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Abstract (English)

The contribution of this thesis is divided naturally into two parts. In Part I
we generalise the work of Khuri-Makdisi [22] on algorithms for divisor arith-
metic on curves over fields to more general bases. We prove that the natural
analogues of the results of Khuri-Makdisi [22] continue to hold for relative
effective Cartier divisors on projective schemes which are smooth of rela-
tive dimension one over an arbitrary affine Noetherian base scheme and that
natural analogues of the algorithms remain valid in this context for a cer-
tain class of base rings. We introduce a formalism for such rings, which are
characterised by the existence of a certain subset of the usual linear algebra
operations for projective modules over these rings.

Part II of this thesis is concerned with a type of Riemann-Roch problem
for divisors on certain algebraic surfaces. Specifically we consider algebraic
surfaces arising as the square or the symmetric square of a hyperelliptic curve
of genus at least two over an (almost) arbitrary field. The main results are
a decomposition of the spaces of global sections of certain divisors on such
surfaces and explicit formulæ for the dimensions of the spaces of sections of
these divisors. In the final chapter we present an algorithm which generates
a basis for the space of global sections of such a divisor.

We now explain the content of each part of the thesis in more detail.

Relative curves and their Jacobians
Khuri-Makdisi [22] introduced a means to perform arithmetic with divisors
on curves over fields which represents a divisor as a subspace of the space of
global sections of some power of given very ample divisor. On the basis of
two principal theoretical results, he shows that many natural operations on
divisors can be reduced to relatively simple linear algebra over the base field.
Chapters 2 and 3 of this thesis are concerned with the generalisation of the
results of Khuri-Makdisi [22].

Let S = Spec(R) be an affine Noetherian scheme and let X/S be a
projective S-scheme which is smooth of relative dimension one over S; we
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call X/S a relative curve. In Section 2.1 we show that the modules of sections
of a relative effective Cartier divisor on X are projective. In Section 2.2 we
describe conditions for very ampleness and normal generation of invertible
sheaves. In particular we show that the usual relationships between very
ampleness and normal generation can be lifted from the fibres, as can the
familiar result that a divisor of degree at least 2g + 1 is normally generated
and hence very ample. In Section 2.3 we prove the two principal results that
underlie the algorithms for performing arithmetic with divisors:

Proposition 2.3.5. Let S = Spec(R), let X/S be a relative curve and let
M and N be normally generated sheaves on X. Then

µ :H0(X,M )⊗H0(X,N )→ H0(X,M ⊗N )

is surjective.

Proposition 2.3.7. Let X/S be a relative curve of genus g and let M and
N be invertible sheaves on X, each of degree at least 2g + 1. Then for any
relative effective Cartier divisor D on X of degree at most deg(M )−(2g+1),
we have

H0(X,M (−D)) =
(
H0(X,M ⊗OX N (−D)) : H0(X,N )

)
µ

with respect to the canonical homomorphism µ of Proposition 2.3.5.

In Chapter 3 we demonstrate that Propositions 2.3.5 and 2.3.7 allow us
to derive algorithms for arithmetic of divisors which are analogous to those
presented by Khuri-Makdisi [22]. We reprove a selection of his algorithms
in this more general context; in particular, we give algorithms that allow
addition of divisor classes in Pic0

X(S).

Spaces of sections on algebraic surfaces
Let C be a hyperelliptic curve of genus g > 2, and let Sym2(C) be the
symmetric product of C. Let ∞ ∈ C(k) be a Weierstrass point over an
algebraic closure of the base field k and set D∞ = 2(∞). Let pi :C × C → C
for i = 1, 2 be the two projection maps. Let F = p∗1(D∞) + p∗2(D∞) be the
fibral divisor on C ×C and let ∇ be the antidiagonal divisor on C ×C. Set
γ = g − 1 and let m > γ and r > 0. The main results of Chapter 4 are the
following. In Theorem 4.5.11 we prove that, under mild conditions, there is
a decomposition

H0(C × C,mF + r∇) ∼= H0(C2,mF )⊕
r⊕
i=1

H0(C, (2m− γi)D∞).
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As a corollary we obtain formulæ for the dimension of this space as a function
of m and r. For example, when 2m− γr > γ, we obtain

dimH0(C × C,mF + r∇) = (2m− γ)2 + 4mr − γr(r + 2).

