−1

2
taτa− za + c1b− c2a

)
θ[ c1

c2 ] (z, τ) .

Note that the Riemann theta function is just the theta function with char-
acteristic (0, 0). The fact that the imaginary part of τ is positive definite
ensures that the series converges absolutely and uniformly on every com-
pact subset of Cg × Hg. Hence θ[ c1

c2 ] is holomorphic on Cg × Hg for any
characteristic (see [7, Proposition 8.5.4]).

Proposition 1.67.
a) Let D = diag(d1, ..., dg) be a polarization type. Then θ[ c1

c2 ] is a
theta function with automorphy factor f0 with respect to the lattice
τZg ⊕DZg if and only if (c1, c2) is in D−1Zg ⊕ Zg.

b) The functions θ[ ci
0 ] where ci ranges over a set of representatives

of D−1Zg/Zg, form a basis of the vector space of classical theta
functions for the divisor onCg/(τZg⊕DZg) with automorphy factor
f0.

Proof. See [7, Remark 8.5.3]. ¤

Thus classical theta functions give a constructive proof of Frobenius’ result
in Theorem 1.24 that dim L(θ) = d1 · · · dg.

There are numerous identities involving theta functions with character-
istics. Two particular identities of future use to us are

(1.68) θ
[

c1+d1
c2+d2

]
(z, τ) = θ[ c1

c2 ] (z, τ)

which holds for all ci ∈ Rg and all di ∈ Zg, as well as Igusa’s transforma-
tion formula which is stated in a slightly weaker form below.
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Theorem 1.69. (Igusa’s transformation formula) For all (z, τ) in Cg×Hg,
characteristics c = (x, y) ∈ R2g and M =

(
α β
γ δ

) ∈ Sp2g(Z), we have the
formula

θ
[

x′
y′

]
(t(γτ + δ)−1z, M(τ)) = ζe

(
1

2
tz(γτ + δ)−1z

)
det(γτ + δ)

1
2 θ[ x

y ](z, τ)

where ζ = ζ(c,M) is an eighth root of unity and

(x′, y′) = (x, y)M−1 +
1

2
((γtδ)0, (α

tβ)0)

where the notation X0 is used to denote the row vector determined by the
diagonal entries of X .

Proof. See [36, Chapter V]. ¤

1.12. Satake compactifications

Let Γ be a subgroup of finite index in Sp2n(Z). The quotient Hn/Γ has
a natural compactification called the Satake compactification.

1.12.1. Analytic description. Let

Dn =
{
V ∈Mn(C) | tV = V and V V < In

}

This is the image of Hn under the Cayley isomorphism

Φn : τ 7→ (τ − iIn)(τ + iIn)−1.

The action of Γ on Hn gives rise to an action on Dn which can be extended
to the closure

Dn =
{
V ∈Mn(C) | tV = V and V V ≤ In

}
.

For 0 ≤ r ≤ n let Dn,r be the image of the embedding of Dr in Dn given
by τ 7→ (

τ 0
0 In−r

)
. Then

Dn =
⋃

0≤r≤n

⋃

g∈Sp2n(R)

gDn,r .

Let
D∗

n =
⋃

0≤r≤n

⋃

g∈Sp2n(Q)

gDn,r .

The Satake compactification of Dn/Γ ∼= Hn/Γ as a set is D∗
n/Γ ∼= H∗

n/Γ.
It can be given the structure of a normal analytic space.
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Example 1.70 (Satake compactification of H1/Γ1(2)). Define Γn(r) to be
the kernel of Sp2n(Z) → Sp2n(Z/rZ). Consider the situation for n = 1.
We have D1,1 = D1 = {v ∈ C : |v| < 1}, D1,0 = {1}, Φ−1

1 D1 = H1

and Φ−1
1 D1,0 = {i∞}. So H∗

1 = H1 ∪ Sp2(Q){i∞} and the Satake com-
pactification of H1/Γ consists of the union of H1/Γ together with the Γ-
orbits of Sp2(Q){i∞} = Q ∪ {i∞} called cusps. The compactification of
X(1) = H1/Sp2(Z) has just one cusp since Sp2(Q){i∞} = Sp2(Z){i∞}.
The compactification of X(2) = H∗

1/Γ1(2) has three cusps with represen-
tatives i∞, 0 and 1. The natural quotient map X(2) → X(1) is a Galois
cover with Galois group Sp2(Z)/Γ1(2) ∼= Sp2(Z/2Z) ∼= S3 which acts on
the three cusps of X(2) by permutations.

The following space we shall be studying in further detail later on.

Example 1.71. The Satake compactification of H2/Γ2(2) was studied by
van der Geer [72]. It is is the union ofH2/Γ2(2) plus 15 copies ofH1/Γ1(2)
and 15 points. Each one-dimensional boundary component is compactified
by three of the 15 points (i.e. three cusps of X(2)) and each of the 15 points
is a cusp of three copies of H1/Γ1(2).

1.12.2. Algebraic description.

Definition 1.72. A Siegel modular form of weight k on Γ is a holomorphic
function f : Hn → C satisfying

f
(
(ατ + β)(γτ + δ)−1

)
= det(γτ + δ)kf(τ) for all

(
α β
γ δ

) ∈ Γ.

The set of such functions form a vector space Mk(Γ). Denote by

M∗(Γ) =
⊕

k≥0

Mk(Γ)

the graded ring of Siegel modular forms. A theorem of Baily and Borel
[2] says that for large enough k, a basis of Mk(Γ) defines an embedding
of H∗

n/Γ into projective space. Thus the Satake compactification is the
projective variety given by Proj M∗(Γ) which contains Hg/Γ as an open
dense subset.

1.13. Hilbert modular surfaces

To end this chapter, we look at an example of a moduli space parametriz-
ing abelian surfaces with real multiplication F ) Q. Table 1.57 implies that
F must be a real quadratic field.

Let O be an order of F . Write

Ô = {x ∈ F | TrF/Q(xy) ∈ Z for all y ∈ O}
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to denote the dual of O with respect to the trace. Let M = O ⊕ a with
a ⊂ Ô an invertible O-module. This is a Z-module of rank 4 having an O-
module structure. By embedding this lattice into C2 we can form a complex
torus with a natural O-multiplication induced from the lattice.

Let us make the notion of O-multiplication more precise.

Definition 1.73. Let (K, ′) denote a skew field over Q with positive invo-
lution ′ and let ρ : K → Mg(C) be a representation. A polarized abelian
variety with endomorphism structure (K, ′, ρ) is a triplet (X, H, ι) where

a) the pair (X, H) is a polarized abelian variety and ι : K ↪→ End0(X)
is equivalent to ρ after identifying End0(A) with a subalgebra of
Mg(C) via the analytic representation of X ,

b) the Rosati involution of End0(X) with respect to H extends to the
involution ′ on K via ι.

If R ⊂ K is a subring for which ι(R) ⊂ End(X) we say that X has
multiplication by R.

Note that for real quadratic fields the Rosati involution is trivial so the sec-
ond condition is automatically satisfied.

We now make the notion of isomorphism precise.

Definition 1.74. Suppose (X1, H1, ι1) and (X2, H2, ι2) are polarized abe-
lian varieties with endomorphism structure (K, ′, ρ). An isomorphism of
polarized abelian varieties with endomorphism structure f : (X1, H1, ι1) →
(X2, H2, ι2) is an isomorphism f : (X1, H1) → (X2, H2) of polarized abe-
lian varieties which preserves the endomorphism structure in the sense that
f ◦ ι2(a) = ι1(a) ◦ f for all a ∈ F .

Now we shall construct abelian surfaces with multiplication by O. First
we need some notation. The two real embeddings F ↪→ R give an isomor-
phism F ⊗ R ∼= R2; identify a 7→ (a(1), a(2)) under this embedding. Write
pairs (a, b) ∈ (F ⊗ R)2 as column vectors α = t(a(1), b(1), a(2), b(2)). For
z = (z1, z2) in H2

1 define

Jz : (F ⊗ R)2 → C2

α 7→ (
z1 1 0 0
0 0 z2 1

)
α =

(
a(1)z1+b(1)

a(2)z2+b(2)

)

which is an R-linear isomorphism.

Proposition 1.75. Jz(M) is a lattice in C2 and Xz = C2/Jz(M) is a com-
plex torus with real multiplication by O where the endomorphism structure
ρ : F →M2(C) is given by ρ(a) = diag(a(1), a(2)). The Hermitian form

Hz(x, y) = tx diag(Im z1, Im z2)
−1 y .
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defines a polarization on Xz.

Proof. It is clear that Jz(M) is a lattice when z ∈ (C \ R)2. The map
ρ(a) : (v1, v2) 7→ (a(1)v1, a

(2)v2) is linear and preserves Jz(M), hence is
an endomorphism of Xz. Thus ρ is an embedding of F into End0(Xz),
identifying O with End(Xz).

Observe that Hz is positive definite if and only if z ∈ H2. Let Ez denote
Im Hz. The matrix of Hz(Jz(α), Jz(β)) is

tdiag ((z1 1), (z2 1)) · diag (Im z1, Im z2)
−1 · diag ((z1 1), (z2 1)).

The imaginary part of this matrix is diag(T, T ) where T = ( 0 1
−1 0 ). From

this we deduce that

Ez(Jz(α), Jz(β)) = TrF/Q(tα ( 0 1
−1 0 ) β) .

Lastly, by construction of M this trace form takes integral values on M
and hence Hz is a nondegenerate Riemann form. ¤
Remark 1.76. Changing M changes the polarization type: O ⊕ a has po-
larization type (d1, d2) if and only if the elementary divisors of the quotient
Ô/a are [d1, d2]. This can be seen from the trace form. In particular,O⊕Ô
has principal polarization type.

The space H1 × H1 is a moduli space for abelian surfaces with real
multiplication given by F . We have a componentwise action of Sp2(R) ×
Sp2(R) on H1 ×H1. Note that Sp2 = SL2 so the action on H1 is the usual
action on the upper half plane by Mobius transformations. Define

G(M) = {(M1,M2) ∈ SL2(R)× SL2(R) | diag(tM1,
tM2)M⊂M}

where we consider M ⊂ (F ⊗ R)2 = R4. We have the following proposi-
tion.

Proposition 1.77. Let z and z′ be points ofH1×H1. The polarized abelian
varieties (Xz, Hz) and (Xz′ , Hz′) with endomorphism structure (F, ρ) are
isomorphic if and only if there is an M in G(M) such that z′ = M(z).

Proof. See Birkenhake-Lange [7, Proposition 9.2.2] ¤
Corollary 1.78. The space A(M) = H1 × H1/G(M) is a moduli space
for isomorphism classes of polarized abelian surfaces with endomorphism
structure (F, ρ) associated to the F -module M.

The action of G(M) on H1 × H1 is proper and discontinuous, hence
A(M) is a complex analytic variety of dimension 2 called a Hilbert modu-
lar surface.

Let M = OF ⊕ ÔF . By Remark 1.76 and the corollary above, A(M)
parametrizes principally polarized abelian surfaces with real multiplication
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by the maximal order OF . We already know that H2/Sp4(Z) parametrizes
all principally polarized abelian surfaces, so there exists a “forgetful map”
H1×H1/G(OF⊕ÔF ) → H2/Sp4(Z) which maps the Hilbert modular sur-
face into Siegel space. The image of such a map is subvariety of dimension
2 called a Humbert surface, which is the focus of the next chapter.



CHAPTER 2

Humbert Surfaces

Let Aτ be a principally polarized abelian surface determined by τ =
( τ1 τ2

τ2 τ3 ) ∈ H2. An element of End(Aτ ) is given by equations

f · τ = τα + β

f · 12 = τγ + δ = f

with f ∈ M2(C) and
(

α β
γ δ

) ∈ M4(Z). Substituting the second equation
into the first gives τγτ + δτ − τα − β = 0 . Subtracting this from the
transposed equation τ tγτ + τ tδ − tατ − tβ gives us

τ(tγ − γ)τ + τ(tδ + α) + (−δ − tα)τ + (β − tβ) = 0 .

This equation is nontrivial if and only if f /∈ Z · 12, that is to say Aτ has
extra endomorphisms. We obtain a quadratic equation in the matrix entries
of τ called a Humbert equation. In this chapter we shall undertake a study
of Humbert equations and their zero sets in the Siegel modular threefold
A2 = H2/Sp4(Z) known as Humbert surfaces. This exposition is largely
based on [8, §4] which details the work of Humbert.

2.1. Real multiplication and Humbert surfaces

Let Aτ be a principally polarized abelian surface and let f be an endo-
morphism of Aτ . Recall from Section 1.7 that the analytic and algebraic
representations of f are connected by the relation

(2.1) ρa,τ (f)(τ I2) = (τ I2)ρr,τ (f).

Definition 2.2.
a) An endomorphism f of an abelian variety X is said to be symmetric

if it is fixed under the Rosati involution. Write

Ends(X) = {f ∈ End(X) : f † = f}
to denote the subgroup of symmetric endomorphisms.

b) An endomorphism f ∈ End(X) is said to be primitive if 1
n
f /∈

End(X) for all integers n > 1.

28
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Lemma 2.3. f ∈ End(Aτ ) is symmetric if and only if ρr(f) =
(

α β
γ tα

)
with

α = ( a1 a2
a3 a4 ), β =

(
0 b
−b 0

)
, γ = ( 0 c

−c 0 ) whose coefficients satisfy

(2.4) a2τ1 + (a4 − a1)τ2 − a3τ3 + b(τ 2
2 − τ1τ3) + c = 0 .

Proof. The Rosati involution is the adjoint operator for the imaginary part
of the Hermitian form H which has matrix J =

(
0 I2
−I2 0

)
. In terms of

matrices we have tρr(f)J = Jρr(f
†) for any endomorphism f , so f = f †

if and only if tρr(f)J = Jρr(f), in which case ρr(f) has the stated form.
Using (2.1) we obtain (ρa(f)τ, ρa(f)) = (τα + γ, τβ + tα). Eliminating
ρr(f) produces the equality of skew symmetric matrices τβτ + tατ − τα−
γ = 0 from which we obtain (2.4). ¤

Conversely, if τ = ( τ1 τ2
τ2 τ3 ) ∈ H2 satisfies an equation of the form

(2.5) aτ1 + bτ2 + cτ3 + d(τ 2
2 − τ1τ3) + e = 0

then End(Aτ ) contains a symmetric endomorphism f0 with rational repre-
sentation matrix

R0 := ρr(f0) =




0 a 0 d
−c b −d 0
0 e 0 −c
−e 0 a b


 .

Following Humbert, we call an equation of the form (2.5) a singular rela-
tion.

Observe that if gcd(a, b, c, d, e) = 1 then f0 is primitive; in this case we
shall call the corresponding singular relation primitive. Also, note that if f
is scalar multiplication by n then ρr(f) = nI4 trivially satisfies (2.4). By
Lemma 2.3 we have that n + mf0 are symmetric endomorphisms of Aτ .

Proposition 2.6. The subset of endomorphisms {n + mf0 : n,m ∈ Z} ⊂
Ends(X) is a ring isomorphic to Z[t]/(t2− bt+ac+de), a quadratic order
of discriminant ∆(f0) = b2 − 4ac− 4de.

Proof. From (2.1), the analytic representation matrix of f0 is seen to be

ρa(f0) = τ

(
0 d
−d 0

)
+

(
0 a
−c b

)
=

( −dτ2 dτ1 − c
−dτ3 + a dτ2 + b

)

which has trace b and determinant

−d
(
aτ1 + bτ2 + cτ3 + d(τ 2

2 − τ1τ3)
)

+ ac = ac + de

since (2.5) holds. As f0 satisfies its analytic characteristic polynomial f 2
0 −

bf0 + ac + de = 0, we have that the map {n + mf0 : n,m ∈ Z} →
Z[t]/(t2 − bt + ac + de) which sends f0 7→ t is a ring isomorphism. ¤
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Definition 2.7. The discriminant of a singular relation (2.5) is defined to be
∆ = b2 − 4ac− 4de.

So far we have studied singular relations on H2. Humbert showed that
under the natural projection H2 → H2/Sp4(Z) = A2, all singular relations
with the same discriminant define zero sets in H2 which are equivalent un-
der the action of Sp4(Z) and conversely.

Lemma 2.8. Let f0 be a primitive symmetric endomorphism of discriminant
∆ = 4k + ` with ` ∈ {0, 1}. There exists a matrix M ∈ Sp4(Z) such that

tM−1ρr(f0)
tM =

(
α 0
0 tα

)
where α =

(
0 k
1 `

)
.

Proof. The reader is referred to either the article by Birkenhake-Wilhelm
[8] or Runge [64] for a constructive algorithm. ¤
Theorem 2.9. (Humbert’s Lemma) Let τ = ( τ1 τ2

τ2 τ3 ) ∈ H2 satisfy the singu-
lar relation

aτ1 + bτ2 + cτ3 + d(τ 2
2 − τ1τ3) + e = 0

of discriminant ∆ = b2 − 4ac − 4de. Then there is a matrix M ∈ Sp4(Z)

such that M(τ) =
(

τ ′1 τ ′2
τ ′2 τ ′3

)
satisfies a unique normalized singular relation

of the form
kτ ′1 + `τ ′2 − τ ′3 = 0

where k and ` are determined uniquely by ∆ = 4k + ` and ` ∈ {0, 1}.

Proof. Without loss of generality we can assume gcd(a, b, c, d, e) = 1. Re-
mark 1.66 implies that the rational representations ρr,τ and ρr,M(τ) are re-
lated by

ρr,M(τ) = tM−1ρr,τ
tM.

Thus it suffices to find a matrix M ∈ Sp4(Z) such that

tM−1ρr,τ (f0)
tM =

(
A 0
0 tA

)
where A =

(
0 k
1 `

)
.

This is the content of the previous lemma. ¤
Corollary 2.10. Let A be a principally polarized abelian surface. The fol-
lowing are equivalent:

a) A ∼= Aτ for some τ ∈ H2 satisfying

aτ1 + bτ2 + cτ3 + d(τ 2
2 − τ1τ3) + e = 0.

b) Ends(A) contains a subring isomorphic to a real quadratic order
Z[t]/(t2 − bt + ac + de) of discriminant ∆ = b2 − 4ac− 4de,

c) End(A) contains a symmetric endomorphism f∆ with discriminant
∆ = b2 − 4ac− 4de.
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For any ∆ ≡ 0 or 1 mod 4, define

H∆ :=

{
τ ∈ A2 :

τ satisfies a primitive singular
relation of discriminant ∆

}

= {Aτ ∈ A2 : Ends(Aτ ) 3 f primitive, ∆(f) = ∆}.
Proposition 2.11. Let ∆ ≡ 0 or 1 mod 4. We have that H∆ = ∅ for ∆ < 0
and H0 = A2. If ∆ > 0 then H∆ is a surface which we call a Humbert
surface of discriminant ∆.

Proof. Suppose Aτ ∈ H∆ with principal polarization given by a Hermitian
form H . Let f ∈ Ends(Aτ ) have discriminant ∆. Write F = ρa(f) and
consider the form H ′(z, w) = H(Fz, w). Clearly H ′ is linear in z and
conjugate linear in w. Since the Rosati involution is the adjoint operator for
H and f is symmetric, we have H(Fz,w) = H(z, F †w) = H(z, Fw) and
so

H ′(w, v) = H(Fw, v) = H(w, Fv) = H(Fv,w) = H ′(v, w).

Thus H ′ is hermitian. If λ is an eigenvalue of F with eigenvector v then
H ′(v, v) = H(Fv, v) = λH(v, v). Therefore the two eigenvalues of F are
real. If λ1 and λ2 are the eigenvalues of F then the discriminant of f equals
∆ = (λ1 − λ2)

2 ≥ 0. Hence H∆ = ∅ when ∆ < 0. If ∆ = 0 then λ1 = λ2

then f is scalar multiplication by λ1 which is contained in End(Aτ ) for all
τ ∈ A2, hence H0 = A2. ¤

Example 2.12. A point ( τ1 τ2
τ2 τ3 ) in H1 can be described by the singular rela-

tion τ2 = 0. The corresponding principally polarized abelian surface Aτ is
isomorphic to the product of two elliptic curves E1 × E2 with j-invariants
j(τ1) and j(τ2) respectively.

In more generality, we will show that abelian surfaces which are isoge-
nous to products of elliptic curves lie on Humbert surfaces of square dis-
criminant.

Lemma 2.13. Suppose (X,H) is a non-simple principally polarized abe-
lian surface. There exists m for which there is an isogeny of degree m2:

(X,H) → (Y,H|Y )× (Z, H|Z)

where Y and Z are elliptic curves and the induced polarizations have de-
gree m.

Proof. The existence of an isogeny is the contents of Poincaré’s Complete
Reducibility Theorem 1.49. See [7, Corollary 12.1.2] for a proof that the
induced polarizations have the same degree. ¤
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Proposition 2.14. Let m be a positive integer. The Humbert surface Hm2

is a moduli space for isomorphism classes of principally polarized abelian
surfaces which split as a product of two elliptic curves via an isogeny of
degree m2.

Proof. Suppose End(Aτ ) contains a symmetric endomorphism f of dis-
criminant m2. The eigenvalues of its analytic representation are integers λ
and µ and since m2 = (λ − µ)2 > 0 we know that λ 6= µ. The endo-
morphism f − µ has characteristic equation t2 −mt = 0 hence the image
im(f − µ) = E1 is a one dimensional abelian subvariety. Then the com-
plementary abelian subvariety im(m− (f − µ)) = im(f − λ) = E2 is one
dimensional and the theory of norm-endomorphisms [7, §5.3] gives us an
isogeny Aτ → E1×E2 of the correct degree. Conversely given a degree m2

isogeny as in the proposition, the theory of norm-endomorphisms produces
a symmetric endomorphism of the desired discriminant. ¤

The following proposition summarises the moduli interpretation results
of this section.

Proposition 2.15. Let ∆ 6= ∆′ be squarefree discriminants. We have the
following:

a) Aτ is simple if and only if τ 6∈ ⋃
m>0 Hm2 .

b) If τ ∈ H∆ then End0(Aτ ) contains Q(
√

∆).
c) If τ ∈ H∆ ∩H∆′ then either Aτ is simple and End0(Aτ ) is a totally

indefinite quaternion algebra over Q, or Aτ is isogenous to E × E
where E is an elliptic curve.

Proof. The first two statements are clear. If τ ∈ H∆∩H∆′ then Ends(Aτ )⊗
Q contains bothQ(

√
∆) andQ(

√
∆′), hence the dimension of End0(Aτ ) as

a Q-vector space is at least 3. From Example 1.58, the only possibilities for
End0(Aτ ) with this restriction are indefinite quaternion algebras in which
case Aτ is simple, orM2(k) in which case Aτ is isogenous to E ×E where
E is a CM elliptic curve with End0(E) = k. ¤

2.2. Humbert surface embeddings

To end this chapter, we construct a map H1 × H1 ↪→ H2 which in-
duces the “forgetful map”, showing that the Humbert surface of discrimi-
nant ∆ can be represented as the embedding of a Hilbert modular surface
for Q(

√
∆).

Let F be a real quadratic field with discriminant ∆0 and ring of integers
OF . Let Of be a suborder in OF of index f . Choose a basis u1, u2 of

Ôf = {x ∈ F | Tr(xy) ∈ Z for all y ∈ Of},
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the dual of Of with respect to the trace. Set R =
(

u1 u′1
u2 u′2

)
, where u′i is the

Galois conjugate of ui.

Proposition 2.16. Define an embedding

ρR : H2
1 → H2

(z1, z2) 7→ R

(
z1 0
0 z2

)
tR .

The image of H2 in H2 is a given by a Humbert singular relation of dis-
criminant ∆0f

2.

Proof. Firstly observe that R is in GL2(R) since the ui form a basis of a
totally real field. This shows that ρR is injective. The image of the map is
seen to consist of symmetric matrices and since Im zi > 0, the relation

Im
(
R

(
z1 0
0 z2

)
tR

)
= R

(
Im (z1) 0

0 Im (z2)

)
tR > 0

shows that the image of ρR lies inH2. Let τ = ( τ1 τ2
τ2 τ3 ) = ρR(

(
z1 0
0 z2

)
). Then

(
z1 0
0 z2

)
= R−1 τ tR−1

= (det R)−2

(
u′2 −u′1
−u2 u1

)(
τ1 τ2

τ2 τ3

)(
u′2 −u2

−u′1 u1

)
.

It follows that the only restriction on τ is given by the relation obtained
from an off-diagonal entry:

(det R)−2(−u2u
′
2τ1 + (u′1u2 + u1u

′
2)τ2 − u1u

′
1τ3) = 0.

Take x1 = 1, x2 = w as our fixed basis of Of where w has discriminant
∆ := ∆0f

2 = 4k + ` and satisfies w2− `w−k = 0 with ` ∈ {0, 1}. Define
the trace matrix T = (Tr(xixj)). Then a basis for Ôf is given by

(
u1

u2

)
= T−1

(
x1

x2

)
= ∆−1

(
`2 + 2k −`
−` 2

)(
x1

x2

)
.

By writing the ui, u
′
i in terms of the basis of Of , we compute that

(det R)−2 = ∆,

u2u
′
2 = N(u2) = −∆−1,

u′1u2 + u1u
′
2 = Tr(u′1u2) = `∆−1,

u1u
′
1 = N(u1) = k∆−1.

Thus we obtain the Humbert equation

τ1 − `τ2 − kτ3 = 0
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which has discriminant `2 + 4k = 4k + ` = ∆ since ` ∈ {0, 1}. This
completes the proof. ¤

Denote by SL2(Of , Ôf ) ⊂ SL2(F ) the group{(
α β
γ δ

)
∈ SL2(F ) | α, δ ∈ Of , γ ∈ Ôf , β ∈ Ô−1

f

}

which acts on H2
1 in the following manner:(
α β
γ δ

)
(z1, z2) =

(
αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
.

Under the identification SL2(F ) ↪→ SL2(F ⊗R) ∼= SL2(R)× SL2(R), one
can verify that SL2(Of , Ôf ) is the same as the group G(Of ⊕ Ôf ) defined
at the end of the last chapter.

Define a homomorphism

ϕR : SL2(Of , Ôf ) → Sp4(Z)(
α β
γ δ

)
7→

(
R 0
0 tR−1

)(
α β
γ δ

)(
R−1 0
0 tR

)

where x stands for
(

x 0
0 x′

)
, x ∈ F .

Proposition 2.17. ([72, p. 328]) The maps ρR and ϕR give rise to a com-
mutative diagram

H2
1

ρR−−−→ H2

Γ

y
yϕR(Γ)

H2
1/Γ ∪ Γσ

ρ−−−→ H2/Sp4(Z)

where Γ = SL2(Of , Ôf ), σ is the involution (z1, z2) 7→ (z2, z1) of H2
1, and

where ρ is a map generically of degree 1 onto the Humbert surface H∆.

The analytic quotient space H2/Γ ∪ Γσ is called a symmetric Hilbert
modular surface. The involution σ identifies abelian surfaces whose real
multiplication differ by conjugation.