Similarly, in Theorem 4.6.12 we prove under mild conditions that we have a
decomposition

H0(Sym2(C), 2mΘS+r∇S) ∼= H0(Sym2(C), 2mΘS)⊕
r⊕
i=1

H0(P1, (2m−γi)(∞))

where 2ΘS is the image of F and ∇S is the image of ∇ under the quotient
map C × C → Sym2(C). As a corollary we obtain formulæ for the dimension
of this space in terms of m and r. For example, when 2m−γr > 0, we obtain

dimH0(Sym2(C), 2mΘS + r∇S) =
(

2m− γ + 1
2

)
+ r(2m+ 1)− γ

(
r + 1

2

)
.

We have been unable to prove the results above in the case 2m − γr = 0,
though we conjecture that the results hold in this case too. Indeed, the
algorithm developed in Chapter 5 allows us to test the conjecture in any
particular case.

In Chapter 5 we describe a decomposition of H0(C×C,mF ) with respect
to the eigenspaces of the action of permuting coordinates and use this infor-
mation to develop an algorithm to generate an explicit basis for the space
H0(Sym2(C), 2mΘS + r∇S). We show that the algorithm reproduces, mod-
ulo projective linear transformation, the well-known basis of Cassels [7] and
Flynn [12] describing the embedding of the Jacobian of curve of genus two
in P15 and we show that it confirms the dimension formulæ of Chapter 4 in
several cases. We finish with a brief discussion of potential applications to
coding theory on surfaces of the form C × C and Sym2(C).
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Résumé (français)

Ce travail se divise en deux parties. Dans la première partie, nous général-
isons le travail de Khuri-Makdisi [22] qui décrit des algorithmes pour l’arith-
métique des diviseurs sur une courbe sur un corps. Nous montrons que les
analogues naturelles de ses résultats se vérifient pour les diviseurs de Cartier
relatifs effectifs sur un schéma projectif, lisse et de dimension relative un
sur un schéma affine noetherien quelconque, et que les analogues naturelles
de ses algorithmes se vérifient pour une certaine classe d’anneaux de base.
Nous présentons un formalisme pour tels anneaux qui sont caractérisés par
l’existence d’un certain sous-ensemble des opérations standards de l’algèbre
linéaire pour les modules projectifs sur ces anneaux.

Dans la deuxième partie de ce travail, nous considérons un type de prob-
lème de Riemann-Roch pour les diviseurs sur certaines surfaces algébriques.
Plus précisément, nous analysons les surfaces algébriques qui émanent d’un
produit ou d’un produit symétrique d’une courbe hyperelliptique de genre
supérieur à un sur un corps (presque) arbitraire. Les résultats principaux
sont une décomposition des espaces de sections globales de certains diviseurs
sur telles surfaces et des formules explicites qui décrivent les dimensions des
espaces de sections de ces diviseurs. Dans le dernier chapitre, nous présen-
tons un algorithme qui produit une base pour l’espace de sections globales
d’un tel diviseur.

À présent, nous décrivons de manière plus détaillée le contenu de chaque
partie de la thèse.

Courbes relatives et leurs jacobiennes
Khuri-Makdisi [22] a présenté un moyen de calculer certaines opérations
arithmétiques avec les diviseurs sur une courbe sur un corps fini qui représente
un diviseur comme un sous-espace de sections globales d’une puissance d’un
diviseur donné très ample. À partir de deux résultats théoriques principaux,
il a montré que plusieurs opérations naturelles sur les diviseurs peuvent être
réduites à l’algèbre linéaire sur le corps de base. Les Chapitres 2 et 3 sont
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consacrés à la généralisation des résultats de Khuri-Makdisi [22].
Soient S = Spec(R) un schema affine noetherien et X/S un S-schema

projectif, lisse de dimension relatif un sur S; on appelle X/S une courbe
relative. Dans la Section 2.1, nous montrons que les modules de sections
d’un diviseur de Cartier relatif effectif sur X sont projectifs. Dans la Sec-
tion 2.2, nous décrivons les conditions pour qu’un faisceau inversible soit très
ample ou engendré normalement. En particulier, nous montrons que les re-
lations attendues entre les propriétés d’être très ample ou d’être engendré
normalement se relèvent des fibres. Dans la Section 2.3, nous montrons les
deux résultats principaux qui sous-tendent les algorithmes pour calculer les
opérations arithmétiques sur les diviseurs :

Proposition 2.3.5. Soient S = Spec(R) et X/S une courbe relative, et
soient M et N deux OX-modules qui sont engendrés normalement. Alors

µ :H0(X,M )⊗H0(X,N )→ H0(X,M ⊗N )

est surjective.