The picture for square discriminants is similar. See [72, p. 328].



CHAPTER 3

Computing Humbert Surfaces

The aim of this chapter is to produce algebraic models for Humbert
surfaces. Igusa [31] showed that the Satake compactification of the Siegel
modular threefold A2 = H2/Sp4(Z) is ProjC[ψ4, ψ6, χ10, χ12], a weighted
projective space with weights indicated by subscripts. The Siegel modular
threefold is open and dense in the Satake compactification and has function
field C(j1, j2, j3) where ji(τ) are algebraically independent modular func-
tions of weight zero. It follows from the last chapter that for every positive
discriminant ∆ there is an irreducible polynomial H∆(j1, j2, j3) whose zero
set is the Humbert surface of discriminant ∆. Unfortunately working with
this model is impractical due to the enormous degrees and coefficients of
the polynomial. One fares better by working in a finite cover of the moduli
space, adding some level structure. Runge [64] constructed an algorithm to
compute Humbert components in the cover H2/Γ

∗(2, 4) using theta func-
tions and their Fourier expansions. We shall apply Runge’s method to var-
ious practical models of A2(2) = H2/Γ(2), the Siegel modular threefold
with level-2 structure.

3.1. Fourier expansions of theta functions

As we shall be working exclusively with theta functions of half inte-
gral characteristics throughout this chapter, such objects warrant special
notation. Let m = (m1, . . . , m2g) be an integer row vector. Set m′ =
(m1, . . . ,mg) and m′′ = (mg+1, . . . , m2g). We write θm(z, τ) to denote

the theta function with half integral characteristics given by θ
[

1
2
m′

1
2
m′′

]
(z, τ).

Define the theta constant θm(τ) by setting z = 0 in θm(z, τ), which has the
Fourier expansion

θm(z, τ) =
∑

p∈Zg

e

(
1

2

(
p +

m′

2

)
τ

t
(

p +
m′

2

)
+

(
p +

m′

2

)
t
(

z +
m′′

2

))
.

Igusa [33] shows that the quotients θm/θn are modular functions for the
group Γg(4, 8) where

Γg(2k, 4k) = {( α β
γ δ

) ∈ Γg(2k) | (α tβ)0 ≡ (γ tδ)0 ≡ 0 (mod 4k)}
is a normal subgroup of Γg(1) having index 22g in Γg(2k).

35
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Let us describe the Fourier expansion of theta constants restricted to a
Humbert surface of discriminant ∆ ≡ 0 or 1 mod 4, adapted from ideas in
Runge’s paper [64]. Write ∆ = 4k + ` where ` is either 0 or 1, and k is
uniquely determined. From Humbert’s Lemma 2.9, the Humbert surface of
discriminant ∆ can be defined by the set

H∆ =

{(
τ1 τ2

τ2 kτ1 + `τ2

)
∈ H2

}

modulo the usual Sp4(Z) equivalence relation. Let a, b, c, d be integers. If
we restrict the theta constant θabcd to H∆ we get

θabcd(τ) =
∑

(x1,x2)∈Z2

eπi(x1c+x2d)r(2x1+a)2+k(2x2+b)2q2(2x1+a)(2x2+b)+`(2x2+b)2

where r = e2πiτ1/8 and q = e2πiτ2/8. Unfortunately q has negative exponents
which computationally makes it difficult to work with this expansion. To
overcome this difficulty, make the invertible substitution r = pq to produce
the expansion

∑

(x1,x2)∈Z2

(−1)x1c+x2dp(2x1+a)2+k(2x2+b)2q(2x1+a+2x2+b)2+(k+`−1)(2x2+b)2

which is computationally more favourable, being a power series with inte-
ger coefficients. Call the above expansion the Fourier expansion of θabcd

restricted to H∆.
At a later stage we will need to know how to invert elements of Q[[p, q]]

where possible. It is well known fact about power series rings that if f(p, q)
is in Q[[p, q]] with f(0, 0) 6= 0 , then f(p, q) is a unit with inverse given by
the geometric series

f(0, 0)−1
∑
n≥0

(
1− f(p, q)

f(0, 0)

)n

.

An implementation on a computer uses truncated Fourier expansions, where
arithmetic is done in Q[[p, q]]/(pN , qN) for some positive N . It is easy
to see that the geometric ratio has zero constant term, in particular (1 −
f/f(0, 0))k ∈ (pN , qN) for k ≥ N so the above formula converges to the
truncated expansion of f−1 for any chosen precision.

3.2. Degree formula

To compute equations for Humbert surfaces it is desirable to know the
degree of the polynomial relation in advance. Fortunately much arithmetic-
geometric information is known about Humbert surfaces and more gener-
ally Hilbert modular surfaces (see [28], [73]). We begin with a lemma.
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Lemma 3.1. The subgroup of Sp4(Z) which fixes points τ ∈ H2 satisfying
a singular relation

aτ1 + bτ2 + cτ3 + d(τ 2
2 − τ1τ3) + e = 0

of discriminant ∆ = b2− 4ac− 4de has order 2 if ∆ = 1 or 4 and is trivial
otherwise.

Proof. Gottschling determined all fixed points and their isotropy subgroups.
From [20, Satz 3] the 2-dimensional families of fixed points are seen to
satisfy singular relations of discriminants 1 and 4, both having nontrivial
isotropy groups of order 2. One can verify that the discriminant 1 points
given by τ2 = 0 are fixed by diag(−1, 1,−1, 1) and the singular relation
τ1 = τ3 of discriminant 4 is fixed by the matrix ( U 0

0 U ) with U = ( 0 1
1 0 ). ¤

This motivates the following:

Definition 3.2. The order of the isotropy subgroup of H∆ in Sp4(Z)\H2 is

v(∆) =

{
1
2

if ∆ = 1 or 4,

1 otherwise.

Note that we can make a similar definition for Humbert surface compo-
nents in Γ\H2 where Γ is a normal subgroup of Sp4(Z).

Define Γ0(N) ≤ SL2(Z) by

Γ0(N) = {( α β
γ δ

) ∈ SL2(Z) | γ ≡ 0 (mod N)}.
As Γ0(4) ⊂ Γ1(4, 8), it follows that the genus 1 theta functions of half
integral characteristics θ00, θ01, θ10, θ11 are modular forms of half integral
weight for Γ0(4). Define

C(τ) =
1

4
θ00(τ)(θ00(τ)4 − 5θ10(τ))4.

(This is misprinted in [64, p. 10]). The Fourier coefficients have arithmetical
significance.

Lemma 3.3. The Fourier expansion of C(τ) has the form

1−
∑
∆>0

a∆q∆ , q = e2πiτ

where a∆ = 0 if ∆ ≡ 2, 3 (mod 4), and

(3.4) a∆ − 24
∑

x∈Z
σ1

(
∆− x2

4

)
=

{
12∆− 2 if ∆ is a square,
0 otherwise

when ∆ ≡ 0, 1 (mod 4).
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Proof. The function 1
120

C(τ) is studied in Henri Cohen’s article [12]. There,
the Fourier coefficient of qN is denoted H(2, N) and the corresponding for-
mula for these numbers is given in [12, Proposition 4.1]. ¤

∆ 1 4 5 8 9 12 13 16 17 20 21 24 25
a∆ 10 70 48 120 250 240 240 550 480 528 480 720 1210

TABLE 1. First few values of a∆.

Define the Humbert surface divisor

G∆ =
∑
x≥1
x2|∆

v(∆/x2)H∆/x2 .

We now state a famous result of van der Geer, from which the degree of any
Humbert surface component in any Galois cover can be derived.

Theorem 3.5. ([28, Theorem 8.10]) The degree of G∆ equals 1
2
a∆. In par-

ticular, we have
∑
x≥1
x2|∆

v(∆/x2) deg(H∆/x2) =
1

2
a∆.

which allows one to compute the degree of H∆ recursively.

What this says is that H∆ is the zero divisor of a Siegel modular form
and the weight can be determined by the theorem. Computing these modu-
lar forms is the ultimate goal of this chapter.

3.3. Runge’s method

We describe an algorithm to find an irreducible component of H∆ in any
finite cover of A2.

First we describe Runge’s computations. Define Γ∗(2, 4) E Γ(2, 4) by
the exact sequence [63, Lemma 2.1]:

1 → Γ∗(2, 4) → Γ(2, 4) → 〈diag(−1, 1,−1, 1)〉 → 1 .

It is a normal subgroup of Sp4(Z) of index 23040. Runge [64] showed
that the Satake compactification of H2/Γ

∗(2, 4) is isomorphic to P3 with
homogeneous coordinate ring generated by four theta constants f0 = θ0000,
f1 = θ0100, f2 = θ1000, f3 = θ1100. By writing out Fourier expansions
of the fi restricted to H∆ to high enough precision, he was able to find a
polynomial relation between the fi. This is a component of the Humbert
surface in H2/Γ

∗(2, 4) which maps down to H∆ in H2/Sp4(Z) under the
quotient map.
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Since Γ∗(2, 4) is normal in Sp4(Z), all Humbert components F∆,i are
hypersurfaces in H2/Γ

∗(2, 4) of the same degree. The quotient group
Sp4(Z)/Γ∗(2, 4) acts on the set of components. By determining the number
of components and the isotropy groups, Theorem 3.5 is used to produce a
degree formula for Humbert components in this model.

Proposition 3.6. ([64, p. 10]) The number of Humbert components in
H2/Γ

∗(2, 4) is

m(∆) =





10 if ∆ ≡ 1 mod 8,

60 if ∆ ≡ 0 mod 4,

6 if ∆ ≡ 5 mod 8.

The degree of any Humbert component F∆,i in H2/Γ
∗(2, 4) is given by a

recursive formula

a∆ =
∑
x>0

v(∆/x2)m(∆/x2) deg(F(∆/x2),i)

where

v(x) =





1/2 if x = 1

1 if x ≥ 2, x ≡ 0, 1 mod 4

0 otherwise
and a∆ is the coefficient of Cohen’s modular form calculated using (3.4).

∆ 1 4 5 8 9 12 13 16 17 20 21 24
deg(F∆,i) 2 1 8 2 24 4 40 8 48 8 80 12

∆ 25 28 29 32 33 36 37 40 41 44 45 48
deg(F∆,i) 120 16 120 16 144 24 200 28 192 28 240 32

∆ 49 52 53 56 57 60 61 64 65 68 69 72
deg(F∆,i) 336 40 280 40 336 48 440 64 384 48 480 60

TABLE 2. Degrees of Runge Humbert components.

The algorithm is very simple. We have f0, f1, f2, f3 represented as trun-
cated power series. We know the degree of the relation we are searching for.
To find an algebraic relation of degree d, compute all homogeneous mono-
mials in the fi of degree d and use linear algebra to find linear dependencies
between the monomials.

Using this method, Runge computed equations of Humbert components
whose degree was at most 16. By making use of observed symmetries
of Γ∗(2, 4)/Sp4(Z) that fix Humbert components we are able to compute
components whose degrees are at most 48, which includes all the even non-
square discriminants less than 70 (see [22]).

We now generalize this method to any finite cover:
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Algorithm 3.7. Let φ : A′ → A2 be a finite cover of A2. Then the
preimage φ−1H∆ is a union of Humbert components H

(i)
∆ . Given functions

{fi(τ)}i=1,...,n generating the function field ofA′, compute H
(i)
∆ (f1, . . . , fn)

as follows:
a) Calculate the degree of the Humbert components H

(i)
∆ (given by a

formula).
b) Compute power series representations of the fi(τ) restricted to H∆ ⊂
H2.

c) Solve H
(i)
∆ (f1, . . . , fn) = 0 in the power series ring (truncated series

with large precision) using linear algebra.
In addition, if φ is a Galois cover and we understand the action of the Galois
group explicitly, then we can compute all the H

(i)
∆ from the Galois orbit of

one component.

We shall refer to this algorithm as Runge’s method. Let us now give a
simple analysis of its space requirements and runtime.

Proposition 3.8. Let m be the number of monomials to be evaluated and
let N be the precision of the truncated power series used. Assume that
each power series coefficient can be computed in constant time and that the
arithmetic operations in the ring Z[p, q]/(pN , qN) are of order N2. Then,
the runtime of Runge’s method is O(m2N2) and the space complexity is
O(mN2).

Proof. The algorithm decomposes into three parts: computing power series
to precision N , evaluating m monomials and computing the row-kernel of
an m×N matrix. We have the following table:

Algorithm step Space Time
Compute power series to precision N N2 N2

Evaluate m monomials mN2 mN2

Computing row-kernel of a m×N2 matrix mN2 m2N2

Total complexity mN2 m2N2

The first two lines are straightforward given our assumptions. The space
complexity for the kernel calulation is simply the number of matrix entries
which is mN2. From Cohen [13, §2.3.1], we see that the runtime for com-
puting the row-kernel of an r × c matrix is r2c, so our table is correct. This
completes the proof. ¤
Remark 3.9. The success of Runge’s method is contingent on having high
enough precision such that the computed kernel has dimension one. In par-
ticular, the number of power series terms must be greater than the number
of monomials, which means that the runtime is o(m3).
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Any finite cover of the Siegel modular threefold is 3-dimensional, hence
the number of monomials of degree d is proportional to d3. It follows from
the above remark that the runtime of finding a Humbert relation of degree d
is of order o(d9).

3.4. Satake models of level 2

In [72] van der Geer constructs a model in P4 for the Satake compact-
ification of the Siegel modular threefold of level 2 using fourth powers of
even theta functions of half integral characteristics. The symmetric group
S6 acts on these functions. He then states that by changing the action of
S6 by an outer automorphism, we may obtain a model in P5 where S6 acts
by permuting the coordinate functions x1, . . . , x6. In this section we explic-
itly construct this model of the Satake compactification X[2] = H∗

2/Γ2(2)
in P5 using theta functions of half integral characteristics. This model is
ideal for computing Humbert surfaces as each level 2 Humbert component
is fixed by a subgroup G of S6 which means that the Humbert equations are
G-invariant polynomials. This reduces the number of monomials one has to
evaluate in Runge’s method and reduces the size of the matrix by a constant
factor.

3.4.1. A model of X[2] in P4. Igusa [32] showed that the space of mod-
ular forms of weight 2 for Γ2(2) defines an embedding of H∗

2/Γ2(2) into
projective space. A nice model can be constructed by working with theta
functions of half integral characteristics.

Let m = (m1, . . . , m4) be an integer row vector. Set m′ = (m1,m2) and
m′′ = (m3,m4). Recall the theta function with half integral characteristic
m has Fourier expansion

θm(z, τ) =
∑

p∈Z2

e

(
1

2

(
p +

m′

2

)
τ

t
(

p +
m′

2

)
+

(
p +

m′

2

)
t
(

z +
m′′

2

))
.

We make note of three theta function identities [33]. Firstly, the substi-
tution p 7→ −p−m′ shows

θm(−z, τ) = (−1)m′·m′′
θm(z, τ)

which says that θm is even (or odd) as a function of z if and only if m′ ·m′′ =
m1m3 + m2m4 is even (or odd). It follows that all the odd theta constants
are zero.

Let n ∈ Z4 be another characteristic. Identity (1.68) says that

θm+2n(z, τ) = (−1)m′·n′′θm(z, τ)

which shows that it is enough to know the theta functions/constants θm as m
ranges over a set of representatives of Z4/(2Z)4, for which we take the set
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of vectors whose entries are in {0, 1}. There are sixteen theta functions of
half integral characteristics, ten even and six odd. There are ten even theta
constants.

The third identity is a specialisation of Igusa’s transformation formula
(see Theorem 1.69) for theta constants θm. Let m ∈ Z4 be a character-
istic. For a symplectic matrix T =

(
α β
γ δ

) ∈ Sp4(Z) write T · m :=

mT−1 + ((γ tδ)0, (α
tβ)0) where X0 denotes the row vector determined by

the diagonal entries of X . Then

θT ·m (T (τ)) = ε(T, m) det(γτ + δ)1/2θm(τ)

where ε(T, m) is a certain eighth root of unity depending only on T , m and
the sign ambiguity of the choice of square root.

Lemma 3.10.
a) The characteristic T ·m has the same parity as m.
b) If T ≡ I2 mod 2 then T ·m = m. Hence Γ2(1)/Γ2(2) ∼= Sp4(F2)

acts on the characteristics.
c) The action of Sp4(F2) on the six odd characteristics is transitive and

gives an isomorphism between S6 and Sp4(F2).

Proof. See Igusa [32, p. 398]. ¤
By fixing the ordering of the odd characteristics to be

0101, 0111, 1011, 1010, 1110, 1101

we can write down this isomorphism R : S6 → Sp4(F2) explicitly on the
generators:

R(12) =

(
I2

1 0
0 0

0 I2

)
, R(123456) =

(
0 1 1

0 1
1 0
1 1 I2

)
.

The following proposition is obtained by examining ε(T,m) in Igusa’s trans-
formation formula more closely.

Proposition 3.11.
a) ε(T, m) is a fourth root of unity for all T ∈ Γ2(2), hence the fourth

powers θ4
m(τ) are Siegel modular forms for Γ2(2).

b) Let T =
(

α β
γ δ

)
be in Sp4(Z). We have the identity

θ4
T ·m (T (τ)) = (−1)m′ tβδ tm′+m′′ tαγ tm′′ · det(γτ + δ)2 · θ4

m(τ)

which holds for characteristics m ∈ Z4.

Proof. From [34, p. 226] we have ε(T, m) = κ(T )e(φm(T )) with φm(T ) =
−1/8 · (m′ tβδ tm′ + m′′ tαγ tm′′ + 2m′ tβγ tm′′ − 2(m′ tδ −m′′ tγ)(α tβ)0).
Since m′,m′′ ∈ Z2 we obtain

ε(T, m)4 = κ(T )4(−1)m′ tβδ tm′+m′′ tαγ tm′′
.
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Since matrices in Γ2(2) are the identity mod 2, we see that ε(T, m)4 =
κ(T )4 for all T ∈ Γ2(2). The proposition now follows from the fact that
κ(T )4 = 1 for all T ∈ Sp4(Z); see Birkenhake-Lange [7, §8.6, Ex 8.11(9)]
for a proof. ¤

Define a right action of T = ( a b
c d ) ∈ Sp4(R) on functions f : H2 → C

by writing f ◦ [T ](τ) = det(cτ + d)−2f (T (τ)). Then by the proposition
above, θ4

m ◦ [T ] = ±θ4
T−1·m for all T ∈ Sp4(Z) with Γ2(2) acting trivially.

Thus S6 acts on the vector space M spanned by the ten even theta fourth
powers.

In [32] Igusa computed the representation

〈T 〉 : θ4
m 7→ θ4

m ◦ [T−1] = θ4
T ·m.

It is the five dimensional irreducible representation corresponding to the
partition 6 = 2 + 2 + 2.

Theorem 3.12. ([72, IX 3.2]) The 10 modular forms θ4
m span the five di-

mensional vector space M2(Γ2(2)) = M and define an embedding X[2] →
P4 ⊂ P9 of the Satake compactification. The image is the quartic threefold
defined by

u2
2 − 4u4 = 0

where uk =
∑

θ4k
m sums over all even characteristics.

The S6-action can be described elegantly using a different notation for
the theta fourth powers as found in van der Geer [28, Ch. 9], motivated by
Thomae’s formula. For each partition (ijk)(`mn) of {i, j, k, `, m, n} =
{1, 2, . . . , 6}, define θ(ijk)(k`m) by first setting

t1 := θ(124)(356) = θ4
1000 , t2 := θ(125)(346) = θ4

1100 ,

t3 := θ(126)(345) = θ4
1111 , t4 := θ(123)(456) = θ4

1001 ,

t5 := θ(135)(246) = θ4
0000 , t6 := θ(145)(236) = θ4

0001 ,

t7 := θ(156)(234) = θ4
0110 , t8 := θ(146)(235) = θ4

0010 ,

t9 := θ(136)(245) = θ4
0011 , t10 := θ(134)(256) = θ4

0100 ,

then, for any permutation σ ∈ S6 satisfying {σ(i), σ(j), σ(k)} = {i, j, k},
we declare that

θ(σ(i), σ(j), σ(k))(σ(`), σ(m), σ(n)) = sign(σ) θ(ijk)(`mn).

A representation of S6 on M is given by

σ : θ(ijk)(`mn) 7−→ θ(σ(i), σ(j), σ(k))(σ(`), σ(m), σ(n)).

Proposition 3.13. The above representation of S6 on described on the
θ(ijk)(`mn) is equal to Igusa’s representation 〈·〉 via the isomorphism
R : S6 → Sp4(Z)/Γ2(2) defined earlier. That is to say σ = 〈Rσ〉.
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Proof. Simply compute both representations on the generators of S6 and
observe that they are indeed identical. ¤

All linear relations between the theta fourth powers arise from Rie-
mann’s theta formula [33, p. 232] and have a very nice symmetric form.

Proposition 3.14. The θ(ijk)(`mn) satisfy the relations

θ(ijk)(`mn)− θ(ij`)(kmn)− θ(ijm)(`kn)− θ(ijn)(`mk) = 0.

We defer the proof until Section 3.5 where we make use of Thomae’s for-
mula.

The ti with i = 6, 7 . . . , 10 form a basis of M = Span{t1, . . . t10}.
The other ti can be represented in terms of this basis producing five linear
relations:

t1 = t6 − t8 + t10

t2 = −t8 + t9 + t10

t3 = t7 − t8 + t9

t4 = t6 + t7 − t8

t5 = t6 + t7 − t8 + t9 + t10 .

The basis determines an explicit embedding X[2] → P4 as in Theorem 3.12.

3.4.2. A model of X[2] in P5. The symmetric group S6 is unique in that
it is the only symmetric group which has an outer automorphism [61, Ch. 7
§2]. It is an automorphism of order two which interchanges the conjugacy
classes in S6 corresponding to the partitions 2+1+1+1+1 and 2+2+2.
A look at the character table for S6 shows that if we twist the S6-action on
M by an outer automorphism, we get a representation corresponding to the
partition 6 = 5 + 1. This representation has a nice “symmetric” realization
as {

(x1, . . . , x6) ∈ C6 :
∑

1≤i≤6

xi = 0

}
∼= C5

where S6 acts by permuting the coordinates.
We now change model explicitly. We shall use the outer automorphism

α : S6 → S6 defined by

(12) 7→ (16)(23)(45),

(123456) 7→ (46)(235).

Our task is to find six functions x1, . . . , x6 in M such that gxi = xα(g)(i)

where the action on the right hand side of the equality is the natural per-
mutation action on {1, 2, . . . , 6}. We find these in the following manner.



3.4. SATAKE MODELS OF LEVEL 2 45

Observe that α−1(g)x6 = x6 for all g in S5, the group of permutations fix-
ing the element 6. Write σ = α−1(12345) = (14326) and define

v = t7 + σt7 + σ2t7 + σ3t7 + σ4t7

= t7 + t8 + t9 − t10 + t4 .

By construction, σv = v and one can easily compute that α−1(12)v = v,
hence v is fixed by all of α−1(S5). Thus we can set x6 = v. To find the
other xi, simply compute α−1(i6)x6. In terms of the basis of M , we obtain

x1 = t6 − t7 + t9 + 2t10

x2 = −2t6 − t7 + t9 − t10

x3 = t6 − t7 − 2t9 − t10

x4 = t6 + 2t7 − 3t8 + t9 + 2t10

x5 = −2t6 − t7 + 3t8 − 2t9 − t10

x6 = t6 + 2t7 + t9 − t10 .

One can verify that the xi sum to zero. The symmetric relation u2
2 − 4u4

between the ti in Theorem 3.12 gives us a degree 4 relation symmetric in
the xi.

Theorem 3.15. ([72, p. 348]) Changing the action of S6 by an outer auto-
morphism, we can find equations for X[2] embedded in P5 given by

s1 = 0 ,

s2
2 − 4s4 = 0 ,

where sk =
∑6

i=1 xk
i are the k-th power sums in the coordinates of P5. In

this model, S6 acts by permuting the coordinates x1, . . . , x6.

Proof. All that remains to be shown is the correctness of the stated degree
four relation. The linear transformation back to the ti is given by the equa-
tions

3t1 = x1 + x3 + x4, 3t2 = x1 + x2 + x4, 3t3 = x1 + x3 + x5,

3t4 = x1 + x2 + x5, 3t5 = x2 + x3 + x5, 3t6 = x2 + x4 + x5,

3t7 = x1 + x2 + x3, 3t8 = x2 + x3 + x4, 3t9 = x3 + x4 + x5,

3t10 = x1 + x4 + x5.

Substituting these expressions for ti into the degree 4 relation u2
2 − 4u4

produces a polynomial r(x1, . . . , x6). With the help of Gröbner basis ma-
chinery we calculate that r = ms1 − 1

27
(s2

2 − 4s4) where m is a cubic
polynomial. Since both s1 and r vanish on X[2], it follows that s2

2 − 4s4

does as well. ¤
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Thus we are able to compute Fourier expansions of the coordinate func-
tions xi explicitly since they are simply linear combinations of theta fourth
powers which we know how to compute from Section 3.1.

We now state some results about the geometry of this model in P5.

Proposition 3.16. ([6, §4],[72, §1]) The boundary components ofH2/Γ2(2)
in X[2] form the singular locus of the embedding into P5. For each par-
tition of {1, . . . , 6} into three disjoint pairs (ij)(k`)(mn) there is a one-
dimensional boundary component ∞(ij)(k`)(mn) given by additional equa-
tions

xi = xj, xk = x`, xm = xn, xi + xk + xm = 0 .

For each pair {i, j} in {1, . . . , 6} there is a zero-dimensional boundary
point ∞{i,j} whose coordinates satisfy xi = xj = 2 and xk = −1 for all
other k.

Each 0-dimensional boundary component lies on three 1-dimensional
boundary components and each 1-dimensional boundary component lies on
three 0-dimensional boundary components.

Besser [5, §7] determined the number of components of H∆ in X[2].

Proposition 3.17. Let ∆ be a positive integer congruent to 0 or 1 mod 4.
Then

a) If ∆ ≡ 1 (mod 8) then H∆ ⊂ X[2] has 10 components labelled
(H∆)(ijk), each corresponding to a partition of {1, . . . , 6} into two
triples. The component (H∆)(ijk) contains the 9 boundary points
∞{p,q} which have p ∈ {i, j, k} and q /∈ {i, j, k}.

b) If ∆ ≡ 5 (mod 8) then H∆ ⊂ X[2] has 6 components labelled
(H∆)(i). The component (H∆)(i) contains the 5 boundary points
∞{i,j} with i 6= j.

c) If ∆ is an even discriminant then H∆ ⊂ X[2] has 15 components
labelled (H∆)(ij). The component (H∆)(ij) contains the 6 boundary
points∞{k,l} with {k, l}∩{i, j} = ∅. If ∆ is a square then (H∆)(ij)

contains an additional boundary point ∞{i,j}.