Proposition 2.3.7. Soit X/S une courbe relative de genre g et soient M et
N deux faisceaux inversibles sur X, chacun de degré au moins 2g+ 1. Alors
tout diviseur de Cartier relatif effectif D sur X de degré au plus deg(M ) −
(2g + 1) satisfait l’équation

H0(X,M (−D)) =
(
H0(X,M ⊗OX N (−D)) : H0(X,N )

)
µ

par rapport à l’homomorphisme canonique µ de Proposition 2.3.5.

Dans le Chapitre 3 nous montrons que les Propositions 2.3.5 et 2.3.7 nous
permettent de décrire des algorithmes pour l’arithmétique des diviseurs qui
sont analogues à ceux présentés par Khuri-Makdisi [22]. Nous dérivons à
nouveau une sélection de ses algorithmes dans ce contexte plus général ; en
particulier nous donnons un algorithme qui calcule la somme de deux classes
de diviseurs dans Pic0

X(S).

Espaces de sections sur une surface algébrique
Soient C une courbe hyperelliptique de genre g > 2 et Sym2(C) le produit
symétrique de C. Soient ∞ ∈ C(k) un point Weierstrass sur une clôture
algébrique du corps de base k et D∞ = 2(∞). Soient pi :C × C → C pour
i = 1, 2 les deux applications de projection. Soient F = p∗1(D∞) + p∗2(D∞) le
diviseur fibral sur C × C et ∇ le diviseur anti-diagonal sur C × C. Notons
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γ = g − 1 et soient m > γ et r > 0. Les résultats principaux du Chapitre 4
sont les suivants. Dans le Théorème 4.5.11, nous montrons, sous certaines
conditions légères, qu’il existe une décomposition

H0(C × C,mF + r∇) ∼= H0(C2,mF )⊕
r⊕
i=1

H0(C, (2m− γi)D∞).

On obtient comme corollaire des formules qui décrivent la dimension de cet
espace comme une fonction de m et r. Par exemple, lorsque 2m − γr > γ,
on obtient

dimH0(C × C,mF + r∇) = (2m− γ)2 + 4mr − γr(r + 2).

D’une façon similaire, dans le Théorème 4.6.12 nous montrons, sous certaines
conditions légères, qu’il existe une décomposition

H0(Sym2(C), 2mΘS+r∇S) ∼= H0(Sym2(C), 2mΘS)⊕
r⊕
i=1

H0(P1, (2m−γi)(∞))

où 2ΘS et ∇S sont les images de F et ∇ sous la projection canonique
C × C → Sym2(C). Comme corollaire, on obtient des formules qui décrivent
la dimension de cet espace en fonction de m et r. Par exemple, lorsque
2m− γr > 0, on obtient

dimH0(Sym2(C), 2mΘS + r∇S) =
(

2m− γ + 1
2

)
+ r(2m+ 1)− γ

(
r + 1

2

)
.

Nous ne pouvons montrer les résultats dans le cas où 2m − γr = 0. Néan-
moins, nous conjecturons que les résultats se vérifient aussi dans ce cas. En
effet, l’algorithme présenté dans le Chapitre 5 nous permet de vérifier la
conjecture dans chaque cas particulier.

Dans le Chapitre 5, nous décrivons une décomposition de H0(C×C,mF )
par rapport aux espaces propres de l’action de la permutation de coordonnées
et nous nous en servons pour développer un algorithme qui produit une
base explicite pour l’espace H0(Sym2(C), 2mΘS + r∇S). Nous montrons
que l’algorithme reproduit, modulo une transformation projective linéaire,
la base bien connue de Cassels [7] et Flynn [12] qui décrit le plongement de
la jacobienne d’une courbe de genre deux dans P15. Nous montrons de plus
qu’il vérifie les formules de dimension du Chapitre 4 dans plusieurs cas. On
conclut avec une discussion brève des applications potentielles à la théorie
des codes sur les surfaces de la forme C × C et Sym2(C).
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Chapter 1

Geometric preliminaries

In this chapter we recall the background material and notation necessary for
the subsequent chapters. Most of the material presented in this chapter can
be found in Hartshorne [17], Liu [26] or Mumford [32].