Once again, we have a formula for the degree of the polynomial F∆,i

defining Humbert components which can be derived from Theorem 3.5.
From Proposition 3.17, the number of Humbert components is given by

m(∆) =





10 if ∆ ≡ 1 mod 8,

15 if ∆ ≡ 0 mod 4,

6 if ∆ ≡ 5 mod 8.
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The degree of any Humbert component F∆,i in X[2] is given by a recursive
formula

a∆ = 4
∑
x>0

m(∆/x2) deg(F(∆/x2),i)

where a∆ is the coefficient of Cohen’s modular form calculated using (3.4).

∆ 1 4 5 8 9 12 13 16 17 20 21 24 25
deg(F∆,i) 1 1 2 2 6 4 10 8 12 8 20 12 30

∆ 28 29 32 33 36 37 40 41 44 45 48 49 52
deg(F∆,i) 16 30 16 36 24 50 28 48 28 60 32 84 40

TABLE 3. Degrees of Satake Humbert components in X[2].

3.4.3. Computations. We now have enough information to implement
Runge’s method and produce some Humbert components with level 2 struc-
ture. We know how to compute the Fourier expansions and know the degree
of the equation. The defining equations of X[2] will always be satisfied by
the Humbert component. By removing monomials divisible by x6 or x4

5, we
can avoid these defining relations from being detected. Using this method,
we calculated Humbert components for small discriminants.

∆ computed Humbert equation component label
1 x1 + x2 + x5 (125)
4 x3 − x5 (35)
5 x2

1 − 2x1x2 − 2x1x3 − 2x1x4 − 2x1x5−
2x2

2 − 2x2x3 − 2x2x4 − 2x2x5 − 2x2
3− (1)

2x3x4 − 2x3x5 − 2x2
4 − 2x4x5 − 2x2

5

8 8x2
1 + 8x1x2 + 8x1x3 + 8x1x4 + 8x1x5−

7x2
2 − 10x2x3 + 8x2x4 + 8x2x5 − 7x2

3+ (23)
8x3x4 + 8x3x5 + 8x2

4 + 8x4x5 + 8x2
5

TABLE 4. Satake Humbert components for small discriminants.

Using these equations and Proposition 3.17 we can determine which
Humbert component we are actually computing for each discriminant class
mod 8 by substituting in all the zero-dimensional boundary points and see-
ing which ∞{i,j} lie on the component. Looking at the constant terms in
the Fourier expansions of the xi, we learn that our Fourier expansions are
power series expansions centred at ∞{1,6}.

Now that we know the exact component for each discriminant class mod
8, we can take advantage of the symmetries. The lemma below follows from
Proposition 3.17.
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Lemma 3.18. Write S = {1, . . . , 6} = {i, j, k, `, m, n}. Then

a) If ∆ ≡ 1 (mod 8) then (H∆)(ijk) is fixed by symmetries in S6 which
preserve the partition S = {i, j, k}∪{`,m, n}. As an abstract group
it contains S3 × S3 as a subgroup of index 2.

b) If ∆ ≡ 5 (mod 8) then (H∆)(i) is fixed by symmetries in S6 which
preserve the partition S = {i} ∪ {j, k, `, m, n}. As an abstract
group it is isomorphic to S5.

c) If ∆ is an even discriminant then (H∆)(ij) is fixed by symmetries in
S6 which preserve the partition S = {i, j} ∪ {k, `,m, n}. As an
abstract group it is isomorphic to S2 × S4.

Write Sym(T ) for the symmetric group which acts on {xi : i ∈ T} fix-
ing all other xj . Let I be the set {2, 3}, {1, 2, 5}, {3, 5} or {1} according to
whether ∆ is congruent to 0, 1, 4 or 5 (mod 8). In all four cases the symme-
try group for H∆ contains G = Sym(I)×Sym(J) where J = {1, . . . , 6}\I .
So the Humbert equations will be G-invariant and we expect the defining
polynomial to be G-invariant in the xi (the only known equation where the
polynomial is not G-invariant is for discriminant 4 which can be blamed on
the small degree). With this in mind, we look for a nice basis for G-invariant
polynomials.

Lemma 3.19. Write sk =
∑6

i=1 xk
i for the k-th symmetric power sum and

write pk = pk,I =
∑

i∈I xk
i for the partial k-th power sum. There are

isomorphisms of graded rings

C[x1, . . . , x6]
G ∼= C[{xi : i ∈ I}]Sym(I) ⊗ C[{xi : i ∈ J}]Sym(J)

∼= C[{xi : i ∈ I}]Sym(I) ⊗ C[xi, . . . , x6]
S|J|

∼= C[p1, . . . , p|I|][s1, . . . , s|J |] .

Remark 3.20. It follows that any G-invariant Humbert component is
uniquely represented in the polynomial ring

C[s2, s3, s5, s6, p1, . . . , p|I|] ∼= C[p1, . . . , p|I|][s1, . . . , s6]/(s1, s
2
2 − 4s4) .

By using these (weighted) monomials instead of the xi, the linear alge-
bra computation is reduced by a constant factor whilst the equations have
symmetry which was lacking before.

In the literature, equations have only been calculated up to discriminant
8 (see [6, p. 305-307] and [72, §8]). We have computed equations up to
discriminant 40. Below is a table of Humbert components for discriminants
up to 16. The other equations can be found at the web address [22].
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∆ Humbert component
1 x1 + x2 + x5

4 x3 − x5

5 s2 − 3p2
1

8 4s2 − 9p2
1 − 6p2

9 384p1s2s3 + (816p4
1 − 768p2

1p2)s2 + 256s2
3

+(864p3
1 − 768p1p2 − 1024p3)s3 − 259p6

1

−1728p3
1p3 + 768p2

1p
2
2 + 1024p2

3

12 16s2
2 + (−168p2

1 − 48p2)s2 − 128p1s3

−111p4
1 + 684p2

1p2 + 36p2
2

13 225s5
2 + 83025p2

1s
4
2 − 1248000p1s

3
2s3 + 7191450p4

1s
3
2

+2867200s2
2s

2
3 − 8659200p3

1s
2
2s3 + 3133440p1s

2
2s5

−85855950p6
1s

2
2 − 24576000p2

1s2s
2
3 − 14745600s2s3s5

+37728000p5
1s2s3 + 46080000p3

1s2s5 + 320203125p8
1s2

−11059200p4
1s

2
3 + 67829760p2

1s3s5 + 131155200p7
1s3

+18874368s2
5 − 272609280p5

1s5 − 388854675p10
1

16 36864p2
1s

3
2 + 98304p1s

2
2s3 + (165888p4

1 − 552960p2
1p2

+36864p2
2)s

2
2 + 65536s2s

2
3 + (221184p3

1 − 786432p1p2)s2s3

+(167040p6
1 − 1259136p4

1p2 + 2294784p2
1p

2
2 − 152064p3

2)s2

+(16384p2
1 − 131072p2)s

2
3 + (46848p5

1 − 531456p3
1p2

+1170432p1p
2
2)s3 + 27657p8

1 − 435528p6
1p2

+1928664p4
1p

2
2 − 2636064p2

1p
3
2 + 156816p4

2

TABLE 5. Satake Humbert components up to discriminant 16.

3.5. Rosenhain models

In this section we produce families of genus 2 curves whose Jacobians
have real multiplication by applying Runge’s method to find Humbert com-
ponents expressed as equations in terms of Rosenhain invariants.

Torelli’s theorem says that the map sending a curve C to its Jacobian
variety Jac(C) is injective and defines a birational map between the moduli
space of genus 2 curves denoted M2, and A2. In fact, the image of the
Torelli map is precisely the complement of H1 in A2.

Given a genus 2 curve y2 =
∏6

i=1(x − ui) over the complex numbers,
we can send three of the ui to 0, 1,∞ via a fractional linear transformation
to get an isomorphic curve with a Rosenhain model:

y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3).

The λi are called Rosenhain invariants. The ordered tuple

(0, 1,∞, λ1, λ2, λ3)
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determines an ordering of the Weierstrass points and a level 2 structure on
the corresponding Jacobian, that is, determines a point of A2(2).

Let M2(2) denote the moduli space of genus 2 curves together with a
full level 2 structure. The points of M2(2) are given by triples (λ1, λ2, λ3)
where the λi are all distinct and different from 0 and 1. The forgetful mor-
phism M2(2) → M2 is a Galois covering of degree 720 = |S6| where S6

acts on the Weierstrass 6-tuple by permutations, followed by renormalising
the first three coordinates to (0, 1,∞).

As functions on M2(2), the Rosenhain invariants generate the coordi-
nate ring of M2(2) and hence generate the function field of A2(2).

3.5.1. Thomae’s formula. To compute with Rosenhain invariants, we
express them in terms of theta functions using Thomae’s result [54].

Let C be a genus 2 curve with projective model y2z =
∏6

i=1(βix−αiz).
Let B = {1, ..., 6} be an indexing set for the six branch points {bi = (αi :
βi) ∈ P1 : i = 1, ..., 6} and let U = {1, 3, 5}. For subsets S, T of B let
S ◦ T := (S ∪ T ) \ (S ∩ T ) denote the symmetric difference. Define the
following half integral characteristics

η1 =
[

1
2

0
0 0

]
, η2 =

[
1
2

0
1
2

0

]
, η3 =

[
0 1

2
1
2

0

]
,

η4 =
[

0 1
2

1
2

1
2

]
, η5 =

[
0 0
1
2

1
2

]
, η6 = [ 0 0

0 0 ]

using our original notation for characteristics (see Section 1.11), and set
ηS =

∑
k∈S ηk for S ⊂ B, where η∅ = [ 0 0

0 0 ] and the sum is matrix addition
mod 1.

There is a simple relationship between θ[ηS] notation and van der Geer’s
notation.

Lemma 3.21. Write B = {i, j, k, `,m, n}. If i < j < k and ` < m < n
then

θ(ijk)(`mn) = θ[η{i,j,k}◦U ]4 = θ[η{`,m,n}◦U ]4 .

This can easily be verified. This fact together with Thomae’s formula
will allow us to confirm the truth of the linear relations in Proposition 3.14.

Theorem 3.22. (Thomae’s formula) There exists a nonzero constant c such
that for all S ⊂ B with |S| even, we have

θ[ηS]4 =





0 if |S ◦ U | 6= 3 ,

c(−1)|S∩U | ∏
i∈(S◦U),

j∈B\(S◦U)

(αiβj − αjβi)
−1 if |S ◦ U | = 3 .

Proof. See Mumford [54, Ch. 8]. ¤
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Corollary 3.23. The linear relations

θ(ijk)(`mn)− θ(ij`)(kmn)− θ(ijm)(`kn)− θ(ijn)(`mk) = 0.

as stated in Proposition 3.14 are true.

Proof. Use Thomae’s formula to write each theta fourth power term as a
function of the of the roots. The result then follows from algebraic manip-
ulation. ¤

If one of the branch points is the point at infinity, Thomae’s formula
simplifies somewhat. Order the points so that b6 = (1 : 0) and bi = (ui : 1)
for i 6= 6 where ui = αi/βi. The product then takes the form

c(−1)|S∩U | ∏

i∈(S◦U),
j∈B′\(S◦U)

(ui − uj)
−1

where B′ = {1, ..., 5}.

Proposition 3.24. ([54, Corollary 8.13]) Suppose we have five finite branch
points (ui : 1) indexed by B′ = {k, `, m, w1, w2} ⊂ {1, ..., 6}. Then

(3.25)
(uk − u`)

2

(uk − um)2
=

θ[η{w1,k,`}◦U ]4θ[η{w2,k,`}◦U ]4

θ[η{w1,k,m}◦U ]4θ[η{w2,k,m}◦U ]4
.

Using this and the identity

1 +

(
uk − u`

uk − um

)2

−
(

um − u`

um − uk

)2

= 2

(
uk − u`

uk − um

)

we can write uk−u`

uk−um
as a rational function of theta fourth powers.

Proof. Let B′ = V1 ∪ V2 ∪ {k} be a partition of the five branch points with
|Vi| = 2. From Thomae’s formula we obtain the identity∏

i∈V1
(uk − ui)∏

i∈V2
(uk − ui)

= (−1)k+1 θ[η(V2∪{k})◦U ]4

θ[η(V1∪{k})◦U ]4
.

Apply this to the pair V1 = {w1, `}, V2 = {w2,m} and then to V1 =
{w1,m}, V2 = {w2, `}. Taking the quotient of these two equations pro-
duces the result. ¤
Remark 3.26. If we take square roots of both sides of (3.25) we find that

(3.27)
uk − u`

uk − um

= ± θ[η{w1,k,`}◦U ]2θ[η{w2,k,`}◦U ]2

θ[η{w1,k,m}◦U ]2θ[η{w2,k,m}◦U ]2
.

Since we can express uk−u`

uk−um
in terms of theta fourth powers, the sign can

be determined by looking at Fourier expansions or evaluations.
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We now construct a particular set of Rosenhain invariants from theta
functions. Firstly, send u4, u5, u6 to 1, 0,∞ using the fractional linear trans-

formation x 7→ u4−u6

u4−u5
· x−u5

x−u6
. Then the squared ratios

(
u5−u`

u5−u4

)2

7→ u2
` get

mapped to squares of roots. The following result is obtained using the above
remark and Proposition 3.24.

Proposition 3.28. Let τ be a period matrix of a genus 2 curve. There is
a Rosenhain model y2 = x(x − 1)(x − u1)(x − u2)(x − u3) for which
u`(τ) = 1

2
(1 + Θ`(τ)) where

Θ`(τ) =
θ[η{w1,`,5}◦U ]4θ[η{w2,`,5}◦U ]4 − θ[η{w1,`,4}◦U ]4θ[η{w2,`,4}◦U ]4

θ[η{w1,4,5}◦U ]4θ[η{w2,4,5}◦U ]4

and {w1, w2, `} = {1, 2, 3}. Explicitly,

u1 =
1

2

(
θ4
0000θ

4
0010 − θ4

0100θ
4
0110

θ4
0001θ

4
0011

)
=

θ2
0000θ

2
1100

θ2
0011θ

2
1111

,

u2 =
1

2

(
θ4
1100θ

4
0010 − θ4

1000θ
4
0110

θ4
0001θ

4
1111

)
=

θ2
0010θ

2
1100

θ2
0001θ

2
1111

,

u3 =
1

2

(
θ4
1100θ

4
0000 − θ4

1000θ
4
0100

θ4
0011θ

4
1111

)
=

θ2
0000θ

2
0010

θ2
0011θ

2
0001

.

3.5.2. Computations. As a function of τ ∈ A2 there are 720 different
Rosenhain invariant triples, any of which may be used. Let

e1 =
θ2
0000θ

2
0010

θ2
0011θ

2
0001

, e2 =
θ2
0010θ

2
1100

θ2
0001θ

2
1111

, e3 =
θ2
0000θ

2
1100

θ2
0011θ

2
1111

.

be our ordered Rosenhain triple. For each of the six theta functions used
above, consider the Fourier expansion restricted to H4k+` as seen in Section
3.1. Observe that θ0000, θ0011, θ0010 and θ0001 have constant term 1, hence
are invertible, but θ1100 = 2p1+kqk+`−1 + . . . and θ1111 = −2p1+kqk+`−1 +
. . . have zero constant term. Fortunately one can show that θ1100, θ1111 are
in the ideal (p1+kqk+`−1)Q[[p, q]], hence by cancelling out the p1+kqk+`−1

factors, the quotient θ1100/θ1111 makes sense in Q[[p, q]]. Thus we are able
to compute the Rosenhain invariants as Fourier expansions restricted to a
Humbert surface.

Once we have a bound on the degree of the polynomial F∆(e1, e2, e3)
defining a Humbert component, we can apply Runge’s method to find such
equations. The degree of a Humbert component F ∗

∆(x1, . . . , x6) = 0 in
the Satake compactification gives an upper bound for deg F∆(e1, e2, e3).
From computational evidence it appears deg F∆ = deg F ∗

∆ for nonsquare
discriminants ∆ and that deg Fn2 = (1− 1

n
) deg F ∗

n2 for all n.
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∆ 1 4 5 8 9 12 13 16 17 20 21 24
deg(F∆) 1 2 8 8 16 16 40 24 48 32 80 48

TABLE 6. Table of degrees for Rosenhain Humbert components.

Example 3.29. (∆ = 1). Points of H1 are not Jacobians of hyperelliptic
curves so they cannot have a valid Weierstrass model. Applying Runge’s
method we find two components e1 = e2 and e2 = e3 and permuting the
roots we obtain nine relations in total

ei − ej = 0, i 6= j , ei = 0 , ei − 1 = 0 , i, j ∈ {1, 2, 3}.
These are the necessary and sufficient conditions for a Rosenhain model to
be degenerate.

When ∆ 6= 1, the Torelli map M2(2) → A2(2) \ H1 is an isomor-
phism on H∆. In particular, this means that the fixed groups of the Humbert
components in this model can be deduced from that of the level 2 Satake
model.

As we know, S6 acts on the Rosenhain invariants via the natural action
on (0, 1,∞, e1, e2, e3). By pulling back the action on the Satake xi coordi-
nates via the outer automorphism α of Subsection 3.4.2 we can determine
the action on the roots.

Lemma 3.30. A subgroup G ≤ S6 fixes a level 2 Satake component if and
only if α−1(G) fixes a Rosenhain component.

Let h∆ be the Humbert component computed using the above algorithm.
With the help of Lemma 3.18 we can now find the fixed groups for this
Rosenhain component explicitly. The fixed group of h∆ for even discrimi-
nant splits into two cases,

FixS6(h4k) =

{
G if k is odd
g−1Gg if k is even

where G ⊂ S6 is a group of order 48 generated by three elements

(0, e1, e3,∞, e2, 1), (e1, e2) and (1, e1, e3, e2);

the conjugating element is g = (1,∞)(e1, e2, e3). Excluding discriminant
1 which is a special case, the fixed group of ∆ ≡ 1 (mod 8) is a group of
order 72 generated by

(0, e1)(1, e2)(∞, e3), (1,∞), (e1, e2) and (e2, e3).

For ∆ ≡ 5 (mod 8) the fixed group is a group of order 120 generated by

(0, e1)(1, e2)(∞, e3), (1, e3, e2, e1,∞) and (∞, e1, e3, e2).
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By making use of some of the simpler fixed group symmetries, we can
reduce the size of the linear algebra computation. For example, the dis-
criminant 12 component h12 satisfies h12(e2, e1, e3) = h12(e1, e2, e3) which
means we only need roughly half the number of evaluated power series
since ea

1e
b
2e

c
3 and eb

1e
a
2e

c
3 have the same coefficient.

With the exception of discriminant 21, we have managed to produce
Humbert components for all the discriminants listed in the table (see [22]).
This extends the equations found in the literature ([29], [25]) which go up
to discriminant 8.

3.6. Descent to level 1

We describe two naïve algorithms to compute level 1 Humbert surfaces.
The first approach is to symmetrize a level 2 Humbert component in the Sa-
take model in P5 to form a giant symmetric polynomial in x1, . . . x6 which
we can express as a polynomial in the symmetric power sum polynomials
s1, . . . s6. Eliminating the variables s1 and s4 using the relations s1 = 0
and 4s4 = s2

2, we obtain a polynomial in s2, s3, s5, s6 which are modular
forms for Sp4(Z) of weights 4, 6, 10, 12 respectively. This method works in
theory, but in practice the degree of the polynomial as given by Theorem
3.5 prohibitively large. Indeed, the only example we were able to calculate
using this method was discriminant 5 which has the smallest degree of 24.

An alternative method is to use Runge’s method directly with level 1
modular forms. We managed to find Humbert equations for discriminants
up to 13 before running out of memory. But this method does not take
advantage of knowing the level 2 equation.

We now describe an algorithm which constructs the Humbert equation
from working over finite fields and lifting the coefficients. As our level 1
model uses the “non-standard” forms s2, s3, s5, s6 , we describe a few of the
common level 1 models which people use and the maps between them.

3.6.1. Igusa’s generators. Igusa [31, §IV] showed that the graded ring
of even weight modular forms for Sp4(Z) is generated by two Eisenstein
series ψ4, ψ6 and two cusp forms χ10, χ12 with the subscripts denoting the
weights. Since the vector spaces of modular forms of weights 4 and 6 are
both one-dimensional, it follows that ψ4 and ψ6 are constant multiples of s2

and s3. By comparing the constant terms in their respective Fourier expan-
sions we find that ψ4 = 12−1s2 and ψ6 = 12−1s3. From [32, §3] the cusp
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forms are defined by

χ10 = −2−14
∏
even

θ2
m ,

χ12 = 2−153−411−1

(
23ψ2

6 − 2211ψ3
4 + 32

∑
even

θ24
m

)
.

By developing the Fourier expansions, we can use linear algebra to write
the si in terms of the four modular form generators:

s2 = 12ψ4 ,

s3 = 12ψ6 ,

s5 = 60ψ4ψ6 − 214355χ10 ,

s6 = 108ψ3
4 + 24ψ2

6 + 21537χ12 .

Thus we can produce equations of Humbert surfaces in the Satake compact-
ification A∗

2 = Proj (C[ψ4, ψ6, χ10, χ12]) using the same set of generators.

3.6.2. Different models. The affine subvariety ofA∗
2 defined by χ10 6=

0 is the coarse moduli space for genus 2 curves. Define the Igusa-Clebsch
invariants I2, I4, I6, I10 by the following system of equations [35]:

−214χ10 = I10 ,

2173χ12 = I2I10 ,

22ψ4 = I4 ,

23ψ6 = (I2I4 − 3I6) .

They arise as invariants of binary sextics when working over a field of char-
acteristic not 2, 3 or 5. In particular, I10 is the discriminant. The absolute
Igusa-Clebsch invariants are defined to be

i1 = I5
2/I10, i2 = I3

2I4/I10, i3 = I2
2I6/I10 .

They generate the function field of M2 and hence A2.
The Igusa-Clebsch invariants reduce to zero mod 2 which renders them

useless in characteristic two. The Igusa invariants J2, J4, J6, J8, J10 are
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defined by the equations [30, p. 621–2]

J2 = 2−3I2 ,

J10 = 2−12I10 ,

J4 = 2−53−1(4J2
2 − I4) ,

J6 = 2−63−2(8J3
2 − 160J2J4 − I6) ,

J8 = 2−2(J2J6 − J2
4 ) .

and work in all characteristics (note that J8 is extraneous when the charac-
teristic is not two).

The simple nature of the above transformations allow us to transfer be-
tween different models with ease. For the most part we shall be using the
Satake si power sums.

3.6.3. Equations over finite fields. Let Fp be a field of characteristic p.
From our previous work we can compute equations for all the level 2 Hum-
bert components H

(i)
∆ (x1, . . . , x6) using the Satake compactification model

X[2] in P5. Whilst it is computationally expensive to form the product al-
gebraically, there is no such difficulty in evaluating the product at random
points of X[2] as we simply evaluate each individual Humbert component
and multiply the evaluations together. We know the product of the level
2 components can be written as a polynomial in the symmetric functions
s1, . . . , s6 where sk =

∑
xk

i . Since points on X[2] satisfy s1 = 0 and
4s4 = s2

2, we are able to use linear algebra to determine a unique polyno-
mial in s2, s3, s5, s6 defining the level 1 Humbert surface H∆ of discriminant
∆. Here is the basic algorithm.

Algorithm 3.31. Given a level 2 Humbert component of discriminant ∆
in X[2], we calculate the level 1 Humbert surface of discriminant ∆ by
following the steps below:

a) Compute a set S of random points on X[2](Fp).
b) Evaluate the symmetrized product of the level 2 components by

evaluating each component separately and forming the product.
c) Evaluate all weighted monomials in s2, s3, s5, s6 of degree equal to

the degree of the symmetrized product.
d) Use linear algebra to find linear relations between the evaluated

monomials and the evaluated symmetrized product.
If S is large enough we will find a unique relation which defines the level 1
Humbert surface.

We construct random points on X[2](Fp) as follows. The Satake com-
pactification is three dimensional so we need three independent parameters
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a, b, c ∈ Fp. Consider the projective point

(u : a : b : c : 1 : −(u + a + b + c + 1)) ∈ P5

which satisfies s1 = 0. The relation s2
2− 4s4 = 0 defines a quartic equation

in u with coefficients in Fp. The roots of this equation in Fp determine
points of X[2](Fp).

The degree of H∆(s2, s3, s5, s6) as a weighted homogeneous polyno-
mial equals the degree of the symmetrized product, hence is known.

For each random point, evaluate the symmetrized product and all the
monomials of weighted degree deg(H∆). Since the symmetrized product
can be written as a linear combination of the monomials, the same must
be true for the evaluations. By taking enough random points on X[2](Fp)
we can use linear algebra to determine the coefficient vector uniquely up to
scalar multiplication. Thus we can compute the equation for H∆ over Fp.

3.6.4. CRT method. The following useful result is due to Wang (see
[52] for the background). It allows us to reconstruct rational numbers from
their reduction mod m provided m is large enough.

Let H : Q → Z≥0 be the exponential height function defined by
H(n/d) = max(|n|, |d|). Write SM = {r ∈ Q|H(r) ≤ M} for set of
rationals whose height is bounded by M . We have the following:

Theorem 3.32. (Rational Reconstruction) Let n and d be coprime inte-
gers. Let m be a positive integer satisfying gcd(m, d) = 1. Let u ≡ n/d
(mod m) and write M = H(n/d). Then

a) If m > 2M2 the reduction map π : SM → Z/mZ is injective. That
is to say, for any 0 ≤ u < m there is at most one rational number
n/d which satisfies n/d ≡ u (mod m).

b) Euclid’s algorithm applied to the pair (m,u) determines an inverse
to π.

The asymtotic time complexity for this algorithm is O(log2 m).

Proof. See the article by Wang, Guy and Davenport [75]. ¤
Thus if we know the coefficients of level 1 Humbert equation for a large

enough residue class ring Z/mZ we can rationally reconstruct the coeffi-
cients. This can be done by either choosing a very large prime field or more
efficiently, compute the equations modulo a set of smaller primes {pi} and
use the Chinese Remainder Theorem (CRT) to obtain the equation modulo∏

pi.

Algorithm 3.33. Given a level 2 Humbert component of discriminant ∆
in X[2], we can compute the level 1 Humbert surface H∆ by doing the
following:
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a) Find a set of primes P = {pi} for which the coefficients of H∆ can
be rationally reconstructed from the coefficients mod

∏
pi.

b) Use Algorithm 3.31 to compute H∆ mod pi for each pi ∈ P .
c) Use the Chinese Remainder Theorem to compute H∆ mod

∏
pi.

d) Rationally reconstruct the coefficients.

Using this algorithm we were able to compute level 1 Humbert poly-
nomials H∆(s2, s3, s5, s6) for discriminants up to 21 before running out of
memory (see [22]). To give an idea of the complexity of these polynomi-
als we describe the discriminant 21 calculation in more detail. The whole
computation took 3 hours and 23 minutes on a 3.2 GHz Pentium 4 machine
with 1 gigabyte of RAM. We calculated H21 mod p for the first 40 primes
p in the interval [223 − 500, 223 + 500], each equation taking roughly five
minutes. The CRT and rational reconstruction was fast (under a second),
not surprising since both are variants of the Euclidean algorithm which has
asymtotic time complexity O(log2 m). The polynomial H21(s2, s3, s5, s6)
has degree 120; equivalently it is a modular form of weight 240. The largest
integer occuring as a numerator or denominator of a coefficient is 380 binary
digits long. By Theorem 3.32 we need a modulus of at least 761 binary dig-
its to successfully perform rational reconstruction, so in hindsight we only
needed to compute reductions for 34 primes.