1.1 Divisors and invertible sheaves
Let (X,OX) be a scheme and let KX be the sheaf of total quotient rings
(also called the sheaf of stalks of meromorphic functions) on X. We denote
by K ∗

X the sheaf of multiplicative groups of invertible elements of the sheaf
of rings KX . Similarly, we denote by O∗X the sheaf of groups of invertible
elements of the sheaf of rings OX . For any sheaf F on X, we will denote the
global sections of F by Γ(X,F ).

A Cartier divisor on X is a global section of the sheaf K ∗
X/O

∗
X . A Cartier

divisor can therefore be given as a system {(Ui, fi)}i∈I where {Ui}i∈I is an
open covering of X and the functions fi are sections of Γ(Ui,K ∗

X ) such that
for all (i, j) ∈ I × I, we have fi/fj ∈ Γ(Ui ∩ Uj,O∗X); that is, the ratio fi/fj
is a non-zero regular function on Ui∩Uj. Two such systems {(Ui, fi)}i∈I and
{(Vj, gj)}j∈J define the same Cartier divisor if fi/gj ∈ O∗X(Ui ∩ Vj) for all
(i, j) ∈ I × J .

The set of Cartier divisors Γ(X,K ∗
X/O

∗
X) onX will be denoted by Div(X);

it has a group structure defined as follows. Let D1 = {(Ui, fi)}i∈I and
D2 = {(Vj, gj)}j∈J be two Cartier divisors on X. Then the sum D1 + D2 is
given by {(Ui∩Vj, figj)}(i,j)∈I×J , the negative −D1 is given by {(Ui, f−1

i )}i∈I ,
and the identity element is {(X, 1)}.

The image of a non-zero rational function f ∈ Γ(X,K ∗
X ) in Γ(X,K ∗

X/O
∗
X)

is called a principal Cartier divisor and will be denoted by div(f). Two
Cartier divisors D1 and D2 are said to be rationally equivalent if their differ-



2 Geometric preliminaries

ence D1−D2 is a principal Cartier divisor, in which case we write D1 ∼rat D2.
The group of classes of Cartier divisors modulo the relation of rational equiv-
alence will be denoted by CaCl(X).

A Cartier divisor D = {(Ui, fi)}i∈I is said to be effective if fi ∈ Γ(Ui,OX)
for all i ∈ I.
Lemma 1.1.1. Let X be a Noetherian scheme of dimension 1. Given an
arbitrary Cartier divisor D, there exist non-zero effective divisors E1 and E2
such that D = E1 − E2

Proof. See Liu [26, Lemma 7.3.6].

An invertible sheaf on X is a locally free OX-module of rank one. To
a Cartier divisor D = {(Ui, fi)}i∈I we can associate an invertible subsheaf
OX(D) of KX , defined, for each i ∈ I, by

OX(D)|Ui = f−1
i OX |Ui .

A divisor D is effective if and only if OX(−D) ⊆ OX . If D is effective, we
denote by (D,OD) the closed subscheme of X associated to the invertible
sheaf of ideals OX(−D). For any invertible sheaf L , we denote by L (D)
the invertible sheaf L ⊗OX OX(D).

Let X be a smooth algebraic curve over a field k and let D = {(Ui, fi)}i∈I
be a Cartier divisor on X. As X is smooth, the local ring OX,x at a point x
of X is a discrete valuation ring. The order of D at x, denoted by ordx(D),
is defined as follows. For an open set Ui containing x, we set ordx(D) =
ordx(fi), where ordx(fi) is the valuation of fi in OX,x. One can check that
ordx(D) is independent of the choice of (Ui, fi). The degree of D, denoted by
deg(D), is the integer

deg(D) =
∑
x

ordx(D)[k(x) : k]

where the sum is over the closed points of X and k(x) denotes the residue
field OX,x/mx at x.
Proposition 1.1.2. Let X be a curve over a field k and let D be an effective
Cartier divisor on X. Then the degree of D satisfies

deg(D) = dim Γ(D,OD).

Proof. See Liu [26, Lemma 7.3.5].
Proposition 1.1.3. Let X be a curve over a field k and let D be a di-
visor on X. If Γ(X,OX(D)) 6= 0, then deg(D) > 0. Furthermore, if
dim Γ(X,OX(D)) 6= 0 and deg(D) = 0, then OX(D) ∼= OX .
Proof. See Hartshorne [17, Lemma IV.1.2].
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1.2 Cohomology of sheaves
Let X be a scheme and let F be a sheaf on X. We denote by H i(X,F ) the
ith cohomology group of F . The definition of H i(X,F ) is beyond the scope
of this work; see Hartshorne [17, Chapter III] or Liu [26, Chapter 5] for the
definition. We will collect here the main properties of the cohomology groups
of coherent sheaves on projective varieties.