CHAPTER 4

Shimura Curves

4.1. Quaternion algebras and orders

In this section we give a short exposition of the arithmetic of quaternion
algebras based on Chapter 1 of [1]. The main reference for this subject is
[74] and proofs of all the results we describe can be found there.

An algebra B over a field K is central if B has center K, and B is
simple if B has no nontrivial two-sided ideals.

Definition 4.1. A quaternion algebra B over a field K is a central simple
algebra of dimension 4 over K.

We shall always assume K is a number field. In this situation, a quater-
nion algebra over K has a K-basis {1, i, j, ij} satisfying i2 = a, j2 =
b, ij = −ji for some units a, b in K. We write B =

(
a,b
K

)
for this algebra.

Example 4.2. The R-algebra
(−1,−1

R
)

is the usual division ring of Hamilton
quaternions denoted H.

Example 4.3. The ring M2(K) ∼=
(−1,1

K

)
. More generally, if b is in K∗2

then we have an isomorphism
(

a,b
K

) ∼= M2(K) given by

a 7→
(

0 1
a 0

)
and b 7→

(√
b 0

0 −
√

b

)
.

Remark 4.4. Note that up to isomorphism the presentation
(

a,b
K

)
is far from

unique. For example, we have(
a, b

K

)
∼=

(
b, a

K

)
∼=

(
a,−ab

K

)
∼=

(
a, bu2

K

)

where u is a unit of K.

Every quaternion element α satisfies a monic quadratic equation

Pα(X) = (X − α)(X − α)

with coefficients in K. Define the reduced trace and reduced norm of α by

Tr(α) = α + α and N(α) = αα .

The conjugation map ω 7→ ω = Tr(ω) − ω fixes K and is a K-linear
anti-involution, that is, α = α and αβ = βα.

59
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Theorem 4.5. The K-automorphisms of a K-quaternion algebra B are the
inner automorphisms, that is, those of the form w 7→ bwb−1 where b ∈ B∗.

Proof. This is a direct consequence of the Skolem–Noether theorem [62,
Corollary 9.121]. ¤

By Wedderburn’s Theorem [58, Ch. 1, Theorem 7.4], a quaternion al-
gebra over K is either a central division K-algebra or is isomorphic to the
matrix algebraM2(K).

Definition 4.6. Let B be a quaternion algebra over K. For each place v
of K, Bv := B ⊗K Kv is a quaternion algebra over Kv. We say that B is
ramified at v if Bv is a division algebra, otherwise we say Bv is split.

In M2(K), each matrix satisfies its characteristic polynomial which is
of degree 2, so the reduced trace and norm are just the matrix trace and
determinant respectively. The conjugation map sends ω =

(
α β
γ δ

)
to ω =

Tr(ω)I2−ω =
(

δ −β
−γ α

)
. This is also true of the reduced trace and norm of

elements of Bv for any split place v.
The following theorem can be shown using class field theory.

Theorem 4.7. ([74, Ch. 3, Théorème 3.1])
a) A quaternion K-algebra B is ramified at a finite even number of

places.
b) Two quaternion algebras are isomorphic if and only if they are ram-

ified at the same places.
c) Given an even number of places of K, there exists a quaternion

algebra over K which ramifies exactly at those places.

Definition 4.8. The reduced discriminant DB of a quaternion K-algebra B
is the product of prime ideals in OK which ramify in B.

Remark 4.9. If K has class number 1, we may identify the discriminant
DB with its generator in OK , up to units.

A quaternion algebra overQ is called definite if it ramifies at the infinite
prime and called indefinite otherwise. It follows from the above theorem
that the discriminants of indefinite quaternion algebras have an even number
of prime factors whereas for definite quaternion algebras the number of
primes factors in the discriminant is odd.

4.1.1. Orders. Let K be eitherQ orQp for some prime p. Let R be the
ring of integers of K. Let B be a quaternion algebra over K. We introduce
some new terminology in order to talk about orders.

An R-lattice in B is finitely generated torsion-free R-submodule of B
which satisfies I⊗R K = B. These are analogous to fractional ideals in the
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commutative setting. The inverse of an R-lattice I is defined by

I−1 = {b ∈ B | IbI ⊆ I}.
An element α of B is said to be integral over K if Tr(α) and n(α) are in R.
An R-lattice is said to be integral if all its elements are integral.

Definition 4.10. An R-order of B is an R-lattice O ⊂ B which is also a
ring. Equivalently, O is a ring of integral elements generating B over K.

Given an R-lattice I , the left and right orders associated to I are defined
by

Or(I) = {b ∈ B | Ib ⊆ I}, Ol(I) = {b ∈ B | bI ⊆ I}.
The reduced norm of an R-lattice I is defined to be the fractional ideal in
R generated by the reduced norms of elements of I .

From now on, O shall denote an R-order.

Definition 4.11. The different DO of O is the two-sided ideal of O given
by {b ∈ B | Tr(bO) ⊂ R}−1. The reduced discriminant DO of O is the
reduced norm of DO.

Proposition 4.12. The reduced discriminant has the following properties:
a) D2

O is the ideal of R generated by

{det(Tr(wiwj)i,j=1,...,4) : wk ∈ O}.
b) If {v1, . . . , v4} is an R-basis for O then D2

O is generated by

det(Tr(vivj)).

c) If O′ ⊆ O is another R-order then DO divides DO′ . As a special
case, DO = DO′ if O′ = O.

Proof. See Lemme 4.7 and Corollaire 4.8 in [74, Ch. I]. ¤
Each R-order is contained in a maximal order. Unlike the number field

case, maximal orders are not unique in general.

Definition 4.13. An Eichler R-order is an R-order in a quaternion algebra
B which is the intersection of two maximal R-orders of B.

Lemma 4.14. Two R-orders are isomorphic if and only they are conjugate
R-orders.

Proof. This immediately follows from Theorem 4.5. ¤
The lemma below is easily verified.

Lemma 4.15. Let Ψ : B → B′ be an isomorphism of K-quaternion alge-
bras. Then
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a) α ∈ B is integral if and only if Ψ(α) is integral.
b) O ⊆ B is an R-order if and only if Ψ(O) is an R-order. Thus O

is maximal (resp. Eichler) if and only if Ψ(O) is maximal (resp.
Eichler).

c) If O ⊆ B is an R-order then DΨ(O) = DO. In particular, conjugate
orders have the same discriminant.

Fix a prime p. Recall that Bp = B ⊗Q Qp is either a division algebra or
a matrix algebra.

Lemma 4.16. Let Bp be a division Qp-algebra. Then Bp contains a unique
maximal Zp-order Op = {b ∈ Bp | n(b) ∈ Zp}. Hence Op is the unique
Eichler order in Bp.

Proof. See [58, Theorem 12.8]. ¤
When Bp is a matrix algebra there are many maximal orders.

Lemma 4.17. Let Bp = M2(Qp). Then the maximal Zp-orders in Bp are
the GL2(Qp)-conjugate orders of Op = GL2(Zp).

Proof. See [58, Theorem 17.3]. ¤
Proposition 4.18. Let Op ⊆ M2(Qp) be a Zp-order. The following are
equivalent characterizations of an Eichler order:

a) There exists a unique pair {O,O′} of maximal orders of M2(Qp)
such that Op = O ∩O′,

b) There exists a unique integer n ≥ 0 such that Op is conjugate to

Op,n :=

(
Zp Zp

pnZp Zp

)
= M2(Zp) ∩

(
Zp p−nZp

pnZp Zp

)

which is called the canonical Eichler order of level pnZp =: NOp .

Proof. See [1, Proposition 1.53]. ¤
Definition 4.19. LetOp be an Eichler Zp-order in a quaternionQp-algebra
Bp. The level of Op is defined to be the ideal in Zp given by

NOp =

{
Zp if Bp is a division algebra,
Nϕ(Op) where ϕ : Bp →M2(Qp) is an isomorphism.

For the rest of the section let B be a quaternion algebra over Q and let
O be a Z-order in B. Write Op = O ⊗Z Zp.

Proposition 4.20. ([1, Propositions 1.50, 1.51])
a) O is a maximal order if and only if Op is a maximal order for all

primes p.
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b) O is a maximal order if and only if DO = DB. In particular, all
maximal orders have the same discriminant.

c) O is an Eichler order if and only if Op is an Eichler order for all
primes p.

Definition 4.21. The level NO of an Eichler Z-order O is the unique ideal
N in Z such that Np is the level of each Op for all primes p.

Proposition 4.22. ([1, Proposition 1.54])
a) If O is an Eichler order then DO = DBNO and gcd(DB, NO) = 1.
b) If DO = DBN is a squarefree integer then O is an Eichler order of

level N .
c) If O and O′ are conjugate orders then O and O′ have the same

level.

Conversely, for each integer N coprime to the discriminant DB there
exists an Eichler order of level N in B (see [1, Corollary 1.58] which uses
Proposition 5.1 in [74, Ch. III]).

Theorem 4.23. Let B be an indefinite Q-quaternion algebra. There is only
one conjugacy class of Eichler orders having the same level.

Proof. See [74, Ch. 3 §5]. A more general statement is given in [74, Ch. 3
Ex. 5.5]. ¤

4.2. Shimura curves

Let B be an indefinite quaternion algebra of discriminant D and fix an
embedding Φ : B ↪→ B ⊗Q R → M2(R). Let O(D, N) be an Eichler
order in B of level N . Write O1(D,N) ⊆ O(D, N) to denote the sub-
group of units in O(D, N) having norm equal to 1. Define Γ(D, N) =
Φ(O1(D, N)). The group Γ(D, N) is a discrete subgroup of SL2(R) hence
acts on the upper half planeH by the usual fractional linear transformations.
Up to isomorphism, the quotient Γ(D, N)\H is independent of the choice
of level-N Eichler order by Theorem 4.23. It is a Riemann surface called
a Shimura curve. Shimura showed that it has a canonical model XD(N) as
a projective curve defined over Q (see [67, Main Theorem I (3.2)]). Thus,
there is a uniformizing function jD,N : H → XD(N)(C) which factors
through an isomorphism of Γ(D, N)\H with a Zariski open subset of the
complex points XD(N)(C).

Example 4.24. Take B = M2(Q) which has discriminant 1. Consider the
Eichler order of level N : O(1, N) = {( a b

cN d ) : a, b, c, d ∈ Z} ⊂ M2(Z).
Using the canonical embedding Φ : M2(Q) ↪→M2(R) we have Γ(D, N) =
{( a b

cN d ) ∈ SL2(Z) : a, b, c, d ∈ Z} =: Γ0(N), the usual congruence sub-
group of level N . The quotient Γ0(N)\H is not compact. By adding finitely
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many cusps we can compactify to get the classical modular curve X0(N).
A uniformizing function which can be used in this case is the classical j-
invariant.

Example 4.25. When D > 1 the quotient Γ(D, N)\H is compact.

4.2.1. The moduli interpretation. Recall from Example 1.58 that in-
definite quaternion algebras arise as endomorphism rings of abelian sur-
faces. We now show that the XD(N) defined above are moduli spaces
parametrizing isomorphism classes of principally polarized abelian surfaces
with quaternionic multiplication (QM).

Fix a maximal order O of an indefinite Q-quaternion algebra B of dis-
criminant D. Choose a µ inO satisfying µ2 = −D (such an element exists,
see [24, p. 535]). By Theorem 1.54(b) this defines a positive involution
b∗ := µ−1bµ where b 7→ b is the canonical involution.

Consider triplets (A, ι,L) where A is an abelian surface, ι : O ↪→
End(A) is an embedding and L is a principal polarization on A such that
the Rosati involution † : End0(A) → End0(A) with respect to L stabilizes
B ⊂ End0(A) and induces the ∗-involution onO. That is, ι(x)† = ι(x∗) for
all x in O. Such a triplet is called a principally polarized abelian surface
with QM by O (c.f. Definition 1.73). An isomorphism φ : (A1, ι1,L1) →
(A2, ι2,L2) is an isomorphism φ : A1 → A2 which induces an isomorphism
of polarizations φ∗L2 = L1 and respects the QM endomorphism structure:
φ ◦ ι1(x) = ι2(x) ◦ φ for all x in O.

For τ ∈ H define Aτ = C2/O(τ
1) where we view O as a subset of

M2(C) via the inclusions O ⊂ B ⊂ B ⊗Q R = M2(R) ⊂ M2(C). This
determines a natural QM-structure ιτ : O ↪→ End(A) where O acts on
the lattice by left multiplication. The bilinear function Eτ (x(τ

1) , y(τ
1)) :=

Tr(µ−1xy) is a Riemann form defining a principal polarization Lτ . Thus
(Aτ , ιτ ,Lτ ) is a principally polarized abelian surface with QM by O.

Theorem 4.26. The map τ 7→ (Aτ , ιτ ,Lτ ) induces an isomorphism be-
tween O1\H and the moduli space of isomorphism classes of principally
polarized complex abelian surfaces with QM by O.

Proof. See [45, Ch. IX] or [7, Ch. 9]. ¤

4.3. Shimura curve embeddings

Throughout this section, let (A, ι,L) be a principally polarized abelian
surface with QM by a maximal orderO in aQ-quaternion algebra B having
discriminant D = p1p2 · · · p2r. Write E for the Riemann form attached to
L. By forgetting the QM-endomorphism structure, we have a map

π : [(A, ι, L)] 7→ [(A,L)]
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which sends Shimura curves into the Siegel modular threefold A2. Simi-
larly to the real multiplication (RM) case where the Hilbert modular surface
factors through a degree 2 quotient, the map π factors through a quotient by
a group of Atkin-Lehner involutions. The situation is more complicated
than for RM because the QM structure is dependent on a choice of µ ∈ O
(up to conjugation byO) satisfying µ2 = −D which means the factor group
depends on the pair (O, µ). In his thesis, Rotger [60] studied these mor-
phisms and found a criterion for determining the factor group, which we
now describe.

Write Nor(O) = {σ ∈ B∗ : σOσ−1 = O} to denote the normalizer of
O in B∗.

Definition 4.27. The Atkin-Lehner group is defined to be

W = Aut(O1) = Nor(O1)/O1 = B∗/Q∗.

It is a subgroup of the automorphism group of the Shimura curveO1\H. As
an abstract group it is isomorphic to (Z/2Z)2r where 2r equals the number
of prime divisors of D. Each element of W has a distinct norm dividing D
so we can write

W = {wd : n(wd) = d divides D}.
These automorphisms have a moduli interpretation:

Proposition 4.28. For a nonzero w ∈ End0(A) define Lw to be the polar-
ization with Riemann form

Ew(u, v) := E
(

w
n(w)

u,wv
)

.

Then an Atkin-Lehner element w ∈ W sends the isomorphism class
[(A, ι,L)] to [(A, ιw,Lw)] where ιw : β 7→ w−1ι(β)w.

Proof. See Jordan’s thesis [37]. ¤

Let (O, µ) be a principally polarized maximal order, meaning that µ ∈
O satisfies µ2 = −D. Write Xµ for the moduli space of abelian surfaces
with QM by O and polarization given by µ. From Theorem 4.26 we know
that Xµ

∼= O1\H which is independent of µ. Write π : Xµ → A2 for
the forgetful map [(A, ι, L)] 7→ [(A,L)]. To determine the image we need
Rotger’s notion of a twisting order.

Definition 4.29. A twist of (O, µ) is an element χ ∈ Nor(O)∩O such that
χ2 + n(χ) = 0 (ie. has zero trace) and χµ = −µχ. In particular we can
write B =

(
−D,−n(χ)

Q

)
. We say (O, µ) is twisting if it admits a twist χ ∈ O.

We say that B is twisting if there exists a twisting maximal order.
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There is a simple criterion for determining whether a Q-quaternion al-
gebra is twisting or not.

Lemma 4.30. B is twisting if and only if B =
(
−D,m
Q

)
for some positive

m which divides D.

Proof. First of all we claim that Nor(O) ⊂ Nor(O1). Let y ∈ Nor(O),
then y ∈ B∗ satisfies yOy−1 = O and clearly yO1y−1 = O1 which proves
the claim. Let χ ∈ O be a twisting element. Then Tr(χ) = 0 and χ is in
Nor(O) ⊂ Nor(O1) by definition. The coset χO1 of W = Nor(O1)/O1

consists of elements of norm N(χ). Since W is the Atkin-Lehner group
which consists elements whose norm are positive divisors of the discrimi-
nant, we are done. ¤
Example 4.31. The quaternion algebra of discriminant 15 can be repre-
sented by

(
−15,3
Q

)
, hence it is twisting.

Definition 4.32. The stable subgroup of (O, µ) is defined as

W0 =

{
〈wD〉 if (O, µ) is non-twisting,
〈wm, wD〉 if (O, µ) admits a twist χ, χ2 = m.

We can now state Rotger’s theorem.

Theorem 4.33. The map π : Xµ → A2 factors through the quotient Xµ/W0

by the stable subgroup, followed by a map

Xµ/W0 ↪→ A2

which is generically of degree one onto the image π(Xµ).

Proof. See [60, Ch. 4]. ¤
When working in the Siegel modular threefold, we shall abuse notation

and call the image curve π(Xµ) a Shimura curve, with the understanding
that the image is really a Shimura curve factored out by an Atkin-Lehner
subgroup of order 2 or 4.



CHAPTER 5

Computing Shimura Curves

In this chapter we compute equations of Shimura curves by taking in-
tersections of Humbert surfaces. This was first done by Hashimoto and
Murabayashi [25] who computed level 2 Shimura components associated
to maximal orders of discriminants 6 and 10 in the intersection H5 ∩H8.

5.1. Discriminant matrices

Let R = End(X) be the endomorphism ring of a principally polar-
ized abelian surface X with QM. Then R is an order in an indefinite Q-
quaternion algebra B equipped with a polarization µ ∈ R, µ2 = −D which
determines a Rosati involution on End0(X). Call such a polarized order a
QM-order.

We know that any x ∈ B satisfies x2−tx+n = 0 where t = Tr(x), n =
N(x) are the reduced trace, norm respectively. Its discriminant ∆(x) :=
Tr(x)2 − 4N(x) defines a quadratic form

∆(x, y) =
1

2
(∆(x + y)−∆(x)−∆(y))

on B called the discriminant form.
Suppose R is a QM-order. The set of symmetric endomorphisms (recall

Definition 2.2)
Rs = {α ∈ R | µ−1αµ}

forms a submodule of rank 3 over Z, generated by elements {1, α, β}. The
discriminant restricts to a binary quadratic form on Rs/Z ∼= Zα + Zβ and
the associated matrix

SR =

(
∆(α) ∆(α, β)

∆(α, β) ∆(β)

)

is called the discriminant matrix of R with respect to 〈α, β〉. Note that α
and β are determined modulo Z, up to a change of basis in GL2(Z).

Proposition 5.1. ([64, Theorem 7]) Let R be a QM-order with polariza-
tion µ. Then

a) We can write R = Z + Zα + Zβ + Zαβ where α, β are primitive
symmetric endmorphisms of positive discriminant and satisfy µ =
αβ − βα.

67
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b) The discriminant matrix

SR =

(
∆(α) ∆(α, β)

∆(α, β) ∆(β)

)

is positive definite. Moreover, disc(R) = det(SR)/4 ∈ Z.
c) If R is a maximal order then the polarization is principal.

A change of basis corresponds to changing the discriminant matrix to
tgSRg for some g ∈ GL2(Z). Thus we can find a basis for which the dis-
criminant matrix is GL2(Z)-reduced in the sense of binary quadratic forms.
By definition, a GL2(Z)-reduced matrix ( a b

b c ) satisfies 0 ≤ 2b ≤ a ≤ c.
A discriminant matrix is said to be primitive if the gcd of its entries is 1.

We say that an integer ∆ is primitively represented by a quadratic form S if
there exists integers x and y which satisfy S(x, y) = ∆ and gcd(x, y) = 1.

It is clear that two QM-orders are isomorphic as Z-algebras if and only
if they have the same discriminant matrix.

Theorem 5.2. ([64, Theorem 10]) If two QM-orders have the same primi-
tive reduced discriminant matrix then the corresponding Shimura curves in
A2 are isomorphic.

Thus every primitive reduced discriminant matrix can be identified with a
unique Shimura curve up to isomorphism.

Remark 5.3. Note that the primitivity condition is necessary. See [64, Ex-
ample 13] for an example of two QM-orders which have the same discrim-
inant matrix but produce nonisomorphic Shimura curves.

From Proposition 2.15 we know that moduli points in A2 which are in
the intersection of two distinct Humbert surfaces contain a quaternion alge-
bra in their endomorphism algebra (strict inclusion for CM points). Thus
the irreducible components of such intersections are Shimura curves.

Conversely, Hashimoto [24] showed that a Shimura curve is contained
in a Humbert surface of discriminant ∆ if and only if ∆ can be primitively
represented by a certain quadratic form.

Theorem 5.4. ([24, Theorem 5.2], [64, Corollary 9]) Let O = Z[ω] be a
quadratic order of discriminant ∆. Let SR be a discriminant matrix of a
QM order R. The following are equivalent:

a) ∆ is primitively represented by SR.
b) There exists an embedding O ↪→ R such that R ∩Q(ω) = O.
c) A Shimura curve C with QM order R is contained in H∆.

Moreover if we work in A2 or a finite cover, a Shimura curve component
C(h) is contained in the intersection H

(i)
∆(α) ∩H

(j)
∆(β) of two distinct Humbert
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components if and only if we can write

tgSRg =

(
∆(α) ∗
∗ ∆(β)

)

for some g ∈ GL2(Z).

Remark 5.5. This includes the case ∆(α) = ∆(β) for different compo-
nents of the same discriminant.

Remark 5.6. If we weaken statement (a) by allowing non-primitive repre-
sentations by SR, we obtain embeddings O ↪→ R which need not satisfy
the “optimal embedding” criterion stated in (b).

Example 5.7. H5 ∩H8 contains four Shimura curves corresponding to the
GL2(Z)-equivalence classes of discriminant matrices:

(
5 0
0 8

)
,

(
5 2
2 8

)
,

(
5 4
4 8

)
∼

(
5 1
1 5

)
and

(
5 6
6 8

)
∼

(
1 0
0 4

)

having order discriminants 10,9,6 and 4 respectively. This intersection was
first computed by Hashimoto and Murabayashi [25].

Corollary 5.8. Let SR be a discriminant matrix of a QM-order R. Then SR

represents a square if and only if R is an Eichler order of level det(SR)/4
in a quaternion algebra of discriminant 1.

Proof. From Proposition 2.14 we know that abelian surfaces on Hδ2 are
non-simple and the endomorphism algebras of non-simple QM abelian sur-
faces are matrix algebras. ¤

This leads to a natural definition: a Shimura curve is said to be non-
simple if the associated quaternion algebra has discriminant 1.

To conclude this section, we provide a method of determining whether
a maximal order is twisting or non-twisting from its discriminant matrix.

Proposition 5.9. Let R = Z + Zα + Zβ + Zαβ be a maximal QM-order
in a quaternion algebra of discriminant D, where as usual α and β are
Rosati-invariant. Let SR be the discriminant matrix of R with respect to the
basis above. Then R is a twisting order if and only SR represents 4m > 0
with m dividing D.

Proof. By definition, R is twisting when there exists a χ ∈ Nor(R) ∩ R
satisfying χ2 = m > 0 for some integer m dividing D. Equivalently, the
real quadratic order Z[χ] of discriminant 4m embeds in R. By Theorem 5.4
this occurs if and only if SR represents 4m. ¤
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Remark 5.10. The above proposition can be made constructive: suppose R
is a twisting order and we have found a pair v = (a

b) such that tvSRv = 4m,
then it follows from ∆(aα + bβ) = 4m that 1

2
Tr(aα + bβ) ∈ Z and hence

χ = aα + bβ − 1
2
Tr(aα + bβ) is a twist in R satisfying χ2 = m.

Example 5.11. Consider the quaternion algebra B of discriminant D =

2 · 3 · 5 · 13. We have that B ∼=
(
−D,m
Q

) ∼=
(
−D,D/m

Q

)
for m = 2, 5. There

are two maximal orders of discriminant D corresponding to discriminant
matrices ( 5 0

0 312 ) and ( 8 4
4 197 ). As we can represent 5x2 + 312y2 = 4 · 5 by

(x
y) = (2

0), the first order is twisting with stable subgroup 〈w5, wD〉. For the
second order, since tv ( 8 4

4 197 ) v = 4 · 2 for v = (1
0), it is twisting with stable

subgroup 〈w2, wD〉.

5.2. Shimura curves contained in H1

From Example 2.12 we know that H1 is a moduli space for principally
polarized abelian surfaces which are isomorphic to the product of two el-
liptic curves. To have a Shimura curve contained in H1, the reduced dis-
criminant matrix must be of the form ( 1 0

0 4N ) for some positive N . Since
gcd(1, 4N) = 1, the discriminant matrix is primitive and hence describes a
unique Shimura curve up to isomorphism. By Example 4.24 the Shimura
curve is isomorphic to the classical modular curve X0(N). We shall de-
scribe the birational map H1 → X0(1)×X0(1) given by

(
τ1 0
0 τ2

) 7→ (τ1, τ2)
in terms of modular functions which will allow us to use equations known
for X0(N) to produce Shimura curves in H1.

First let us recall some facts about modular curves and their functions.
The graded ring of classical modular forms is generated by two Eisenstein
series E4(τ), E6(τ) of weights 4 and 6, normalized so that their Fourier
expansion has constant term 1. Define the Ramanujan cusp form of weight
twelve to be ∆(τ) = 12−3(E3

4 − E2
6). Then the classical j-invariant can be

expressed as

j =
E3

4

∆
=

E2
6

∆
+ 123.

As is well known, the modular curve X0(1) ∼= SL2(Z)\H∗ is a moduli
space for isomorphism classes of elliptic curves over C. It is isomorphic to
P1 with coordinate ring C[j]. The modular curve X0(N) ∼= Γ0(N)\H∗ a
moduli space for isomorphism classes of pairs (E,C) where E is an ellip-
tic curve and C ∼= Z/NZ is a cyclic subgroup of the N -torsion E[N ] ∼=
(Z/NZ)2. Such a pair determines a cyclic N -isogeny E → E ′ = E/C.
There is a singular model for X0(N) which has coordinate ring

C[j(τ), j(Nτ)]
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where j(Nτ) is a root of the polynomial

ΦN(j(τ), Y ) =
∏

C⊂E[N ]
C∼=Z/NZ

(Y − j(E/C)) ∈ C(j(τ))[Y ].

We see that X0(N) has a plane affine model given by ΦN(X,Y ) = 0 which
we call the modular equation of level N .