Proposition 1.2.1. Let X be a scheme and let F be a sheaf on X. Then

H0(X,F ) ∼= Γ(X,F ).

Proof. See Hartshorne [17, Section III.2] or Liu [26, Proposition 5.2.6].

Proposition 1.2.2. Let X be a scheme and let

0→ F ′ → F → F ′′ → 0

be a short exact sequence of sheaves on X. Then for all i > 0 there exist
coboundary maps

δi :H i(X,F ′′)→ H i+1(X,F ′)
giving a long exact sequence of cohomology groups

0→ H0(X,F ′)→ H0(X,F )→ H0(X,F ′′)
δ0
→ H1(X,F ′)→ H1(X,F )→ H1(X,F ′′) δ1

→ · · ·
(1.1)

Proof. See Hartshorne [17, Section III.2].

Theorem 1.2.3. Let X be a projective scheme over a Noetherian ring A
and let F be a coherent sheaf on X. Then H i(X,F ) is a finitely generated
A-module for all i > 0.

Proof. See Hartshorne [17, Theorem III.5.2(a)].

Theorem 1.2.4. Let X be a projective variety of dimension n over an alge-
braically closed field k and let F be a coherent sheaf on X. Then

(i) dimkH
i(X,F ) = 0 for i > n.

(ii) (Serre Duality) Suppose moreover that X is nonsingular and that F
is locally free; write F∨ = HomOX (F ,OX). Then for all i, there is a
natural isomorphism

H i(X,F ) ∼= Hn−i(X,F∨ ⊗OX ωX)∨

where ωX = Ωn
X = ∧n Ω1

X denotes the canonical sheaf on X, and V ∨
denotes the dual of a finite vector space V .
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Proof. See Hartshorne [17, Theorem III.2.7] for (i) and Hartshorne [17, Corol-
lary III.7.7 and Corollary III.7.12] for (ii).

We will often write hi(X,F ) = dimkH
i(X,F ) when the base field is

clear from the context.

Theorem 1.2.5 (Künneth Formula). Let X and Y be projective varieties
and let F and G be quasi-coherent sheaves on X and Y respectively. Then
for all i > 0,

H i(X × Y, p∗1F ⊗ p∗2G ) ∼=
⊕
j+k=i

Hj(X,F )⊗Hk(Y,G )

where p1 :X × Y → X and p2 :X × Y → Y are the projection maps.

Proof. See Kempf [21, Proposition 9.2.4].

Recall that a morphism f : X → Y of schemes is called affine if there
exists a covering of Y by open affine sets {Vi} such that f−1(Vi) ⊆ X is
affine for all i; this is equivalent to the condition that, for any open affine
subset V ⊆ Y , the open set f−1(V ) is affine (see Hartshorne [17, Exercise
II.5.17(a)]).

Proposition 1.2.6. Let f :X → Y be a morphism of schemes and let F be
a sheaf on X. For all i > 0, there is a canonical homomorphism

H i(Y, f∗F )→ H i(X,F )

which is an isomorphism if F is quasi-coherent and either (i) X is separated,
and f is affine, or (ii) f is a closed immersion.

Proof. See Liu [26, Exercise 5.2.3].

Let X be a projective variety over a field k and let F be a coherent sheaf
on X. The Euler-Poincaré characteristic of F is defined to be

χ(F ) =
∑
i>0

(−1)ihi(X,F ).

By Theorems 1.2.3 and 1.2.4(i the Euler-Poincaré characteristic is always
finite. In particular, if X is a curve, then Theorem 1.2.4(i)

χ(F ) = h0(X,F )− h1(X,F ).

If L = OX(D) for some divisor D on X, then we will write χ(D) for χ(L ).
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Theorem 1.2.7 (Riemann-Roch). Let X be a projective curve over a field k
and let L be an invertible sheaf on X. Then there exists an integer deg(L )
such that

χ(L ) = deg(L ) + χ(OX) = deg(L ) + 1− g.

Proof. See Liu [26, Theorem 7.3.17 and Theorem 7.3.26] or Hartshorne [17,
Theorem IV.1.3].

Let X be a projective curve over a field k. The degree of an invertible
sheaf L on X is defined to be the integer

deg(L ) = χ(L )− χ(OX).