Lemma 5.12. For N > 1 we have ΦN(X, Y ) = ΦN(Y, X).

Proof. Suppose f : E → E ′ is a cyclic N -isogeny. Then by Lemma 1.7 the
dual isogeny f : E ′ → E is also a cyclic N -isogeny. Thus interchanging X
and Y leaves the polynomial ΦN invariant. ¤

Now we describe the birational map H1 → X0(1) × X0(1) explicitly
as an isomorphism of their function fields. In the Satake compactification
A∗

2 = Proj (C[ψ4, ψ6, χ10, χ12]), the Humbert surface of discriminant 1 is
given by the hypersurface χ10 = 0. Consider the restriction of the other
three modular form generators to H1:

Lemma 5.13. We have

ψi

(
τ1 0
0 τ2

)
= Ei(τ1)Ei(τ2) , for i = 4 and 6 ,

χ12

(
τ1 0
0 τ2

)
= ∆(τ1)∆(τ2).

Proof. See Klingen [41, §9]. ¤
Using these relations we obtain

ψ2
6

χ12

(
τ1 0
0 τ2

)
= (j(τ1)− 123)(j(τ2)− 123) ,

ψ3
4

χ12

(
τ1 0
0 τ2

)
= j(τ1)j(τ2) ,(5.14)

ψ3
4 − ψ2

6

123χ12

(
τ1 0
0 τ2

)
+ 123 = j(τ1) + j(τ2) .(5.15)

Therefore j(τ1), j(τ2) are the roots of a quadratic polynomial with coeffi-
cients given by Siegel modular functions, so we can transfer between H1

and X0(1)×X0(1) algebraically using these relations.

Example 5.16. The Shimura curve H1 ∩H4 consists of points on the diag-
onal {( τ1 0

0 τ1

)} so j(τ1) = j(τ2). This means that the quadratic polynomial
with roots j(τ1), j(τ2) has discriminant zero. Explicitly,

(
ψ3

4 − ψ2
6

123χ12

+ 123

)2

− 4
ψ3

4

χ12

= 0 .
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Multiplying through by χ2
12 we obtain a polynomial relation in χ12, ψ6, ψ4.

This equation together with χ10 = 0 define the Shimura curve of discrimi-
nant 1.

The proposition below shows that for N > 1, determining the Shimura
curve in A∗

2 corresponding to the discriminant matrix ( 1 0
0 4N ) is equivalent

to calculating the modular equation ΦN(X,Y ) = 0.

Proposition 5.17. We have

ΦN(j1, j2) = χ−d
12 F (χ12, ψ6, ψ4)

where F is an irreducible polynomial of weighted homogenous degree 12d
and d is uniquely determined by N . The two equations F = 0, χ10 = 0
define the Shimura curve H1 ∩H4N .

Proof. Since the Shimura curve with discriminant matrix ( 1 0
0 4N ) lives in

H1 we have χ10 = 0 as one of the defining relations. By Lemma 5.12,
the modular polynomial ΦN(X, Y ) is symmetric for N > 1 so we can
rewrite ΦN(j1, j2) as a polynomial in the elementary symmetric functions
u = j1 + j2 and v = j1j2. But we know from (5.14) and (5.15) that u
and v can be expressed as Siegel modular functions. Hence we can write
ΦN(j1, j2) = χ−d

12 F (χ12, ψ6, ψ4) for some weighted homogeneous polyno-
mial F of degree 12d. The rest of the proposition now follows. ¤
Remark 5.18. For N = 1 the modular polynomial Φ1(X, Y ) = X − Y is
not symmetric. If we take the computed Shimura curve H1∩H4 in Example
5.16 and map the Siegel modular functions to j-invariants using 5.14 and
5.15 we obtain the “modular equation” (X−Y )2 = 0. The multiplicity two
is due to the fact that in H2/Sp4(Z), the Humbert surface H4 has nontrivial
isotropy group of order 2 in Sp4(Z) (see Lemma 3.1).

5.3. Level 2 Shimura components

From Theorem 5.4 we can determine the discriminant matrices of the
Shimura components contained in the intersection of two level 2 Humbert
surfaces. With the symmetric Satake model in P5, Besser [6] computed
simple Shimura components of discriminants 6, 10 and 15 by hand using
Humbert equations of discriminants 5 and 8. This can be automated by
computing the primary decomposition of the (radical of the) ideal defining
the Humbert intersection with a computer. Unfortunately the high degree
of the components’ equations combined with the high codimension of the
variety in P5 makes the Gröbner calculations expensive. Also the output
can be quite messy. For instance, when we decomposed H5 ∩ H8 in the
Satake model, the defining ideal for the discriminant 9 component had 16
Gröbner basis elements! For this reason we shall work rather with ambient
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varieties of dimension 3. In this section we show how to compute level 2
Shimura components in terms of Rosenhain invariants.

Recall from Chapter 3 that the Rosenhain invariants e1, e2, e3 generate
the coordinate ring of M2(2) ∼= A2(2) − H1 and hence the function field
ofA2(2). Using these functions we computed level 2 Humbert components
h∆(e1, e2, e3) for a handful of small discriminants. As we are working with
coordinates in M2(2) = A2(2) − H1, we will not be able to compute any
Shimura components in H1 using this model. The nine components of H1

are given by degree 1 polynomials

ei − ej = 0, i 6= j , ei = 0 , ei − 1 = 0 , i, j ∈ {1, 2, 3}.

which are hence invertible in the coordinate ring.
Let f(e1, e2, e3) = 0 and g(e1, e2, e3) = 0 be equations of two Humbert

components. The obvious way to find components in the intersection would
be to compute the primary decomposition of the (radical of the) ideal gener-
ated by f and g. The problem with this method in practice is the necessary
use of Gröbner basis algorithms which have exponential complexity in the
input size. Luckily when working with hypersurfaces there is an easier way
which we outline below.

Take the resultant R(f, g) of f and g with respect to one of the variables,
e1 say. By definition this is a polynomial in e2 and e3 which generates the
elimination ideal C[e1, e2, e3](f, g)∩C[e2, e3]. Factorize the resultant. Each
nontrivial factor (not an H1 component) together with f and g defines an
ideal corresponding to a Shimura component contained in the intersection.

Since S6 acts on the Rosenhain Humbert components in M2(2), it acts
on their intersections producing isomorphic curves. For each Rosenhain
orbit of Humbert intersections, choose a representative. Compute the non-
trivial resultant factors for every representative. Each factor r corresponds
to a Shimura curve with discriminant matrix S(r). The map r 7→ S(r) always
surjects onto the nontrivial discriminant matrices (not contained in H1) but
is not always injective. This is because the fixed group Fix(Ha ∩ Hb) of
a Rosenhain Humbert intersection will act nontrivially on the irreducible
components Xk ⊂ Ha ∩ Hb for which Fix(Xk) is strictly contained in
Fix(Ha ∩ Hb). This allows the possibility of having isomorphic Shimura
curves contained in the list.

To match up each discriminant matrix S with a resultant factor we use a
third Humbert surface. Write D(a, b) for the set of discriminant matrices of
Shimura curves in Ha ∩Hb. If the Shimura curve (component) is contained
in (a component above) Ha ∩Hb ∩Hc then S is in D(a, b) ∩ D(b, c). If we
have identified all the nontrivial discriminant matrices apart from S (most
conveniently when S is the sole element) then we should be able to find a
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match for S by studying unmatched resultants appearing in both intersec-
tions.

We generalize this to multiple Humbert intersections.

Lemma 5.19. Let {H(ik)
ak : k = 0, . . . , m} be a set of distinct Humbert

components with defining polynomials {fak
} respectively. The resultant

factors in
⋂m

k=0 H
(ik)
ak are precisely the factors of

gcd({R(fa0 , fak
) : k = 0, . . . ,m}).

The utility of the above lemma is twofold. Not only does it aid in factoring
the resultant, it also allows us to compute Shimura curve components by
choosing suitable Humbert discriminants.

Algorithm 5.20. To calculate a level 2 Shimura component C with reduced
discriminant matrix S = ( a ∗

∗ b ) do the following:

a) Find a set of discriminants M = {c1, . . . , cm} representing S such
that Ha ∩Hb ∩

⋂
Hc`

= C.
b) Find a set of non-equivalent Humbert component intersections H

(i)
a ∩

H
(j)
b ∩⋂

H
(k`)
c` and compute the list of nontrivial resultant factors us-

ing Lemma 5.19.

When combined with the defining polynomials of the two associated Hum-
bert components H

(i)
a and H

(j)
b , any one of these resultant factors define the

Shimura component in the Rosenhain model up to isomorphism.

Proof. The only part that requires proof is that M is a finite set, the rest
is clear from the previous discussion. Let S ′ be a discriminant matrix in
D(a, b) different from S. As S and S ′ are not GL2(Z)-equivalent, there
exists a discriminant c represented by S but not represented by S ′. Thus by
intersecting with H

(k)
c we can excise at least one discriminant matrix. This

shows that the set M has cardinality at most |D(a, b)| − 1. ¤

Remark 5.21. If we are only interested in the abstract curve, project down
to the affine plane with coordinate functions e2 and e3. The resultant factor
gives a singular affine plane model for the Shimura component.

Remark 5.22. Now that we can compute Shimura curves associated to dis-
criminant matrices, the question arises as to what extent we can identify an
Eichler order R = O(D, N) from its discriminant matrix SR. Corollary 5.8
determines the cases where D = 1. In general we know that disc(R) = DN
where gcd(D, N) = 1 and D is the product of a even number of distinct
primes. For examples where disc(R) is the product of fewer than 4 distinct
primes this is enough to deduce D and N .
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5.3.1. Examples. First we shall compute level 2 Shimura components
above the Shimura curves in H4 ∩H5. We have

D(4, 5) =

{(
4 0
0 5

)
,

(
4 2
2 5

)}
∪

{(
1 0
0 4

)}
.

where we list nontrivial matrices first. There are two (non-simple since 4
is a square) Shimura curves with discriminants 5 and 4 to be identified. Up
to the Rosenhain S6-action there are two different ways to intersect compo-
nents of H4 and H5. We discover that each intersection contains a single
nontrivial resultant factor making two in total:

r1 = e2
2e

2
3 − 4e2

2e3 + 4e2
2 + 2e2e

3
3 − 4e2e

2
3 + 4e2e3 − 4e2 + e4

3 − 4e3
3 + 4e2

3 ,

r2 = e8
2 − 4e7

2e3 − 2e7
2 + 4e6

2e
2
3 + 10e6

2e3 + 3e6
2 − 12e5

2e
2
3 − 16e5

2e3 − 2e5
2 +

27e4
2e

2
3 + 8e4

2e3 + e4
2 − 12e3

2e
3
3 − 16e3

2e
2
3 − 2e3

2e3 + 4e2
2e

4
3 +

10e2
2e

3
3 + 3e2

2e
2
3 − 4e2e

4
3 − 2e2e

3
3 + e4

3 .

To settle the question of which ri matches up to which discriminant matrix,
we introduce a new Humbert component of discriminant 5. Following the
same procedure, we have discriminant matrices

D(5, 5) =

{(
5 1
1 5

)
,

(
4 2
2 5

)}
∪

{(
1 0
0 4

)}

when intersecting different components of H5. Up to the Rosenhain action
there is only one intersection. It produces two nontrivial resultant factors,
one of them r2 and a new polynomial r3. Again there is a bijection between
resultant factors and discriminant matrices. SinceD(4, 5)∩D(5, 5) has only
one nontrivial discriminant matrix, namely ( 4 2

2 5 ), we can match r2 with this
matrix. It follows that r1 corresponds to discriminant matrix ( 4 0

0 5 ) and that
r3 corresponds to ( 5 1

1 5 ). So we have computed our first simple Shimura
component of discriminant 6.

By carefully choosing components and discriminants we can build up a
collection of Shimura component equations. The main bottleneck in com-
puting Humbert intersections is working with the resultant polynomials,
whose degree increases quadratically with the humbert polynomial degrees.
Nonetheless we are able to compute 30 such intersections [22], which in-
clude 15 pairs {∆1, ∆2} of discriminants with ∆i ≤ 12.

The largest intersection for which we identified the Shimura compo-
nents was H5 ∩H13 which has discriminant matrices

D(5, 13) =

{(
5 1
1 13

)
,

(
5 2
2 12

)
,

(
5 0
0 8

)
,

(
4 2
2 5

)}
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corresponding to QM-orders of discriminants 16, 14, 10 and 4 respectively.
Up to the Rosenhain action there are two different ways to intersect com-
ponents of H5 and H13 which we denote by I1 and I2. We find that I1 pro-
duces four nontrivial resultant factors and I2 has five, giving a total of nine
Shimura components. Interestingly, the list of resultants has a duplicate,
one copy in each intersection. As all the discriminant matrices are prim-
itive, there are only 4 isomorphism classes of Shimura curves so we have
some redundancy. After sucessfully matching, we found that I1 consists of
four isomorphic components of discriminant 4 and that I2 contains all four
non-isomorphic Shimura components as well as an additional discriminant
4 component.

5.4. Level 1 calculations

To compute equations of (level 1) Shimura curves we can use the same
basic method as in the previous section using discriminant matrices.

Algorithm 5.23. To calculate a Shimura curve C with reduced discriminant
matrix S = ( a ∗

∗ b ) do the following:
a) Find a set of discriminants M = {c1, . . . , cm} representing S such

that Ha ∩Hb ∩
⋂

Hc`
= C.

b) Use Lemma 5.19 to compute the nontrivial resultant factor.
This resultant factor together with the defining polynomials of the two as-
sociated Humbert surfaces defines a model for the Shimura curve.

For coprime Humbert discriminants we expect to find one resultant fac-
tor for each discriminant matrix appearing inD(a, b), but occasionally there
is an extra factor which defines a subvariety of H1. This accounts for pos-
sible intersection points on the boundary of the Satake compactification as
well as split CM points in the intersection of two Shimura curves.

The combinatorial matching is far simpler for level 1 than for level 2
since the discriminant matrices are in bijection with candidate resultant fac-
tors. But since level 1 Humbert polynomials have larger degrees than their
level 2 counterparts, the resultants have higher degrees and become more
difficult to factorize. Another disadvantage of working in level 1 is that to
find Shimura curves corresponding to ( ∆ ∗

∗ ∆ ) we cannot intersect two com-
ponents of the same discriminant. This means we have to consider inter-
sections involving larger discriminants. Nonetheless we have been able to
compute a few small examples [22] arising from intersections of Humbert
surfaces of discriminants bounded by 13.

We conclude this chapter by listing below the resultant factors for some
simple Shimura curves X(D, N)/W0 and compare the genus of each with
that of the covering Shimura curve X(D,N).
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The Shimura curve of discriminant 6 corresponding to ( 5 1
1 5 ):

18s5 − 5s3s2 .

The Shimura curve of discriminant 10 corresponding to ( 5 0
0 8 ):

56250000s2
5 − 41250000s5s3s2 + 7562500s2

3s
2
2 − 7203s5

2 .

The Shimura curve of discriminant 14 corresponding to ( 5 2
2 12 ):

199604524888621311356299901184s6
5 − 155365400618689004759651086080s5

5s3s2

+8057006191307951003736792000s4
5s

2
3s

2
2 − 139678509104374511048148000s4

5s
5
2

+4117443582789992448000000000s3
5s

5
3 + 11337574611410079340255920000s3

5s
3
3s

3
2

+161118164342947138371702000s3
5s3s

6
2 − 10597552085622620160000000000s2

5s
6
3s2

+2051364706115855020496550000s2
5s

4
3s

4
2 − 118663884567744728258655000s2

5s
2
3s

7
2

+1206981176529723492830625s2
5s

10
2 + 6340309142869094400000000000s5s

7
3s

2
2

−1519400499994005228422550000s5s
5
3s

5
2 + 52975857706230997344712500s5s

3
3s

8
2

−957921568674383724468750s5s3s
11
2 + 21233664000000000000000000s10

3

−1105887431609856000000000000s8
3s

3
2 + 121297321952277274782562500s6

3s
6
2

−8945683625858963313750000s4
3s

9
2 + 190063803308409469140625s2

3s
12
2 .

Shimura curve of discriminant 15 corresponding to ( 5 0
0 12 ):

256289062500000000s4
5 − 2796398437500000000s3

5s3s2

+9209367773437500000s2
5s

2
3s

2
2 − 1585186151400000000s2

5s
5
2

−9725853339843750000s5s
3
3s

3
2 + 735925018860000000s5s3s

6
2

−187500000000000000s6
3s2 + 2734234324462890625s4

3s
4
2

−43813346998500000s2
3s

7
2 + 531392491010304s10

2 .

The genus of the four curves X(D,N) and the quotients we calculated
are listed in the table below, where we write W = {wd : d|N} for the
Atkin-Lehner group.

Shimura curve X(D,N) X(6, 1) X(10, 1) X(14, 1) X(15, 1)

Genus [1, Table A.8] 0 0 1 1
Discriminant matrix ( 5 1

1 5 ) ( 5 0
0 8 ) ( 5 2

2 12 ) ( 5 0
0 12 )

Quotient group W0 W W 〈w14〉 W
Genus of X(D, N)/W0 0 0 0 0

If we know the genus of X(D, N), the genus of X(D, N)/W0 can be
calculated from the Riemann-Hurwitz formula by determining the number
of points fixed by the nontrivial Atkin-Lehner involutions. Fixed point for-
mulae are known for these involutions (see Ogg [55]) and we have verified
that our computed curves have the correct genus.



CHAPTER 6

Parametrizing Humbert Surfaces

In this chapter we search for rational points on Humbert surfaces, and
where possible find rational parametrizations.

Of the various models of Humbert surfaces we have at our disposal, the
Satake level 2 components appear to be the simplest. Our main approach
will be to find level 2 points which map down to rational points on the level
1 Humbert surface via the map (x1 : . . . : x6) 7→ (s2 : s3 : s5 : s6) where
sk =

∑
xk

i , s1 = 0 and s2
2 = 4s4.

In Section 6.3 we look for modular abelian surfaces occuring as points
on our Humbert surface models. We then determine the ‘congruence primes’
p for which a modular Jacobian surface splits over Fp, using Humbert sur-
face equations.

6.1. The Satake sextic

Recall the symmetric Satake coordinate functions x1, . . . , x6 of van der
Geer’s model of X[2] in P5 as defined in §3.4.2. In this section we deter-
mine the field of definition of the Satake xi and make note of other useful
properties related to its defining polynomial.

Lemma 6.1. The xi are roots of the Satake sextic polynomial

X6− 1

2
s2X

4− 1

3
s3X

3+
1

16
s2
2X

2+(
1

6
s2s3− 1

5
s5)X+(

1

96
s3
2+

1

18
s2
3−

1

6
s6) .

In other words, the field of definition Q(x1, . . . , x6) for the sextuple (x1 :
. . . : x6) is a splitting field of the above sextic polynomial over the field of
definition Q(s2, s3, s5, s6) for the si.

Proof. First of all,
∏

(X − xi) = X6 − σ1X
5 + σ2X

4 − . . . + σ6 where σi

are the elementary symmetric functions in the xi. These can be expressed
in terms of symmetric power sums using the Newton-Girard relations:

m∑
i=0

(−1)iσism−i = 0.

Eliminating s1 and s4 using the Satake relations s1 = 0 and s4 = 1
4
s2
2

produces the desired coefficients. ¤
78
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Using our knowledge of the symmetry groups of the level 2 Humbert
components (Lemma 3.18), we are able to determine the Galois group of
the Satake sextic polynomial given a point on a Humbert surface.

Proposition 6.2. Suppose (s2, s3, s5, s6) is a rational point on the Humbert
surface with discriminant ∆. Let S(X) ∈ Q[X] be the Satake sextic poly-
nomial having roots xi in a splitting field, indexed by {1, . . . , 6}. We have
the following:

a) If ∆ ≡ 0 (mod 4) then S(X) has a quadratic factor in Q[X] and
has Galois group contained in S2×S4 which preserves the partition
of roots {1, 2} ∪ {3, 4, 5, 6}.

b) If ∆ ≡ 5 (mod 8) then S(X) has a linear factor in Q[X] and has
Galois group contained in S5 preserving {1} ∪ {2, 3, 4, 5, 6}.

c) If ∆ ≡ 1 (mod 8) then S(X) is irreducible over Q and has Galois
group contained in (S3 × S3) o C2 which preserves the partition
{1, 2, 3} ∪ {4, 5, 6} (the C2 interchanges the two subsets). There is
a quadratic extension K = Q(x1 + x2 + x3) of Q for which S(X)
decomposes as the product of two cubics in K[X].

Proof. The Galois groups are precisely the fixed groups of the level 2 sym-
metric Satake components of H∆ mentioned in Lemma 3.18. Suppose
∆ 6≡ 1 (mod 8), then the Galois group of splitting field Q(x1, . . . , x6) is
Sm × S6−m for m = 1 or 2. In each case, the subfield fixed by the normal
subgroup Sm × {1} corresponds to Q(xm+1, . . . , x6) and is Galois over Q.
It follows that

∏
(X − xm+1) · · · (X − x6) is in Q[X] which shows that

S(X) decomposes into the product of two polynomials of degrees 6 − m
and m. For the case ∆ = 1 (mod 8), the Galois group of Q(x1, . . . , x6)
contains S3 × S3 as a normal subgroup of index 2. Thus the fixed field
K = Q(x1, . . . , x6)

S3×S3 is a quadratic extension of Q. It is easily seen
from the relation s1 = 0 that p1 = x1 + x2 + x3 ∈ K \ Q and p2

1 ∈ Q,
hence K = Q(p1). The factorization argument from the previous case can
be applied to S(X) using K instead of Q and with m = 3. ¤

Recall Thomae’s formula (Theorem 3.22) which we can rewrite as

(6.3) θ[ηS◦U ]4 =





0 if |S| 6= 3 ,

c(−1)|S∩U | ∏
i∈S,

j∈B\S
(αiβj − αjβi)

−1 if |S| = 3 ,

using the facts that (S ◦ U) ◦ U = S and |(S ◦ U) ∩ U | = 3 − |S ∩ U |.
By permuting the six roots, we have an S6-action T on the ten even theta
fourth powers given explicitly by

Tσ : θ[ηS◦U ]4 7−→ θ[ησ(S)◦U ]4

where σ(S) = {σ(x) : x ∈ S}.
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Proposition 6.4. The representation T obtained from the S6 action on the
six roots equals the representation

σ : θ(ijk)(`mn) 7−→ θ(σ(i), σ(j), σ(k))(σ(`), σ(m), σ(n))

defined in §3.4.1.

Proof. Write B = {i, j, k, `,m, n}. Recall from Lemma 3.21 that if i <
j < k and ` < m < n then we have the identity

θ(ijk)(`mn) = θ[η{i,j,k}◦U ]4 = θ[η{`,m,n}◦U ]4 .

It immediately follows that the representations are identical. ¤

Proposition 6.5. Suppose y2 = f(x) is a genus 2 curve overQ. Let Gf and
GS be the Galois groups of f and the Satake sextic polynomial respectively.
Then there is an isomorphism Gf

∼= GS induced via an outer automorphism
of S6.

Proof. We need only consider the generic case Gf = S6. By Proposition
6.4 the Galois action on the roots of f(x) is equivalent to the S6-action on
the ti. From Theorem 3.15, a change of basis to the Satake xi coordinates
twists the action by an outer automorphism of S6. ¤

6.2. Rational parametrizations

In this section we find rational parametrizations ofA∗
2(2)/Γ∆ for ∆ 6≡ 1

(mod 8) where Γ∆ is the fixed group of a level 2 Humbert component. In
the cases where the Humbert surfaces are rational, these aid in the construc-
tion of a rational parametrization. The Rosenhain model M2(2) is rational
and we shall parametrize Rosenhain Humbert components for small dis-
criminants ∆ ≡ 1 (mod 8) in M2(2)/S3 where S3 acts the Rosenhain
invariants by permutations.

Definition 6.6. A variety is rational if it is birationally equivalent to Pn

(equivalently An) for some n.

In §3.4.3 we found the fixed groups for the Humbert components in
the symmetric Satake model X[2]. Let Γ∆ be the fixed group for a Hum-
bert component of discriminant ∆. Then all the Humbert components of
discriminant ∆ project onto a single component HΓ

∆ via the quotient map
X[2] → X[2]/Γ∆. Note that X[2]/Γ∆ consists of points invariant under
the Galois action of Γ∆ hence the sextic polynomials have the factorization
patterns as in Proposition 6.2.

For ∆ 6≡ 1 (mod 8) we determined the Γ∆-invariant polynomial rings.
We now show that these varieties are rational.



6.2. RATIONAL PARAMETRIZATIONS 81

Proposition 6.7. Let ∆ 6≡ 1 (mod 8) be a discriminant of a Humbert sur-
face. The weighted homogeneous coordinate ring of X[2]/Γ∆ is isomorphic
to C[p1, s2, s3, s5] if ∆ ≡ 5 (mod 8), or C[p1, p2, s2, s3] if ∆ ≡ 0 (mod 4).

Proof. See Lemma 3.19 and Remark 3.20. ¤

The dense open subset given by p1 6= 0 is isomorphic to A3, hence we
deduce the following.

Corollary 6.8. The spaces X[2]/Γ∆ are rational when ∆ 6≡ 1 (mod 8).

Remark 6.9. For ∆ ≡ 1 (mod 8) the fixed group Γ∆ is isomorphic to
(S3 × S3) o C2. From Lemma 3.19, the ring of (S3 × S3)-invariants is
C[p1, p2, p3, s2, s3], and on the affine piece p1 = 1 we find that p3 can
be eliminated, hence X[2]/(S3 × S3) is rational. The coordinate ring of
X[2]/Γ∆ is

C[p2
1, p2(s2 − p2), p3(s3 − p3), s2, s3],

but it is not immediately obvious whether this is rational.

Now that we know the coordinate rings explicitly, the map down to
A∗

2 = Proj (C[s2, s3, s5, s6]) can be realized. In particular a parametrization
of HΓ

∆ ⊂ X[2]/Γ∆ gives rise to a two dimensional family of points on the
level 1 Humbert surface H∆. We now look at the cases ∆ ≡ 5 (mod 8)
and ∆ ≡ 0 (mod 4) in more detail.

6.2.1. ∆ ≡ 5 (mod 8). The projection map X[2]/Γ∆ → A∗
2 is defined

by
(p1 : s2 : s3 : s5) 7−→ (s2 : s3 : s5 : s6),

hence s6 can be written as a polynomial f(p1, s2, s3, s5) of weighted degree
six. It follows from Proposition 6.2 that the Galois group of the Satake
sextic S(X) =

∏
(X − xi) is contained in a copy of S5 which fixes p1 =

x1 ∈ Q. By writing S(p1) = 0 as a function of s6 we determine f :

f(p1, s2, s3, s5) = 6p6
1−3s2p

4
1−2s3p

3
1+

3
8
s2
2p

2
1+(s2s3−6

5
s5)p1+( 1

16
s3
2+

1
3
s2
3) .

We shall work with the affine patch p1 = 1.

Example 6.10. (∆ = 5). The Humbert surface equation HΓ
5 in X[2]/Γ5 is

given by s2 = 3p2
1. On the affine patch p1 = 1 we have s2 = 3 and we

obtain the two-variable parametrization

s2 = 3 , s3 = a , s5 = b , s6 = f(1, 3, a, b) = −6

5
b +

1

3
a2 + a +

33

16
.

Example 6.11. (∆ = 13). We use the Humbert equation for discriminant
13 from the table on page 49. Set p1 = 1 and consider s2 as a coefficient.
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Then HΓ
13(s2, s3, s5) ∈ Q(s2)[s3, s5] defines a conic over Q(s2) which can

be parametrized by

s3 =
f3(s2, u)

d(s2, u)
, s5 =

f5(s2, u)

d(s2, u)

where u is a free parameter and

f3(s2, u) = 4608u2 + (−204s2
2 − 3000s2 + 17748)u

+ 1
256

(s2 − 3)(s2
2 + 186s2 − 759)2,

f5(s2, u) = 240 (7s2 + 3) u2 − 325
4

(s2 + 9)(s2 − 23
5
)(s2 + 33

13
)u

+ 5
3072

(s2 − 9)(s2 − 3)(s2
2 + 186s2 − 759)2,

d(s2, u) = (s2 − 75)
(
64u− s2

2 + 54s2 − 267
)

.

The same approach works for ∆ = 21: on the affine patch p1 = 1, the
Humbert component is a singular genus 0 curve over Q(s2).

6.2.2. ∆ ≡ 0 (mod 4). The projection map X[2]/Γ∆ → A∗
2 is defined

by
(p1 : p2 : s2 : s3) 7−→ (s2 : s3 : s5 : s6),

hence s5, s6 can be written as polynomials in p1, p2, s2, s3. By Proposition
6.2, the Satake sextic factorizes as S(X) = (X2 + c1X + c0)T (X) where
T is a monic quartic in Q[X] and c1 = −p1 and c0 = (p2

1− p2)/2. By using
Lemma 6.1 and comparing coefficients, we find the following expressions
for s5 and s6:

s5 = − 5
48

(12p5
1 − 24p3

1p2 + 8p2
1s3 − 36p1p

2
2 + 24p1p2s2 − 3p1s

2
2

+ 8p2s3 − 8s2s3),

s6 = 1
48

(36p6
1 − 180p4

1p2 + 36p4
1s2 + 48p3

1s3 + 108p2
1p

2
2 − 9p2

1s
2
2

− 48p1p2s3 + 36p3
2 − 36p2

2s2 + 9p2s
2
2 + 3s3

2 + 16s2
3).

These equations determine the projection map X[2]/Γ∆ → A∗
2 explicitly.

Example 6.12. (∆ = 8). The Humbert equation for HΓ
8 is

4s2 − 9p1 − 6p2 = 0.

To parametrize H8, fix a value for p1 and let p2 be free. This determines s2.
Let s3 be the second free variable. Then we can compute s5 and s6 from the
formulae above.

Example 6.13. (∆ = 12). The Humbert equation for HΓ
12 is

16s2
2 + (−168p2

1 − 48p2)s2 − 128p1s3 − 111p4
1 + 684p2

1p2 + 36p2
2 = 0 .
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As a polynomial in s3 it has degree 1. Thus if we fix p1 and let p2 be free
we can determine s3. Take s2 to be the second free variable, then the values
for s5 and s6 follow from the formulae above.

6.2.3. Rosenhain parametrizations. We shall parametrize the Rosen-
hain models for Humbert surfaces of discriminant ∆ ≡ 1 (mod 8). Recall
that a genus 2 curve has a model of the form y2 = x(x − 1)(x − e1)(x −
e2)(x− e3) called a Rosenhain model.

Lemma 6.14. There is a level 2 Rosenhain component H∆(e1, e2, e3) = 0
having symmetry group (S3 × S3)oC2 ≤ S6 which preserves the partition
of roots R = {0, 1,∞} ∪ {e1, e2, e3}.

Proof. We know from Propositions 6.2 and 6.5 that the Galois action on
the six roots R = {ui} is isomorphic to (S3 × S3) o C2 acting on the
Satake xi preserving the partition {x1, x2, x3} ∪ {x4, x5, x6} via an outer
automorphism of S6. Since S6 has only one subgroup of order 72 up to
conjugation, the representations are conjugate. Thus the Galois action on
R preserves the partition {u1, u2, u3} ∪ {u4, u5, u6} for some ordering of
roots. There are ten Humbert components which are in bijection with the
ten partitions of this type; exactly one of them satisfies the conditions of the
lemma. ¤

For our parametrizations we shall use the Rosenhain component appearing
in the lemma above.

We now compute a Humbert component in M2(2)/S3 where S3 is the
permutation group for the Rosenhain invariants. Let v1, v2, v3 be the ele-
mentary symmetric functions in e1, e2, e3. Then we can write H∆(e1, e2, e3)
more simply as H∆(v1, v2, v3) and the Rosenhain model becomes

y2 = x(x− 1)(x3 − v1x
2 + v2x− v3).

One of the advantages of this model is that it has good reduction properties
(see [23]) and consequently the heights of the coefficients, the Rosenhain
invariants and the vi are small in comparison to other models. The obvious
disadvantage is that the rational points produced give rise to hyperelliptic
polynomials with a rather small Galois group, namely the Galois group of
the cubic factor whereas we know that generically the Galois group has
order |(S3 × S3)o C2| = 72.

Now for an example. We have Rosenhain models for discriminants 9
and 17 at our disposal. In terms of the vi, the Rosehnain component for
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discriminant 9 is
16v6

1v2
3 − 8v5

1v2
2v3 − 128v5

1v2
3 + v4

1v4
2 + 32v4

1v2
2v3 + 112v4

1v2v
2
3 − 128v4

1v3
3

+ 384v4
1v2

3 + 4v3
1v3

2v3 − 96v3
1v2

2v2
3 − 32v3

1v2
2v3 + 128v3

1v2v
3
3 − 64v3

1v2v
2
3

− 296v3
1v3

3 − 512v3
1v2

3 − 8v2
1v5

2 + 32v2
1v4

2v3 − 32v2
1v3

2v2
3 − 96v2

1v3
2v3

− 370v2
1v2

2v2
3 + 2112v2

1v2v
3
3 − 1088v2

1v2v
2
3 − 1792v2

1v4
3 + 2208v2

1v3
3 + 256v2

1v2
3

+ 112v1v
4
2v3 − 64v1v

3
2v2

3 + 128v1v
3
2v3 − 1088v1v

2
2v3

3 + 2112v1v
2
2v2

3 + 2048v1v2v
4
3

− 6412v1v2v
3
3 + 2048v1v2v

2
3 − 1024v1v

5
3 + 4256v1v

4
3 − 3232v1v

3
3 + 16v6

2

− 128v5
2v3 + 384v4

2v2
3 − 128v4

2v3 − 512v3
2v3

3 − 296v3
2v2

3 + 256v2
2v4

3 + 2208v2
2v3

3

− 1792v2
2v2

3 − 3232v2v
4
3 + 4256v2v

3
3 − 1024v2v

2
3 + 1536v5

3 − 2343v4
3 + 1536v3

3 .

As an affine curve over Q(v1), the equation defines a (singular) genus 0
curve, thus the surface is rationally parametrizable.

The equation for discriminant 17 is too big to display here (see [22]),
not to mention too large for us to complete a similar genus calculation. But
given a height bound we are able to compute a large number points which
suggests that it is rational.

6.3. Modular abelian surfaces

Modular abelian surfaces provide examples of rational points on Hum-
bert surfaces. In this section we attempt to find such points on our Humbert
surface models.

For the remainder of of this chapter, RM will refer to real multiplication
by an order in a real quadratic field, that is to say that the discriminant ∆ is
nonsquare.

Let A be an abelian surface defined over a number field k ⊂ C. An
endomorphism α ∈ End(A) is said to be defined over k when its analytic
representation ρa : C2 → C2 is k-linear. Write Endk(A) for the set of such
endomorphisms.

We are interested in finding abelian surfaces A defined overQ with RM
where End(A) = EndQ(A). These objects are modular in the following
sense.

Theorem 6.15. (Generalized Shimura-Taniyama Conjecture) Any abelian
variety over Q with RM defined over Q is modular, that is, isogenous to a
factor of J0(N) = Jac(X0(N)) for some N .

The result follows from Serre’s conjecture [65], the proof of which was only
recently completed by Khare and Wintenberger ([39], [40]).

We make use of a fact about the Galois representation on the 2-torsion.

Proposition 6.16. ([77, Corollary 4.3.4]) Let F be a real quadratic field
with ring of integers O, and let A be an abelian surface over k with prin-
cipal polarization defined over k and an embedding ι : O ↪→ Ends

k(A)
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into the subring of symmetric endomorphisms defined over k. Let ρ̄2 be the
Galois representation on A[2], and write G = ρ̄2(Gal(k̄/k)). Then

a) if 2 is inert in F then G ↪→ A5,
b) if 2 is split in F then G ↪→ S3 × S3,
c) if 2 is ramified in F then there is an exact sequence 1 → H → G →

K → 1 with H ↪→ (Z/2Z)3 and K ↪→ S3.

If 2 is ramified in F , Bending [4] has shown that G ↪→ S2 × S4.

Corollary 6.17. Suppose A is a principally polarized abelian surface over
Q with RM by an order of discrimimant ∆, also defined over Q. Let G
denote the Galois group of the Satake sextic. Then

a) if ∆ ≡ 5 (mod 8) then G ↪→ A5 ≤ S5,
b) if ∆ ≡ 1 (mod 8) then G ↪→ S3 × S3 ≤ (S3 × S3)o C2,
c) if ∆ ≡ 0 (mod 4) then G ↪→ S2 × S4

where the groups act on the Satake xi as detailed in Proposition 6.2.

Proof. The splitting behaviour of 2 is governed by quadratic reciprocity.
The rest follows the previous result and Proposition 6.2. ¤

The corollary gives us a necessary condition for an RM abelian surface
to be modular. In his thesis John Wilson [77, Theorem 4.4.3] showed that
this condition is sufficient in the case ∆ = 5. We conjecture that it is also
sufficient for odd discriminants:

Conjecture 6.18. Let (A,G, ∆) be as in the corollary above with ∆ being
odd. If we have

G ↪→
{

A5 when ∆ ≡ 5 (mod 8) ,

S3 × S3 when ∆ ≡ 1 (mod 8)

then A has its RM defined over Q.

For discriminants ∆ ≡ 0 (mod 4) the analogous statement is false:

Example 6.19. The point (λ1, λ2, λ3) = (−1/3,−1/6, 7/6) lies on the
Rosenhain model of H8. Using van Wamelen’s Magma code we can com-
pute the analytic Jacobian of y2 = x(x−1)(x−λ1)(x−λ2)(x−λ3) as well
as generators of its endomorphism ring to arbitrary precision. By examin-
ing the complex entries of the 2× 2 matrices we are able to detect when the
entries are rational numbers using continued fractions. In this example we
find the

√
2 endomorphism is defined over Q(

√
2). Another example is the

point (λ1, λ2, λ3) = (2, 49/22, 25/11) on H12; the
√

3 endomorphism can
only be defined over fields containing Q(

√
11). Both these moduli points

have rational 2-torsion hence the Galois group of the Satake sextic is trivial,
yet neither has endomorphism ring defined over Q.
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In his PhD thesis [77], John Wilson constructed a model for H5 in
M2(2) and rationally parametrized the modular points. We now attempt
to find (conjecturally) modular parametrizations of Humbert surfaces using
our models.

6.3.1. ∆ ≡ 5 (mod 8). In this case there is a particularly simple crite-
rion for a moduli point (s2, s3, s5, s6) to be modular (conjecturally modular
if ∆ 6= 5) in terms of the Satake sextic polynomial. We know S(X) =
(X − xi)T (X) where xi ∈ Q and the Galois group of T (X) is contained
in A5. Thus the discriminant of T is a square in Q. We will consider the
situation where xi 6= 0. Without loss of generality we take x1 = 1 be the
rational root of S(X).

Example 6.20. (∆ = 5). As before, we work in the affine patch x1 =
1. When we substitute (H5)(1): s2 = 3x2

1 = 3 into the discriminant of
S(X)/(X − 1) we get a polynomial in the two remaining variables

(s5 − 5
4
s3)

(
5s3

5 + (−27
4

s3 − 306
125

)s2
5 + (−2s3

3 − 177
400

s2
3 + 63

50
s3 + 27

100
)s5

+ 4
45

s5
3 + 59

30
s4
3 + 811

320
s3
3 + 21

20
s2
3 + 9

80
s3

)

which we want to be a nonzero square y2. This defines an elliptic curve over
Q(s3) with distinguished rational point y = 0, s5 = 5

4
s3. Rational points on

this elliptic surface produce the desired moduli points.

Example 6.21. (∆ = 13). We use the parametrization from Section 6.2.1.
The discriminant of T (X) is a polynomial in Q[s2, u]. Finding modular
points reduces to finding values for s2, u such that the squarefree part of the
discriminant polonynomial is a rational square. We discover that modular
points must satisfy

y2 = −3(s2 − 3)Q(s2, u)

where Q is an irreducible quartic polynomial in u with coefficients inQ[s2].
This is a genus 1 curve over Q[s2]. Finding points from scratch is near im-
possible as they have extremely large height. But if we are given a rational
point, we can restrict to the genus 1 curve over Q which is now an ellip-
tic curve and then we have elliptic curve machinery at our disposal to find
further points.

6.3.2. ∆ ≡ 1 (mod 8). In this case we only have Rosenhain parame-
trizations from §6.2.3 to work with. The Galois group of the hyperelliptic
polynomial x(x−1)(x3−v1x

2 +v2x−v3) is contained in S3 which acts by
preserving the set of Rosenhain invariants {e1, e2, e3} and fixing the other
roots. It follows from Conjecture 6.18 that all such points should have RM
defined over Q and hence be modular.
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Example 6.22. The point (v1, v2, v3) = (15/2, 0, 3/2) lies on H9 and de-
fines a hyperelliptic curve over Q whose Jacobian has real multiplication
defined over Q. But because the endomorphism algebra is not a real qua-
dratic field, the Jacobian does not satisfy the hypotheses of the generalised
Shimura-Taniyama conjecture. Using Qing Liu’s genus2reduction
program [49] we find that the odd part of conductor is 243 = 35 which
confirms that the curve is not modular over Q since otherwise the conduc-
tor would have to be square.

6.4. Congruence primes

In this section we use Humbert surfaces to classify the primes p for
which a modular Jacobian surface splits as a product of elliptic curves. This
allows us to ‘predict’ which coefficients of the associated modular form are
in Z. To begin we give the reader a brief account of Eichler-Shimura theory.

6.4.1. Eichler-Shimura theory. Let N > 2 be an integer and S2(N)
the set of cusp forms of weight 2 for the Hecke subgroup Γ0(N). Let f =∑

anq
n ∈ S2(N) be a newform, that is, an eigenfunction for all the Hecke

operators Tn, normalized so that f |Tn = anf . Then the L-function of f has
an Euler product

L(s, f) :=
∑
n≥1

ann
−s =

∏

p-N
(1− app

−s + p1−2s)−1
∏

p|N
(1− app

−s)−1

Shimura’s construction associates an abelian variety to such a newform.

Theorem 6.23. ([69, Theorem 7.14]) Let f =
∑

anq
n be a newform of

weight 2 for Γ0(N). Let Kf be the subfield of C generated by all the an.
Then there exists an abelian subvariety Af of J0(N) = Jac(X0(N)) and
an embedding θ : Kf ↪→ End(Af )⊗Q with the following properties:

a) dim(Af ) = [Kf : Q],
b) θ(an) = Tn|Af

, the restriction of the Hecke operator Tn to Af ,
c) Af is defined over Q.

The pair (Af , θ) is determined by the first two properties. Moreover, for
every embedding σ : Kf ↪→ C, the function fσ =

∑
aσ

nq
n is a normalized

eigenform.

The abelian variety Af need not be principally polarizable. It has good
reduction at primes p - N . Eichler-Shimura theory relates the reduction of
Af over finite fields to Hecke operators.

Theorem 6.24. ([69, Theorem 7.15]) The L-function of Af over Q coin-
cides up to a finite number of Euler factors (corresponding to primes of bad
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reduction, i.e. p | N ) with the product
∏
σ

(1− aσ
pp
−s + p−2s)−1.

For a prime of good reduction p - N , the local Euler factors determine
the numerator of the zeta function for the reduction Ãf mod p. The charac-
teristic polynomial of Frobenius is the (Weil) polynomial

∏
σ

(X2 − aσ
pX + p),

thus the trace of Frobenius equals the trace of the Hecke operator.

6.4.2. Modular Jacobian surfaces. Let C be a genus 2 curve over Q
whose Jacobian is modular of conductor N . This means Jac(C) is isoge-
nous to an Af where f =

∑
anqn ∈ S2(N) is a newform. Also we have

End(Af ) ⊗ Q ∼= Kf , a real quadratic field and the an ∈ Kf are algebraic
integers. Let σ denote the nontrivial Q-automorphism of Kf . For good
primes p - N , the reduction Ãf over Fp is an abelian surface and has Weil
polynomial

(X2 − apX + p)(X2 − aσ
pX + p) ∈ Z[X].

Question. For which primes is ap ∈ Z?
If ap ∈ Z, the Weil polynomial is (X2 − apX + p)2 which shows that Ãf

is isogenous over Fp to E × E, where E is a (CM) elliptic curve over Fp.
Thus Ãf is a point on Hm2 mod p for some m. This motivates the following
definition.

Definition 6.25. Let Af be a principally polarizable modular abelian sur-
face overQwith level 1 invariants s2, s3, s5, s6 ∈ Q. Note that H∆(Kf )(si) =
0. Let B be the set of primes p for which H1(s2, s3, s5, s6) ≡ 0 (mod p). A
congruence prime for Af is a prime p /∈ B satisfying

Hm2(s2, s3, s5, s6) ≡ 0 (mod p)

for some m > 1.

Remark 6.26. The set B consists of the primes dividing N (primes of bad
reduction for Af ) together with {2, 3, 5} which are the bad primes for level
1 Humbert models.

Proposition 6.27. (Weil’s Theorem) Let (A,L) be a principally polarized
abelian surface defined over a field k. Then (A,L) is one and only one of
three possibilities:

a) the polarized Jacobian of a genus 2 curve over k,
b) the product of two polarized elliptic curves over k,
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c) the restriction of scalars of a polarized elliptic curve E over a qua-
dratic extension K of k. In other words (A,L) is simple over k, but
over K is isomorphic to E ×Eσ where σ is the nontrivial automor-
phism of K over k.

Proof. See [18, Theorem 3.1]. ¤
Theorem 6.28. Suppose p is a congruence prime for Af . Then the Weil
polynomial of Ãf over Fp is either (X2 − apX + p)2 or X4 − ap2X2 + p2.
In the second case, the Weil polynomial over Fp2 is (X2 − ap2X + p2)2.

Proof. Without loss of generality we can assume Af is principally polar-
ized. Since p is a prime of good reduction, Ãf/Fp is principally polarized.
By definition, Ãf lies on Hm2 for some m, hence splits over Fp. Proposition
6.27 tells us that Ãf will split over Fp or Fp2 . The rest follows easily. ¤

A congruence prime p must satisfy ap ∈ Z or Tr(ap) = 0. When
ap /∈ Z we call p an exceptional prime. They are exceptional in the sense
that amongst the primes dividing Hm2(si) the exceptional ones are scarce.

Lemma 6.29. Let A be a QM abelian surface defined overQ and p a prime
of good reduction. Then the reduction Ã/Fp is geometrically isogenous to
the square of elliptic curve.

Proof. Let q = pr be a finite field such that End(Ã) = EndFq(Ã). The
Frobenius endomorphism π with respect to Fq lies in the center of End(Ã).
Since A is a QM abelian surface, the center of EndQ(Z) equals Z. If π ∈ Z
then A is supersingular. If π /∈ Z then the center of EndFq

(Ã) strictly
containsZ, in which case we have EndFq

(Ã) ∼= M2(K) by the classification
of endomorphism algebras for abelian surfaces (Example 1.58). We see that
in both cases Ã is isogenous to the square of an elliptic curve. ¤
Remark 6.30. From the lemma, it follows that primes p /∈ B dividing any
H∆(si) are congruence primes.

This helps us to understand why exceptional primes are the exception: con-
gruence primes are points on mod p Humbert intersections H∆∩Hm2 which
are unions of Shimura curves (dimension 1). The exceptional primes corre-
spond to CM points (dimension 0) on Shimura curves.



CHAPTER 7

Explicit CM-theory in Dimension 2

For a principally polarized abelian surface A with endomorphism ring iso-
morphic to the maximal orderOK in a quartic CM-field K, the Igusa invari-
ants j1(A), j2(A), j3(A) generate an abelian extension of its reflex field. In
this chapter 1 we give an explicit description of the Galois action of the class
group of the reflex field on these Igusa values. The description we give is
geometric and it can be expressed by maps between various Siegel modular
varieties. We can explicitly compute this action for ideals of small norm,
allowing us to compute various Igusa class polynomials modulo primes.
Furthermore, we give a theoretical obstruction to a generalization of the
‘isogeny volcano’ algorithm to compute endomorphism rings of abelian
surfaces over finite fields. While seemingly unconnected to CM-theory,
we show that Humbert surfaces can be used to improve the running time of
CRT-method.

7.1. Introduction

Class field theory describes the abelian extensions of a given number
field K. For K = Q, the Kronecker-Weber theorem tells us that every abe-
lian extension of K is contained in a cyclotomic extension. In 1900, Hilbert
asked for a similar ‘explicit description’ for higher degree number fields.
This not-entirely well-posed problem, known as Hilbert’s 12th problem, is
still largely unsolved.

Besides K = Q, the answer is only completely known for imaginary
quadratic fields K. In this case, the solution is provided by complex multi-
plication theory [71, Ch. 2]. The techniques used can be generalized to CM-
fields K, i.e., imaginary quadratic extensions of totally real fields. However,
for general CM-fields we do not always get an explicit description of the full
maximal abelian extension. From a computational perspective, the case of
general CM-fields is far less developed than the imaginary quadratic case.

We will focus solely on degree 4 CM-fields K. For such fields, invari-
ants of principally polarized abelian surfaces (p.p.a.s.) with endomorphism
ring isomorphic to the maximal order OK of K generate a subfield of the

1Excluding the final section, this chapter is joint work with Reinier Bröker and Kristin
Lauter, undertaken as part of a summer internship at Microsoft Research in 2008.
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Hilbert class field of the reflex field KΦ of K. The reflex field KΦ of K is a
degree 4 subfield of the normal closure of K and equals K in the case K is
Galois. To explicitly compute the resulting extension, we can compute an
Igusa class polynomial

PK =
∏

{A p.p.a.s.|End(A)=OK}/∼=
(X − j1(A)) ∈ Q[X],

if A is not isomorphic to a product of elliptic curves with the product polar-
ization. Here, j1 is one of the three Igusa invariants of A. A contrast with
the case of imaginary quadratic fields – where we compute the Hilbert class
polynomial – is that the polynomial PK need not be irreducible over Q, and
it will typically not have integer coefficients.

There are various methods to explicitly compute the polynomial PK . We
can use complex arithmetic [76], p-adic arithmetic ([17], [10]) for p = 2, 3
or finite field arithmetic. However, none of these approaches exploit the
action of Gal(Kr(j1(A))/Kr) on a p.p.a.s. A that has endomorphism ring
OK . The goal of this chapter is to make this Galois action explicit and
give a method to compute it. Our algorithm to compute the Galois action
significantly speeds up the ‘CRT-approach’ [14] to compute an Igusa class
polynomial.

Besides speeding up the computation of Igusa class polynomials, our
algorithm gives a method of computing isogenies between abelian surfaces
over finite fields. Computing an isogeny is a basic computational problem
in arithmetic geometry, and we expect that our algorithm can be used in a
variety of contexts, ranging from point counting on Jacobians of curves to
cryptographic protocols.

Our computations naturally lead to the study of the (l, l)-isogeny graph
for abelian surfaces over finite fields. For elliptic curves, the l-isogeny graph
looks like a ‘volcano’ and this observation forms the heart of the algorithm
[44] to compute the endomorphism ring of an elliptic curve over a finite
field. We show that for abelian surfaces, the (l, l)-isogeny does not have
a volcano shape. This shows that a straightforward generalization of the
elliptic curve algorithm to abelian surfaces is impossible.

The structure of this chapter is as follows. In Section 7.2 we recall the
basic facts of complex multiplication theory, and in Section 7.3 we give a
‘geometric description’ of the Galois action. Our algorithm to compute this
action is intrinsically linked to Siegel modular functions of higher level.
Section 7.4 gives the definitions and properties of the four Siegel modular
functions that we use. The algorithm to compute the Galois action is de-
tailed in Section 7.5 and we apply it in Section 7.6 where we give a method
to comptute an Igusa class polynomial modulo a prime p. This ‘mod p com-
putation’ is the main improvement to the CRT-algorithm. We illustrate our
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approach with various detailed examples in Section 7.7. Section 7.8 con-
tains the obstruction to the volcano picture for abelian surfaces. The final
Section 7.9 points out some additional improvements to the CRT-algorithm
that rely on knowing equations of Humbert surfaces.

7.2. CM-theory

In this section we recall the basic facts of CM-theory for higher dimen-
sional abelian varieties. Most of the material presented in this section is an
adaptation to our needs of the definitions and proofs of Shimura’s textbook
[70].

7.2.1. CM-fields. A CM-field is an imaginary quadratic extension of
a totally real number field. Throughout this article, we denote by K+ the
real quadratic subfield of a CM-field K. In the simplest case K+ = Q, the
CM-fields are imaginary quadratic fields. We will solely focus on degree 4
fields K in this paper.

Let K be a fixed quartic CM-field, and let {ϕ1, . . . , ϕ4} be the embed-
dings of K into the complex numbers C. A CM-type Φ is a choice of two
embeddings such that we have Φ ∩ Φ = ∅. We interpret Φ in the natural
way as a map K ↪→ C2.

We say that a principally polarized abelian surface A/C has CM by
the maximal order OK if there exists an isomorphism OK

∼−→ End(A).
The CM-type distinguishes these surfaces. More precisely, a surface A has
type Φ = {ϕ1, ϕ2} if the complex representation RC of the endomorphism
algebra End(A)⊗Z Q satisfies

RC
∼= ϕ1 ⊕ ϕ2.

If Φ has the additional property that it is primitive, i.e. it does not equal the
lift of a CM-type of an imaginary quadratic subfield of K, then an abelian
surface that has CM by OK of type Φ is simple [47, Th. 1.3.6].

An automorphism σ of K induces an isomorphism (A, Φ)
∼−→ (Aσ, Φσ)

of CM abelian surfaces where Φσ = {ϕ1σ, ϕ2σ}. This shows that conjugate
CM-types produce the same sets of isomorphism classes of abelian surfaces.

If L denotes the normal closure of K, then we have

Gal(L/Q) ∼= Z/2Z× Z/2Z, C4 or D4

and the only case where we have non-primitive CM-types is the biquadratic
case. We will mostly restrict ourselves to the primitive case in this article.
In the Galois cases there is only one CM-type up to conjugacy and in the
dihedral case there are two distinct CM-types.
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Let (K, Φ) be a primitive quartic CM-field, and let Φ be a CM-type
for K. For an OK-ideal, the abelian surface AI = C2/Φ(I) is a 2-dimen-
sional torus with type Φ by [47, Th. 4.1]. This surface need not admit a prin-
cipal polarization. The dual variety of AI is given by ÂI = C2/Φ(ID−1

K ),
where

D−1
K = {x ∈ K | TrK/Q(xOK) ⊆ Z}

is the inverse different. If π ∈ K satisfies Φ(π) ∈ (iR>0)
2 and πII = D−1

K ,
then the map AI → ÂI given by

(z1, z2) 7→ (ϕ1(π)z1, ϕ2(π)z2)

is an isomorphism ([70, p. 102–104]) and AI is principally polarizable. All
principally polarized abelian surfaces with CM by OK of type Φ arise via
this construction.

We extend Φ to a CM-type Φ′ of L, and we define the reflex field

KΦ = Q
({∑

φ∈Φ′ φ(x) | x ∈ K
})

.

The CM-type on K induces a CM-type fΦ = {σ−1|KΦ
: σ ∈ Φ′} on the

reflex field KΦ. The field KΦ is a subfield of L of degree 4. In particular,
it equals K in the case K is Galois. If L/Q is dihedral, then KΦ and K
are not isomorphic. However, the two different CM-types yield isomorphic
reflex fields in this case. Furthermore, we have

(KΦ)fΦ
= K

and the CM-type fΦ corresponds to Φ.

7.2.2. Igusa invariants. Any principally polarized abelian surface over
C is of the form C2/(Z2 + Z2τ) where τ is an element of the Siegel upper
half plane

H2 = {τ ∈M2(C) | τ symmetric, Im(τ) positive definite}.
The moduli space of principally polarized abelian surfaces is 3-dimensional.
Let j1, j2, j3 be coordinates for this space. More precisely, two surfaces
A = Aτ and A′ = Aτ ′ are isomorphic if and only if

(j1(τ), j2(τ), j3(τ)) = (j1(τ
′), j2(τ

′), j3(τ
′))

holds.
There are various choices that one can make for j1, j2, j3 and there are

different conventions about which choice is the ‘right’ one. We define the
functions as follows. Let Ew be the Siegel Eisenstein series

Ew(τ) =
∑

c,d

(cτ + d)−w,
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where the sum ranges over all co-prime symmetric 2 × 2-integer matri-
ces that are non-associated with respect to left-multiplication by GL(2,Z).
With

χ10 =
−43867

212 · 35 · 5 · 7 · 53
(E4E6 − E10)

and

χ12 =
131 · 593

213 · 37 · 53 · 72 · 337
(32 · 72E3

4 + 2 · 53E6
4 − 691E12),

we define the Igusa functions j1, j2, j3 as

j1 = 2 · 35χ5
12

χ6
10

, j2 = 2−333E4χ
3
12

χ4
10

, j3 = 2−5 · 3E6χ
2
12

χ3
10

+ 2−3 · 32E4χ
3
12

χ4
10

.

Alternatively, one can express the Igusa functions in terms of theta null
values, defined in Section 7.4. The (rather unwieldy) formulas for passing
between two descriptions are given by Igusa, see [35, p. 848].

A ‘weak version’ of the main theorem of complex multiplication theory
is that, for a primitive quartic CM-field K, the Igusa invariants of an abelian
variety with CM byOK generate an unramified abelian extension of a reflex
field of K. More precisely, we have the following result.

Theorem 7.1. Let K be a primitive quartic CM field and let Φ be a CM-type
for K. Let I be an OK ideal such that there exists a principal polarization
on AI = C2/Φ(I). Then the field KΦ(j1(AI), j2(AI), j3(AI)) is a subfield
of the Hilbert class field of KΦ. The polynomial

PK =
∏

{[A/C] |End(A)∼=OK}
(X − j1(A))

has rational coefficients. The same is true for the minimal polynomials
QK , RK of the j2 and j3-invariants.

Proof. It is proved in [70, Main Theorem 1, p. 112] that the composite of
KΦ with the field of moduli of AI is contained in the Hilbert class field of
KΦ. It follows from [68, p. 525] that for primitive quartic CM fields K,
the field of definition of AI is contained in the field of moduli, thus proving
the first statement. The fact that the polynomials have rational coefficients
follows from the fact that Aσ

I is also of type (K, Φ), for σ an automorphism
of C ¤

We will see in Corollary 7.4 that, for any CM-type Φ, there always exists
an OK-ideal I as in the Theorem.
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7.2.3. Galois action of the class group. We define a group C(K) as
{

(a, α)

∣∣∣∣
a a fractional OK-ideal with aa = (α)

and α ∈ K+ totally positive

} /∼=
where (a, α) ∼= (b, β) if and only if there exists a unit u ∈ K∗ with b = ua
and β = uuα. The multiplication is defined componentwise, and (OK , 1)
is the neutral element of C(K).

The group C(K) naturally acts on the set S(K, Φ) of isomorphism
classes of principally polarized abelian surfaces that have CM by OK of
a given type Φ. Indeed, any such surface is given by an ideal I determining
the variety and a ‘Φ-positive’ element π ∈ K giving the principal polariza-
tion. We now put

(a, α) · (I, π) = (a−1I, απ)

for (a, α) ∈ C(K). By [70, §14.6], the action of C(K) on S(K, Φ) is
transitive and free. In particular, we have |C(K)| = |S(K, Φ)|.
Theorem 7.2. Let K be a primitive quartic CM-field. The set S(K) of
isomorphism classes of principally polarized abelian surfaces with CM by
OK has cardinality

|S(K)| =
{
|C(K)| if Gal(K/Q) ∼= C4 ,

2|C(K)| if Gal(K/Q) ∼= D4 .

Proof. We have that |S(K, Φ)| = |C(K)| which is independent of the
choice of CM type Φ. Let n be the number of CM-types (up to conjugacy).
The theorem follows immediately from the equality |S(K)| = n|S(K, Φ)|.
¤

The structure of the group C(K) is best described by the following the-
orem.

Theorem 7.3. Let K be a primitive quartic CM-field. Then the sequence
1 −→ (O∗K+)+/NK/K+(O∗K)

u 7→(OK ,u)−→ C(K)
(a,α)7→a−→ Cl(OK)

NK/K+−→ Cl+(OK+) −→ 1

is exact.

Proof. The exactness at C(K) and Cl(OK) is the contents of [70, Prop.
14.5]. It remains to show that the sequence is exact at Cl+(OK+). To prove
this, we first prove 2 that there is a finite prime that is ramified in K/K+.

Suppose that K/K+ is unramified at all finite primes. By genus theory,
we then have K = K+(

√
n) with n ∈ Z. However, K then has Q(

√
n)

as quadratic subfield and K is a biquadratic field. This contradicts our as-
sumption that K is primitive.

2We thank Everett Howe for suggesting this argument.
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As there is a finite prime of K+ that ramifies in K, the extensions
K/K+ and H+(K+)/K+ are linearly disjoint. Here, H+ denotes the nar-
row Hilbert class field. By Galois theory, we then have

Gal(H(K)/K) ³ Gal(KH+(K+)/K)
∼−→ Gal(H+(K+)/K+)

which proves the theorem. ¤
Corollary 7.4. Let K be a primitive quartic CM-field. For any CM-type Φ,
there are exactly

|Cl(OK)|
|Cl+(OK+)| · |(O

∗
K+)+/NK/K+(O∗

K)| ≥ 1

isomorphism classes of principally polarized abelian surfaces that have CM
by OK of type Φ.

Let A be a principally polarized abelian surface that has CM by OK of
type Φ. The Galois group Gal(KΦ(j1(A))/KΦ) acts in the following way
on the set S(K, Φ). With fΦ the CM-type on KΦ induced by Φ, we define
NΦ : KΦ → K by

NΦ(x) =
∏

ϕ∈fΦ

ϕ(x).

For an OKΦ
-ideal I , the OK-ideal NΦ(I) is called the typenorm of I . We

get a natural map m : Cl(OKΦ
) → C(K) defined by

m(p) = (NΦ(p), NKΦ/Q(p)).

The Galois group of KΦ(j1(A))/KΦ is a quotient of Gal(H(KΦ)/KΦ) ∼=
Cl(OKΦ

), and by [70, §15.2] the induced map

m : Gal(KΦ(j1(A))/KΦ) → C(K)

is injective. This describes the Galois action. In Example 7.16 we will see
that the map Cl(OKΦ

) → C(K) need not be injective.
We conclude Section 7.2 with the observation that the typenorm can be

defined in a slightly different way as well. If K/Q is Galois with
Gal(K/Q) = 〈σ〉, then we have NΦ(p) = p1+σ3 . If K is not Galois, then
we have NΦ(p) = NL/K(pOL).

7.3. Computing the CM-action

Throughout this section, we let K be a fixed primitive quartic CM-
field. We also fix a CM-type Φ : K → C2. Let A/C be a principally
polarized abelian surface that has complex multiplication by OK of CM-
type Φ. The condition that K is primitive ensures that A is simple, i.e.,
not isogenous to a product of elliptic curves. By Theorem 7.1 the field
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KΦ(j1(A), j2(A), j3(A)) that we get by adjoining the Igusa invariants of A
to the reflex field KΦ is a subfield of the Hilbert class field H(KΦ) of KΦ.

The Artin map induces an isomorphism

Gal(H(KΦ)/KΦ)
∼−→ Cl(OKΦ

)

between the Galois group of the extension H(KΦ)/KΦ and the class group
of the maximal order of KΦ. The resulting action of Cl(OKΦ

) on the set of
all principally polarized abelian surfaces that have CM by OK of type Φ is
given by the typenorm map m introduced in Section 7.2.

Let I be aOKΦ
-ideal of norm l. We assume for simplicity that l is prime.

We have m(I) = (NΦ(I), l) = (J, l) ∈ C(K), where J is an OK-ideal of
norm l2.

Lemma 7.5. Let I be anOKΦ
-ideal of prime norm l with typenorm NΦ(I) =

J . Then the OK-ideal J ideal divides (l) ⊂ OK .

Proof. This is clear if K/Q is Galois. Indeed, in this case I and all its
Galois conjugates divide (l) as OK-ideal.

If the normal closure L/K has Galois group D4, then the ideal J is
given by

J = NL/K(IOL).

Since the splitting of l in KΦ determines the splitting of l in K, a case-by-
case check gives the lemma. We refer to [19, p. 38] for a list of all possible
decompositions. ¤

For an OK-ideal M , we define the ‘M -torsion’ of the abelian surface A by

A[M ] = {P ∈ A(C) | ∀α ∈ M : α(P ) = 0}.
We assume here that we have fixed an isomorphism End(A)

∼−→OK , mean-
ing that M is an End(A)-ideal as well. If M is generated by an integer n,
then A[M ] equals the n-torsion A[n].

Lemma 7.5 tells us that group A[J ] is a 2-dimensional subspace of the
l-torsion A[l] of A. The polarization of A induces a symplectic form called
the Weil pairing on A[l], and A[l] is a symplectic vector space of dimension
4 over the finite field Fl.

Lemma 7.6. Let A be a p.p.a.s. and let R be a proper subgroup of A[l].
Then R is the kernel of an isogeny of principally polarized abelian surfaces
ϕ : A → B if and only if R ∼= (Z/lZ)2 is a maximal isotropic subgroup
with respect to the Weil pairing. Such a ϕ is called an (l, l)-isogeny.

Proof. See Milne [51, Proposition 16.8]. ¤

By CM-theory, A[J ] is isotropic with respect to the Weil pairing and hence
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the map
A → A/A[J ]

is an (l, l)-isogeny.
The moduli space of all pairs (S,G), with S a principally polarized

abelian surface overC and G a 2-dimensional isotropic subspace of S[l] can
be described by an ideal V (l) ⊂ Q[X1, Y1, Z1, X2, Y2, Z2]. More precisely,
the variety corresponding to V (l) equals the Siegel modular variety Y

(2)
0 (l)

introduced e.g. in [57]. As a complex Riemann surface, we have

Y
(2)
0 (l) = Γ

(2)
0 (l)\H2,

with

Γ
(2)
0 (l) =

{(
a b
c d

)
∈ Sp4(Z) | c ≡ 02 mod l

}
.

If we specialize V (l) at a point (X1, Y1, Z1) = (j1(A), j2(A), j3(A))
then the resulting ideal V ′(l) is 0-dimensional. The corresponding variety
is a union of points corresponding to the ‘(l, l)-isogenous surfaces’. As
there are [H2 : Γ

(2)
0 (l)] = (l4− 1)/(l− 1) isotropic subspaces of dimension

2 in A[l] by [57, Lemma 6.1], there are exactly (l4− 1)/(l− 1) solutions to
the system of equations given by V ′. By construction, the triple

(j1(A/J), j2(A/J), j3(A/J))

is one of the solutions. There are l3 + l2 + l other solutions, and we will see
in Section 7.6 that for CM-computations it is relatively easy to determine
which of the solutions come from the typenorm of an OKΦ

-ideal.
Unfortunately, the ideal V (l) can only be computed for very small l.

Indeed, the only case that has been done is l = 2 and it takes roughly 50
Megabytes to store the three generators of V . By [57], knowing the ideal V
for some prime l implies that we have an equation for the Humbert surface
of discriminant l2. As we have seen, computing level 1 Humbert surfaces
is a hard problem and we do not expect that much progress can be made in
computing V for primes l > 2.

7.4. Smaller functions

The Igusa functions introduced in Section 7.2 are ‘too large’ to be prac-
tical in our computation of the CM-action: we cannot compute an ideal
describing the variety Y 2

0 (l) for primes l > 2. In this section we introduce
smaller functions f1, . . . , f4 that are more convenient from a computational
perspective.

For x, y ∈ {0, 1}2, define the functions θx,y : H2 → C by

(7.7) θx,y(τ) =
∑

n∈Z2

exp πi
(

t(n + x
2
)τ(n + x

2
) + t(n + x

2
)y

)
.
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The functions θx,y are known as the ‘theta null values’ and arise naturally
from the construction of theta functions [33]. The equality

θx,y(τ) = (−1)
txyθx,y(τ)

shows that of the sixteen theta nullvalues only ten of them are non-zero.
The fourth powers of the functions θx,y are Siegel modular forms of

weight 2 for the congruence subgroup Γ(2) ⊂ Sp4(Z). The Satake com-
pactification X(2) of the quotient Γ(2)\H2 has a natural structure of a pro-
jective variety, and the fourth powers θ4

x,y define an embedding of X(2) into
projective space.

Theorem 7.8. Let M2(Γ(2)) denote the C-vector space of all Siegel mod-
ular forms of weight 2 for the group Γ(2). Then the following holds: the
space M2(Γ(2)) is 5-dimensional and is spanned by the ten modular forms
θ4

x,y. Furthermore, the map X(2) → P9 defined by the functions θ4
x,y is an

embedding. The image is the quartic threefold in P4 defined by

u2
2 − 4u4 = 0

with uk =
∑
x,y

θ4k
x,y.

Proof. See [72, Theorem 5.2]. ¤

It is well known that we have an inclusion

C(j1, j2, j3) ⊆ C(θ4
x,y/θ

4
x′,y′)

where we use the convention that we consider all quotients of theta fourth
powers. Indeed, the formulas that many people use to evaluate Igusa func-
tions [35, p. 848] readily express j1, j2, j3 in terms of θ4

x,y. The func-
tions θ4

x,y/θ
4
x′,y′ are rational Siegel modular functions of level 2. Whereas a

value (j1(τ), j2(τ), j3(τ)) depends only on the Sp4(Z)-equivalence class of
τ ∈ H2, a value (θ4

x,y/θ
4
x′,y′)x,x′,y,y′ depends on the Γ(2)-equivalence class

of τ . Since the affine points of Γ(2)\H2 ⊂ X(2) correspond to isomor-
phism classes of triples (A, 〈P,Q〉) consisting of a principally polarized
2-dimensional abelian variety A together with a basis P, Q of the 2-torsion,
the functions θ4

x,y/θ
4
x′,y′ not only depend on the abelian variety in ques-

tion but also on an ordering of its 2-torsion. For every isomorphism class
Sp4(Z)τ of abelian varieties, there are [Sp4(Z) : Γ(2)] = 720 values for the
tuple (θ4

x,y(τ)/θ4
x′,y′(τ))x,x′,y,y′ . The functions θ4

x,y/θ
4
x′,y′ are ‘smaller’ than

the Igusa functions in the sense that their Fourier coefficients are smaller.
A natural idea is to get even smaller functions by considering the quotients
θx,y/θx′,y′ themselves instead of their fourth powers.
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We define the four functions f1, f2, f3, f4 : H2 → C by

f1 = θ(0,0),(0,0) f2 = θ(0,0),(1,1) f3 = θ(0,0),(1,0) f4 = θ(0,0),(0,1).

We stress that the particular choice of the ‘theta constants’ is rather arbitrary,
our only requirement is that we define four different functions. The three
quotients f1/f4, f2/f4, f3/f4 are rational Siegel modular functions.

Theorem 7.9. We have an inclusion C(j1, j2, j3) ⊆ C(f1, f2, f3, f4). Fur-
thermore, the quotients f1/f4, f2/f4, f3/f4 are invariant under the sub-
group Γ(8).

Proof. Five linear relations between the θ4
x,y can be found explicitly us-

ing Proposition 3.14. The vector space M(Γ(2)) can be spanned by the
set {f 4

1 , . . . f 4
4 , g4} where g = θ(0,1),(0,0). The degree four relation in Theo-

rem 7.8, together with the five linear relations yield that g4 satisfies a degree
four polynomial P over L = C(f1, f2, f3, f4). The polynomial P factors
over L as a product of the two irreducible quadratic polynomials

P−, P+ = T 2 − (f 4
1 − f 4

2 + f 4
3 − f 4

4 )T + (f 2
1 f 2

3 ± f 2
2 f 2

4 )2.

By looking at the Fourier expansions of f1, . . . , f4 and g, we see that g4 only
satisfies the polynomial P−. Hence, the extension L(g4)/L is quadratic and
generated by a root of P−.

For each of the two choices of a root of P−, the other five fourth powers
of theta functions will be uniquely determined. Indeed, the fourth powers
are functions on the space M(Γ(2)) and this space is 5-dimensional by The-
orem 7.8. This means that we get a priori get two Igusa triples (j1, j2, j3)
for every tuple (f1, f2, f3, f4). However, a close inspection of the formulas
expressing the Igusa functions in terms of theta fourth powers yields that
these Igusa triples coincide. Hence, the triple (j1, j2, j3) does not depend
on a choice of P−. This proves the first statement in the theorem.

The second statement follows immediately from a result of Igusa. In
[33, p. 242], he proves that the field M generated by all theta quotients is
left invariant by a subgroup of Γ(8). As the field C(f1/f4, f2/f4, f3/f4) is
a subfield of M , Theorem 7.9 follows. ¤

As the functions f1/f4, f2/f4, f3/f4 are invariant under Γ(8), the moduli
interpretation is that they depend on an abelian variety together with a level
8-structure. We let Stab(f) be the stabilizer of f1/f4, f2/f4, f3/f4 inside
the symplectic group Sp4(Z). We have inclusions

Γ(8) ⊂ Stab(f) ⊂ Sp4(Z)
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and the quotient Y (f) = Stab(f)\H2 has a natural structure of a quasi-
projective variety by the Baily-Borel theorem [2]. However, this variety is
not smooth.

We let

H∗2 = {τ ∈ H2 | τ is not Sp4(Z)-equivalent to a diagonal matrix}
be the subset of H2 of those τ ’s that do not correspond to a product of
elliptic curves. The argument in [63, §5] shows that G = Γ(8)/Stab(f)
acts freely on Y (8). By [53, §2.7], the quotient Y (f)∗ = Stab(f)\H∗2 is a
smooth variety.

Lemma 7.10. The map Y (f)∗ → Y (1) induced by the inclusion Stab(f) →
Sp4(Z) has degree 46080.

Proof. We know that Stab(f) has index 43 = 64 in Γ(2). The group Γ(2)
in turn has index 720 in Sp4(Z) and the lemma follows. ¤

The proof of Theorem 7.9 readily gives a means of computing an Igusa
triple (j1(τ), j2(τ), j3(τ)) from a tuple (f1(τ), . . . , f4(τ)). Conversely, it is
‘classical’ to compute an element (f1(τ), . . . , f4(τ)) given a (finite) Igusa
triple. Our computation follows the formulas for theta functions from the
19th century. We first compute the corresponding Igusa Clebsch invariants
I2, I4, I6, I10. After applying the transformation (c.f. Subsection 3.6.2)

s2= 3I4

s3= 3/2(I2I4 − 3I6)

s5= 5/12s2s3 + 35 · 5I10

s6= 27/16I3
4 + 1/6s2

3 + 36/22I2I10,

we compute the roots x1, . . . , x6 of the Satake sextic polynomial

X6− 1

2
s2X

4− 1

3
s3X

3+
1

16
s2
2X

2+(
1

6
s2s3− 1

5
s5)X +(

1

96
s3
2+

1

18
s2
3−

1

6
s6)

with coefficients in Q(s2, s3, s5, s6). One choice for f 4
1 , f 4

2 , f 4
3 , f 4

4 is given
by (c.f. formulae for the t5, t6, t8, t9 in the proof of Theorem 3.15):

f 4
1 = (−x1 − x2 − x4)/3,

f 4
2 = (−x1 − x3 − x4)/3,

f 4
3 = (−x1 − x2 − x3)/3,

f 4
4 = (−x2 − x3 − x4)/3.

Finally, we extract fourth roots to find values for (f1(τ), . . . , f4(τ)). There
are 720 · 64 = 46080 possible values for this tuple.
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7.5. The CM-action and level structure

We let Stab(f) be the stabilizer of the three quotients f1/f4, f2/f4, f3/f4

defined in Section 7.3. By Theorem 7.9, we have Γ(8) ⊆ Stab(f). For a
prime l > 2, we now define

Y (f ; l)∗ = (Stab(f) ∩ Γ
(2)
0 (l))\H∗2

which we view as an equality of Riemann surfaces. By the Baily-Borel
theorem, the space Y (f ; l)∗ has a natural structure of a variety. Since we
restricted to H∗2, the variety is now affine. Just like in the case l = 1 from
the previous section, Y (f ; l)∗ is smooth.

The moduli interpretation of Y (f ; l)∗ is the following. Points are iso-
morphism classes of triples (S, G, L), where S is a Jacobian of a genus 2
curve over the complex numbers, G is a 2-dimensional isotropic subspace of
S[l] and L is a level 8-structure. The notion of isomorphism is that (S, G, L)
and (S ′, G′, L′) are isomorphic if and only if there is an isomorphism of
principally polarized abelian surfaces

ϕ : S → S ′

that satisfies ϕ(G) = G′ and ϕ(L) = L′.

Lemma 7.11. The map Y (f ; l)∗ → Y (f)∗ induced by the inclusion map
(Stab(f)∩Γ

(2)
0 (l)) → Stab(f) has degree (l4− 1)/(l− 1) for primes l > 2.

Proof. This is clear: the choice of a level 8-structure L is independent of
the choice of a subspace of the l-torsion for l > 2. ¤

Besides the map Y (f ; l)∗ → Y (f)∗ from the lemma, we also have a map
Y (f ; l)∗ → Y (f)∗ given by

(S, G, L) 7→ (S/G, L′).

Indeed, the isogeny ϕ : S → S/G induces an isomorphism

S[8] → (S/G)[8]
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and we have L′ = ϕ(L). It it not hard to see that this map also has degree
(l4 − 1)/(l − 1). Putting all the varieties together, the picture is as follows.

Y (f ; l)∗

s

yyttttttttt
t

%%JJJJJJJJJ

|| ""

Y (f)∗

f
²²

Y (f)∗

f
²²

Y (1) Y (1)

²²
A3

OO

A3

The map s sends (S,G, L) ∈ Y (f ; l)∗ to (S, L) ∈ Y (f)∗ and t is the
map induced by the isogeny S → S/G. This diagram allows us to find all
the abelian surfaces that are (l, l)-isogenous to a given surface A. Indeed,
we first map the Igusa invariants (j1(A), j2(A), j3(A)) to a point in Y (1),
say given by the Igusa-Clebsch invariants. We then choose (A,L) on Y (f)∗

lying over this point. Although there are 46080 choices for L, it does not
matter which one we choose. Above (A,L), there are (l4−1)/(l−1) points
in Y (f ; l)∗ and via the map t : Y (f ; l)∗ → Y (f)∗ we map all of those down
to Y (f)∗. Forgetting the level 8-structure now yields (l4− 1)/(l− 1) points
in Y (1). If A is simple, i.e., not isogenous to a product of elliptic curves
with the product polarization, we then can transform these into absolute
Igusa invariants.

Assuming we can compute an ideal

V (f ; l) ⊂ Q[W1, X1, Y1, Z1,W2, X2, Y2, Z2]

defining the quasi-projective variety Y (f ; l)∗, we derive the following algo-
rithm to compute all (l, l)-isogenous abelian surfaces.

Algorithm 7.12. Let F be an algebraically closed field.
Input. A Jacobian A/F of a genus 2 curve given by its Igusa invariants,
and the ideal V (f ; l) defining Y (f ; l)∗.
Output. The Igusa invariants of all principally polarized abelian surfaces
that are (l, l)-isogenous to A.

a) Compute Igusa-Clebsch invariants (I2, I4, I6, I10) ∈ F 4 correspond-
ing to A.

b) Choose an element (f1, f2, f3, f4) ∈ Y (f)∗ that maps to the point
(I2, I4, I6, I10) using the method described at the end of Section 7.4.

c) Specialize the ideal V (f ; l) in (W1, X1, Y1, Z4) = (f1, f2, f3, f4)
and solve the remaining system of equations.
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d) For each solution found in the previous step, compute the corre-
sponding point in Y (1) using the method given in the proof of The-
orem 7.9.

7.5.1. Computing V (f ; l). In this subsection, we give an algorithm to
compute the ideal V (f ; l) needed in Algorithm 7.12. Our approach only
terminates in a reasonable amount of time in the simplest case l = 3.

The Fourier expansion from Section 7.4 can be written in terms of the
individual matrix entries, and with some minor modifications we can repre-
sent it as a power series with integer coefficients. Write τ = ( τ1 τ2

τ2 τ3 ) ∈ H2,
then

θ(a,b),(c,d)(τ) =
∑

(x1,x2)∈Z2

(−1)x1c+x2dp(2x1+a)2q(2x1+a+2x2+b)2r(2x2+b)2

where p = e2πi(τ1−τ2)/8, q = e2πiτ2/8 and r = e2πi(τ3−τ2)/8. We see that it is
easy to compute Fourier expansions for the Siegel modular forms fi.

One of the (l, l)-isogenous surfaces to C2/(Z2 + Z2 · τ) is the surface
C2/(Z2 + Z2 · lτ), and we want to find a relation between the fi’s and the
functions fi(lτ). The expansion for fi(lτ) can be constructed easily from
the Fourier expansion of fi(τ) by replacing p, q, r with pl, ql, rl.

For increasing positive integers d = 2, 3, . . ., we do the following. We
compute all homogeneous monomials of degree d in {fi(τ), fi(lτ)} repre-
sented as truncated power series and then use exact linear algebra to find
linear dependencies between them. The basis of relations will ‘stabilize’ as
the power series precision increases. There are two ways to check experi-
mentally whether we have enough relations: V (f ; l) has the correct dimen-
sion and the projection maps have the correct degrees. Starting with d = 2,
we search for homogeneous relations relations of degree d, then d + 1 and
so on, increasing the degree until we have enough relations.

Using this method we computed the ideal V (f ; 3). The (3, 3)-isogeny
relations in V (f ; 3) are given by 85 homogeneous polynomials of degree
six. The whole ideal takes 35 kilobytes to store. The individual relations
are fairly small, having at most 40 terms. Furthermore, the coefficients
are 8-smooth and bounded by 200 in absolute value, which makes them
amenable for computations.

We stress however that we cannot rigorously prove that the ideal V (f ; 3)
we found is correct. We only have ‘emperical evidence’ that it is correct.

The search for l = 5 is currently being undertaken using the above
method. The degrees of the relations is at least 8; the number of homoge-
neous monomials is at the limits of computing resources using this method.
This approach is rather simple-minded, and we expect that we need inter-
polation techniques to find the ideal V (f ; 5).
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Using a 3-dimensional subvariety of P9, Carls, Kohel and Lubicz [10]
have found much smaller (3, 3)-isogeny relations using theta constants with
characteristics in 1

4
Z/Z. To our knowledge, this is the only other (3, 3)-

isogeny relation ideal to have been computed up to now.

7.6. The CM-action over finite fields

The theory developed in Sections 7.3–7.6 uses the complex analytic def-
inition of abelian surfaces and the Riemann surfaces Y

(2)
0 (l) and Y (f ; l)∗.

We now explain why we can use the results in positive characteristic as
well. Firstly, if we take a prime p that splits completely in K, then by [19,
Theorem 1] the reduction modulo p of an abelian surface A/H(KΦ) with
endomorphism ring OK is ordinary. The reduced surface again has endo-
morphism ring OK .

Furthermore, one can naturally associate an algebraic stack AΓ0(p) to
Y

(2)
0 (l) and prove that the structural morphism AΓ0(p) → Spec(Z) is smooth

outside l, see [11, Corollary 6.1.1.]. In a more down-to-earth computa-
tional terminology, this means the moduli interpretation of the ideal V ⊂
Q[X1, . . . , Z2] remains valid when we reduce the elements of V modulo a
prime p 6= l.

The reduction of Y (f ; l)∗ is slightly more complicated. The map
Y (8l) → Y (f ; l)∗ is finite étale by [38, Theorem A.7.1.1.], where we now
view the affine varieties Y (f ; l)∗ and Y (8l) as schemes. It is well known
that the Y (N) is smooth over Spec(Z[1/N ]) for N ≥ 3, so in particular, the
scheme Y (f ; l)∗ is smooth over Spec(Z[1/(2l)]). Again, this means that the
moduli interpretation for the ideal V (f ; l) ⊂ Q[W1, . . . , Z2] remains valid
when we reduce the elements of V (f ; l) modulo a prime p 6= 2l.

Lemma 7.13. Let l be prime, and let p 6= 2l be a prime that splits com-
pletely in a primitive CM-field K. Then, on input of the Igusa invariants
of a principally polarized abelian surface A/Fp with End(A) = OK and
the ideal V (f ; l) ⊂ Fp[W1, . . . , Z2], Algorithm 7.12 computes the Igusa
invariants of all (l, l)-isogenous surfaces.

Proof. Clear from the preceding discussion. ¤

Fix a primitive quartic CM-field K, and let p 6= 2l be a prime that splits
completely in the Hilbert class field of the reflex field KΦ. In particular, p
splits in KΦ and as it splits in its normal closure L it will split completely
in K as well. Hence, Lemma 7.13 applies. Because p splits completely in
H(KΦ), the Igusa invariants of an abelian surface A/Fp with End(A) =
OK are defined over the prime field Fp.
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If we apply Algorithm 7.12 to the point (j1(A), j2(A), j3(A)) and the
ideal V (f ; l), then we get (l4 − 1)/(l − 1) triples of Igusa invariants. All
these triples are Igusa invariants of principally polarized abelian surfaces
that have endomorphism algebra K. Some of these triples are defined over
the prime field Fp and some are not. However, since p splits completely in
the Hilbert class field of KΦ, the Igusa invariants of the surfaces that have
endomorphism ring OK are defined over the field Fp.

Algorithm 7.14.
Input. The Igusa invariants of a simple principally polarized abelian sur-
face A/Fp with End(A) = OK , and the ideal V (f ; l) ⊂ Fp[W1, . . . , Z2].
Here, l is a prime such that there exists a prime ideal in KΦ of norm l.
Furthermore, we assume p 6= 2l.
Output. The Igusa invariants of all principally polarized abelian surfaces
A′/Fp with End(A′) = OK that are (l, l)-isogenous to A.

a) Apply Algorithm 7.12 to A and V (f ; l). Let S be the set of all Igusa
invariants that are defined over Fp.

b) For each (j1(A
′), j2(A

′), j3(A
′)) ∈ S, construct a genus 2 curve C

having these invariants using Mestre’s algorithm ([50], [9]).
c) Apply the Freeman-Lauter algorithm [16] to test whether Jac(C)

has endomorphism ring OK . Return the Igusa invariants of all the
curves that pass this test.

We can predict beforehand how many triples will be returned by Algo-
rithm 7.14. We compute the prime factorization

(l) = pe1
1 . . . pek

k

of (l) in KΦ. Say that we have n ≤ 4 prime ideals p1, . . . , pn of norm l in
this factorization, disregarding multiplicity. For each of these ideals pi we
compute the typenorm map m(pi) ∈ C(K). The size of

{m(p1), . . . ,m(pn)} ⊂ C(K).

equals the number of triples computed by Algorithm 7.14.

7.6.1. Igusa class polynomials modulo p. The ‘CRT-algorithm’ to
compute the Igusa class polynomials PK , QK , RK ∈ Q[X] of a primitive
quartic CM-field K computes the reductions of these three polynomials
modulo various primes p. For a given prime p that splits completely in the
Hilbert class field of KΦ, the method suggested in [14] is to loop over all p3

possible Igusa invariants. For each of the invariants (j1(A
′), j2(A

′), j3(A
′)),

we have to run an ‘endomorphism ring test’ to see if A′ has endomorphism
ring OK .
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Algorithm 7.14 can be used to dramatically improve this algorithm of
computing Igusa class polynomials modulo p. We compute the class group

Cl(OKΦ
) = 〈p1, . . . , pk〉

of the reflex field. Here, we take the generators pi to be of odd prime norm.
For each of the norms NKΦ/Q(pi) = li, we compute the ideal V (f ; li) de-
scribing the Siegel modular variety Y (f ; li)

∗.
Next, we try random triples of Igusa invariants over Fp until we find a

triple (j1(A), j2(A), j3(A)) corresponding to a surface A with End(A) =
OK . Analogous to [3], we now apply Algorithm 7.14 to this surface A for
all primes li. To all new surfaces, we again apply Algorithm 7.14 for all
primes li. We continue this until we find no new surfaces.

In contrast to the analogous genus 1 algorithm in [3], it is unlikely that
we have found all surfaces with endomorphism ring OK . This is because
Algorithm 7.14 finds surfaces having the same CM-type as the initial sur-
face A, so in the dihedral case we are missing surfaces which use the sec-
ond CM-type. Even in the cyclic case where there are |C(K)| isomorphism
classes, it is possible that the map

m : Cl(OKΦ
) → C(K)

is not surjective, meaning that we cannot find all surfaces of a given CM-
type. The solution is simple: we compute the cardinality of S(K) using
Theorem 7.2 and if the number of surfaces that we found is less than |S(K)|,
we do a new random search and apply Algorithm 7.14 as before. Once we
have found all surfaces with endomorphism ring OK , we simply expand

PK =
∏

{A p.p.a.s.|End(A)=OK}/∼=
(X − j1(A)) ∈ Fp[X]

and likewise for QK and RK . The difference with the method from [14]
is that the search space is reduced from O(p3) to O(p3/|m(Cl(OKΦ

))|), an
improvement by a factor of |m(Cl(OKΦ

))|.
The main bottleneck in our algorithm is that we have to compute the

ideals V (f ; l) for various primes l. At the moment, we can only do this
empirically in the simplest case l = 3. If we only use the primes ideal in
OKΦ

of norm 3 then we typically get small factors of the Igusa class poly-
nomials. We are forced to do more random searches to find the complete
class polynomials.

7.7. Examples and applications

In this section we illustrate our algorithm by computing the Igusa class
polynomials modulo primes p for various CM-fields. We point out the dif-
ferences with the analogous genus 1 computations.



108 7. EXPLICIT CM-THEORY IN DIMENSION 2

Example 7.15. In the first example we let K = Q[X]/(X4+185X2+8325)
be a cyclic CM-field of degree 4. All CM-types are equivalent in this case,
and the reflex field of K is K itself. The discriminant of K equals 52 · 373,
and the real quadratic subfield of K is K0 = Q(

√
37). An easy computation

shows that the narrow class group of K0 is trivial. In particular, all ideal
classes of K are principally polarizable, and we have

C(K) ∼= Cl(OK).

We compute Cl(OK) = Z/10Z = 〈p3〉, where p3 is a prime lying over
3. The prime ideal p3 has norm 3, and its typenorm NΦ(p3) generates a
subgroup of order 5 in Cl(OK).

The smallest prime that splits in the Hilbert class field of K is p = 271.
We illustrate our algorithm by computing the Igusa class polynomials for
K modulo this prime. First we do a ‘random search’ to find a principally
polarized abelian surface over Fp with endomorphism ring OK in the fol-
lowing way. We compute a generator π of the principalOK-ideal p3p3. The
element π has minimal polynomial

f = X4 + 9X3 + 331X2 + 2439X + 73441 ∈ Z[X].

If the Jacobian Jac(C) of a hyperelliptic curve C has endomorphism ring
OK , then the Frobenius morphism of Jac(C) is a root of either f(X) or
f(−X). With the factorization

f = (X − τ1)(X − τ2)(X − τ3)(X − τ4) ∈ K[X],

a necessary condition for Jac(C) to have endomorphism ring OK is

#C(Fp) = p + 1± (τ1 + τ2 + τ3 + τ4) ∈ {261, 283}
and

#Jac(C)(Fp) ∈ {f(1), f(−1)} = {71325, 76221}.
We try random values (j1, j2, j3) ∈ F3

p and write down a hyperelliptic curve
C with those Igusa invariants using Mestre’s algorithm ([50], [9]). If C
satisfies the 2 conditions above, then we check whether Jac(C) has endo-
morphism ring OK using the algorithm explained in [16]. If it passes this
test, we are done. Otherwise, we select a new random value (j1, j2, j3).

We find that w0 = (133, 141, 89) is a set of invariants for a surface
A/Fp with endomorphism ring OK . We apply Algorithm 7.14 to w0. The
Igusa Clebsch invariants corresponding to w0 are [133, 54, 82, 56]. With the
notation from Section 7.4, we have s2 = 162, s3 = 106, s5 = 128, s6 = 30.
The corresponding Satake sextic polynomial

g = X6 + 190X4 + 55X3 + 82X2 + 18X + 63 ∈ Fp[X]
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factors over Fp5 and we write Fp5 = Fp(α) where α satisfies α5+2α+265 =
0. We express the six roots of g in terms of α and pick

f 4
1 = 147α4 + 147α3 + 259α2 + 34α + 110,

f 4
2 = 176α4 + 211α3 + 14α2 + 134α + 190,

f 4
3 = 163α4 + 93α3 + 134α2 + 196α + 115,

f 4
4 = 226α4 + 261α3 + 99α2 + 9α + 27

as values for the fourth powers of our Siegel modular functions. The fourth
roots of (f 4

1 , f 4
2 , f 4

3 , f 4
4 ) are all defined over Fp10 , but not every choice corre-

sponds to the Igusa invariants of A however. We pick fourth roots
(r1, r2, r3, r4) such that the polynomial P− from Section 7.4 vanishes when
evaluated at (T, f1, f2, f3, f4) = (f 4

5 , r1, r2, r3, r4). Here, f 4
5 is computed

from the Igusa Clebsch invariants. For an arbitrary choice of fourth roots
for r1, r2, r3 there are two solutions ±r4 for P− = 0 which we can easily
identify. Take Fp10 = Fp(β) where β10 + β6 + 133β5 + 10β4 + 256β3 +
74β2 + 126β + 6 = 0. We find that the tuple (r1, r2, r3, r4) given by
r1 = 179β9 + 69β8+ 203β7+ 150β6+ 29β5 + 258β4 + 183β3 + 240β2 + 255β + 226,

r2 = 142β9 + 105β8 + 227β7 + 244β6 + 72β5 + 155β4 + 2β3 + 129β2 + 137β + 23,

r3 = 63β9 + 112β8 + 132β7 + 244β6 + 94β5 + 40β4 + 191β3 + 263β2 + 85β + 70,

r4 = 190β9 + 41β8 + 62β7 + 170β6 + 151β5 + 240β4 + 270β3 + 56β2 + 16β + 257

is a set of invariants for A together with some level 8-structure.
Next we specialize our ideal V (f ; 3) at (W1, X1, Y1, Z1)=(r1, r2, r3, r4)

and we solve the remaining system of 85 equations in four unknowns. Let
(r′1, r

′
2, r

′
3, r

′
4) be the solution where

r′1 = 184β9 + 48β8 + 99β7 + 83β6 + 20β5 + 232β4 + 16β3 + 223β2 + 85β + 108.

The quadruple (r′1, r
′
2, r

′
3, r

′
4) are invariants of an abelian surface A′ together

with level 8-structure that is (3, 3)-isogenous to A. To map this quadruple
to the Igusa invariants of A′ we compute a root of the quadratic polynomial

P−(T, r′1, r
′
2, r

′
3, r

′
4).

This root is a value for the theta fourth power f 4
5 . Since we now know all

theta fourth powers, we can apply the formulas relating theta functions and
Igusa functions from Section 3.6 to find the Igusa triple (238, 10, 158).

In total, we find 16 Igusa triples defined over Fp. All these triples are
Igusa invariants of surfaces that have endomorphism algebra K. To check
which ones have endomorphism ringOK , we apply the algorithm from [16].
We find that only the four triples

(253, 138, 96), (257, 248, 58), (238, 10, 158), (140, 159, 219)

are invariants of surfaces with endomorphism ring OK . The fact that we
find four new sets of invariants should come as no surprise. Indeed, there
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are four ideals of norm 3 lying over 3 in OK and each ideal gives us an
isogenous variety.

As the typenorm map m : Cl(OK) → C(K) is not surjective, we have
to do a second random search to find a ‘new’ abelian surface with endomor-
phism ring OK . We apply our isogeny algorithm to w1 = (74, 125, 180) as
before, and we again find four new sets of invariants:

(174, 240, 246), (193, 85, 15), (268, 256, 143), (75, 263, 182).

In the end we expand the Igusa polynomials
PK = X10 + 92X9 + 72X8 + 217X7 + 98X6 + 195X5 + 233X4 + 140X3 + 45X2 + 123X + 171,

QK = X10 + 232X9 + 195X8 + 45X7 + 7X6 + 195X5 + 173X4 + 16X3 + 33X2 + 247X + 237,

RK = X10 + 240X9 + 57X8 + 213X7 + 145X6 + 130X5+ 243X4+ 249X3+ 181X2 + 134X + 81

modulo p = 271.

Example 7.16. In the previous example, all the prime ideals of K lying
over 3 gave rise to an isogenous abelian surface. This phenomenon does
not always occur. Indeed, let K be a primitive quartic CM-field and let
p1, . . . , pn be the prime ideals of norm 3. If we have a principally polar-
ized abelian surface A/Fp with endomorphism ringOK , then the number of
(3, 3)-isogenous abelian surfaces with the same endomorphism ring equals
the cardinality of

{m(p1), . . . , m(pn)}.
There are examples where this set has less than n elements.

Take the cyclic field K = Q[X]/(X6 + 219X2 + 10512). The class
group of K is isomorphic to Z/2Z×Z/2Z. The prime 3 ramifies in K, and
we have (3) = p2

1p
2
2. The primes p1, p2 in fact generate Cl(OK). It is easy

to see that for this field we have

m(p1) = m(p2) ∈ C(K),

so we only find one isogenous surface.

Example 7.17. Our algorithm is not restricted to cyclic CM-fields. In this
example we let K = Q[X]/(X4 + 22X2 + 73) be a CM-field with Galois
group D4. There are two equivalence classes of CM-types. We fix a CM-
type Φ : K → C2 and let KΦ be the reflex field for Φ. We have KΦ =
Q[X]/(X4 + 11X2 + 12), and K and KΦ have the same Galois closure L.

As the real quadratic subfield K0 = Q(
√

3) has narrow class group
Z/2Z, the group C(K) fits in an exact sequence

1 −→ Z/2Z −→ C(K) −→ Z/4Z −→ Z/2Z −→ 1

and a close inspection yields C(K) ∼= Z/4Z. The prime 3 factors as

(3) = p1p2p
2
3
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in the reflex field, and we have Cl(OKΦ
) = Z/4Z = 〈[p1]〉. The element

m(p1) ∈ C(K) has order 4, and under the map f : C(K) → Cl(OK) =
Z/4Z the element f(m(p1)) has order 2. We see that even though the ideal
NL/K(p1OL) has order 2 in the class group, the typenorm of p1 has order 4.

Of the four ideal classes of K, only two ideal classes are principally
polarizable for Φ. The other two ideal classes are principally polarizable
for ‘the other’ CM-type. Furthermore, the two principally polarizable ideal
classes each have two principal polarizations.

The prime p = 1609 splits completely in the Hilbert class field of KΦ.
As in Example 7.15, we do a random search to find that a surface A/Fp with
Igusa invariants w0 = (1563, 789, 704) ∈ F3

p has endomorphism ring OK .
We apply Algorithm 7.14 to this point. As output, we get w0 again and two
new points w1 = (1396, 1200, 1520) and w2 = (1350, 1316, 1483). The
fact that we find w0 again should come as no surprise since m(p3) ∈ C(K)
is the trivial element. The points w1 and w2 correspond to p1 and p2.

As expected we compute that the cycle

w0 = (1563, 789, 704)
p1−→ (1396, 1200, 1520)

p1−→ (1276, 1484, 7)
p1−→ (1350, 1316, 1483)

p1−→ w0

has length 4. To find the full Igusa class polynomial modulo p, we have to
do a second random search. The remaining 4 points are (782, 1220, 257),
(1101, 490, 1321), (577, 35, 471), (1154, 723, 1456).

7.8. Obstruction to isogeny volcanos

For an ordinary elliptic curve E/Fp over a finite field, it is nowadays
relatively straightforward to compute the endomorphism ring End(E) (e.g.
[44]). One first computes the endormorphism algebra K by computing the
trace of the Frobenius morphism Frob of E. If the index [OK : Z[Frob]] is
only divisible by ‘small primes’ l, then we can use the l-isogeny graph to
determine the endomorphism ring. We refer to [44] for the details of this
algorithm. The algorithm depends on the fact that the graph of l-isogenies
looks like an ‘volcano’. More precisely, we have the following result.

Lemma 7.18. Let E, E ′/Fp be two ordinary elliptic curves whose endomor-
phism rings are isomorphic to the same order O in an imaginary quadratic
field K. Suppose that l 6= p is a prime such that the index [OK : O] is
divisible by l. Then there are no isogenies of degree l between E and E ′.

Proof. This result is well known, but we give the proof for convenience.
Suppose that there does exist an isogeny ϕ : E → E ′ of degree l. By the
Deuring lifting theorem [48, Theorem 13.14], we can lift ϕ to an isogeny
ϕ̃ : Ẽ → Ẽ ′ defined over the ring class field for O. By CM-theory, we can
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write E ′ = C/I with I an invertible O-ideal of norm l. But since l divides
the index [OK : O], there are no invertible ideals of norm l. ¤

A natural question is whether we can compute the endomorphism ring of
an ordinary principally polarized abelian surface A/Fp in a similar vein
using (l, l)-isogenies. The extension of Schoof’s algorithm [56] enables
us to compute the endomorphism algebra of A. However, the analogue
of Lemma 7.18 concerning (l, l)-isogenies between abelian surfaces does
not hold in general. This is a theoretical obstruction to the heart of the
‘straightforward generalization’ of the algorithm for elliptic curves.

We first give an example where Lemma 7.18 fails for abelian surfaces.

Example 7.19. Take the point (782, 1220, 257) ∈ F1609 which we found
in Example 7.17. Below we depict the connected component of the (3, 3)-
isogeny graph (the second connected component is the the graph on the
front cover). The white dots represent surfaces with endomorphism ring
OK , the black dots are surfaces whose endomorphism ring has index l in
OK . We observe that are are cycles in this graph other than at the ‘surface’
of the volcano.

The reason that these cycles can occur is the following. Just like in
Lemma 7.18, we can lift an isogeny ϕ : A → A′ to characteristic zero. By
CM-theory, we can now write A′ = C2/Φ(I) for some invertibleO-ideal of
norm l. Here, Φ is a CM-type for K. Unlike the case of imaginary quadratic
K, it can now happen thatO does have invertible ideals of norm l. Indeed, if
K/Q is not Galois then there can be both an invertible and a non-invertible
O-ideal of norm l. This is exactly what happens in the example above.

We observe that the analogue of Lemma 7.18 is true if the field K is
Galois. The reason is that because [OK : O] is divisible by l there has to be
at least one non-invertible ideal I lying over l ∈ Z. All other ideals lying
over l are Galois conjugate to I , so they are also non-invertible.

Another ingredient of the endomorphism ring algorithm for elliptic
curves can fail if the endomorphism algebra is Galois however. In the ellip-
tic curve case, it is essential that the l-isogeny graph is regular. More pre-
cisely, suppose that E/Fp has endomorphism ring O and let ϕ : E → E ′
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be an isogeny from E to an elliptic curve E ′ with endomorphism ring of
index l in End(E). If ϕ is defined over Fp, then all l + 1 isogenies of
degree l are defined over Fp. Otherwise we are at the ‘base’ of the vol-
cano and there is a single l-isogeny mapping to an elliptic curve E ′′ with
[End(E ′′) : End(E)] = l. If we exclude the ‘base’ vertices, the graph is
(l + 1)-regular.

The analogous statement is not true in dimension 2 as the following
example shows.

Example 7.20. Consider the cyclic quartic CM field K = Q[X]/(X4 +
12X2 + 18) which has class number 2. The Igusa class polynomials have
degree 2 and over F127 we find the corresponding moduli points w0 =
(118, 71, 63), w1 = (98, 82, 56). The isogeny graph is not regular:

The white dots represent the points having maximal endomorphism ring.
There are 7 points isogenous to w1, which includes w0. It is impossible to
identify w0 from the graph structure alone.

The reason that the regularity property fails in dimension 2 is the fol-
lowing. Let K/Q be a cyclic CM-field, and let A/Fp be an abelian surface
with endomorphism ring OK . Let ϕ : A → A′ be a degree l-isogeny. If
the endomorphism ring O of A′ is not isomorphic to OK then, just like in
the elliptic curve case, it will have index l in OK . If p splits into principal
primes in O, then A′ will again be defined over Fp.

However, there are several orders of index l in the maximal order OK .
It can happen that p splits into principal primes in some of them, and not in
others. In other words, the fact that A′ is defined over Fp does not mean that
all l-isogenous surface are defined over Fp. This is exactly what happens in
Example 7.19.

7.9. An improvement to the CM method

To conclude this thesis, we make note of two significant improvements
to the explicit CM method to compute Igusa class polynomials mod p which
utilize Humbert surfaces. The simple fact that a quartic CM field K contains
a real quadratic subfield K+ yields the following result.

Theorem 7.21. Let A be a principally polarized abelian surface having CM
by OK and let ∆ be the discriminant of K+. Then the isomorphism class
represented by A is a point on the Humbert surface of discriminant ∆.
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Proof. By Corollary 2.10(b), we know that H∆ is the set of isomorphism
classes of principally polarized abelian surfaces having endomorphism ring
containing O∆, a quadratic order of discriminant ∆. If A has endomor-
phism ring isomorphic to OK then it certainly contains OK ∩K+ = OK+

which completes the proof. ¤

Corollary 7.22. Let (j1, j2, j3) be Igusa invariants for a principally polar-
ized abelian surface with CM by the maximal order OK . Then we have
H∆(j1, j2, j3) = 0 where ∆ = disc(K+).

As a consequence, the random search space for computing Igusa class poly-
nomials mod p is reduced from p3 triples to the |H∆(Fp)| = O(p2) points
on the Humbert surface mod p.

The second improvement to the algorithm is that the endomorphism
check, which is a calculation requiring the computation of torsion sub-
groups over extension fields [14], in some cases can be improved if the
point lies on a the Humbert surface.

Without going into the technical details, we sketch the basic steps of
the endomorphism check. We know that End(A) contains O = Z[π, π].
We find a set of representatives {αi} for the quotient OK/O, that is, a set
which generates OK over O. There is an integer n > 1 such that βi =
nαi ∈ O. For ease of argument we shall assume that p does not divide
[OK : O]. Since n is coprime to p, it follows from [14, Corollary 9] that
αi is in End(A) if and only if βi acts as zero on the n-torsion A[n]. To do
this check, decompose A[n] = ⊕A[l

ej

j ] where n =
∏

l
ej

j , and for each j,
evaluate βi at at a spanning set of A[l

ej

j ](Fpk) where k is the splitting field
degree.

Computing large torsion groups over extension fields is expensive and
examples with large index are difficult to work with. If we know a larger
order O′ contained in End(A) to begin with, the index in End(A) will be
smaller. In the case when A lies on the Humbert surface of discriminant
∆ = disc(K+) we have the following.

Theorem 7.23. Suppose A has endomorphism algebra isomorphic to a CM
field K. If the isomorphism class represented by A is a point on Hdisc(K+),
then End(A) contains OK+ [π, π].

Proof. This is a straightforward application of the definition of a Humbert
surface. ¤

If End(A) ⊃ OK+ [π, π] ) Z[π, π] then we work with the smaller index
[End(A) : OK+ [π, π]], thus speeding up the endomorphism check.
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The Humbert surfaces computed in this thesis have been used by David
Kohel to extend the list of computed Igusa class polynomials in his database
[43].

We hope the reader leaves with an appreciation of Humbert surfaces and
the advantages of having explicit models for them.
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