Note that, if L = OX(D) for a divisor D on X, then deg(L ) = deg(D).

Corollary 1.2.8. Let X be a projective curve over a field k and let L be an
invertible sheaf on X. If deg(L ) > 2g − 2, then

dim Γ(X,L ) = deg(L ) + 1− g.

Proof. See Liu [26, Remark 7.3.33].

1.3 Embeddings in projective space
Let S = ⊕

d∈Z Sd be a graded ring and let X = Proj(S). For any integer
n, let S(n) denote the twisted module ⊕d∈Z Sd+n. The OX-module OX(n) is
defined to be the sheaf associated to the graded module S(n). When n = 1,
we call OX(1) the twisting sheaf of Serre. For an arbitrary OX-module F ,
we define the nth twist of F to be F (n) = F ⊗OX OX(n). For simplicity, for
any sheaf F , we will write F n for F⊗n = F ⊗· · ·⊗F (n times) throughout
this work.

Proposition 1.3.1. Let S = ⊕
d∈Z Sd be a graded ring which is generated by

S1 as an S0-algebra and let X = Proj(S). Then we have the following:

(i) The sheaf OX(n) is invertible on X for all n.

(ii) For all m and n,

OX(m)⊗OX OX(n) ∼= OX(m+ n).

In particular, for any sheaf of OX-modules F

F (m)⊗OX OX(n) ∼= F (m+ n).
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(iii) Let T = ⊕
d∈Z Td be another graded ring which is generated by T1 as a

T0-algebra and let Y = Proj(T ). Let ϕ :S → T be a homomorphism of
graded rings (so degrees are preserved), let U ⊆ Y be the maximal open
subset of Y such that f :U → X is a morphism determined by ϕ. Then

f ∗(OX(n)) ∼= OY (n)|U and f∗(OY (n)|U) ∼= (f∗OU)(n).

Proof. See Hartshorne [17, Proposition II.5.12].

The graded S-module associated to an OX-module F is defined to be the
group

Γ∗(F ) =
⊕
n∈Z

Γ(X,F (n)).

This group is given the structure of a graded S-module as follows. Any
element s ∈ Sd determines a global section s ∈ Γ(X,OX(d)). Then given any
global section t ∈ Γ(X,F (n)), the product s · t ∈ Γ(X,F (n + d)) is given
by the image of s⊗ t under the isomorphism F (n)⊗OX OX(d) ∼= F (n + d)
of Proposition 1.3.1(ii). In particular, for any ring A, we have Γ∗(OPrA) =
A[x0, . . . , xr] (see Hartshorne [17, Proposition II.5.13]).

Let L be an invertible sheaf on a Y -scheme X → Y . Then L is said
to be very ample with respect to Y if there is an immersion ι :X → PrY for
some r > 1 such that ι∗(OPrY (1)) ∼= L . If L and M are very ample sheaves
on X with respect to Y , then L ⊗OX M is also very ample (see Hartshorne
[17, Exercise II.5.12]).

Let F be an OX-module on a scheme X. Then F is said to be generated
by global sections if there is a set of global sections

{s(i)}i∈I ⊆ Γ(X,F )

such that, for all x ∈ X, the stalk Fx of F at x is generated as an OX,x-
module by {s(i)

x }, where s(i)
x denotes the image of s(i) in Fx. For example,

if S = ⊕
d∈Z Sd is a graded ring which is generated by S1 as an S0-algebra,

and if X = Proj(S), then OX(1) is generated by S1 ⊆ Γ(X,OX(1)) (see
Hartshorne [17, Example II.5.16.3]).

Let X be a projective scheme over a Noetherian ring A and let L be
an invertible sheaf on X. Then L is said to be ample if, for every coherent
OX-module F , there is an integer n0 such that, for all n > n0, the sheaf
F ⊗OX L n can be generated by a finite number of global sections.

Theorem 1.3.2 (Serre). Let L be a very ample sheaf on a projective scheme
X over a Noetherian ring A. Then L is ample.

Proof. See Hartshorne [17, Theorem II.5.17].
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Theorem 1.3.3. Let X be a scheme of finite type over a Noetherian ring A
and let L be an invertible sheaf on X. Then L is ample if and only if L m

is very ample over Spec(A) for some m > 0.

Proof. See Hartshorne [17, Theorem II.7.6].

Theorem 1.3.4. Let A be a ring, let X be an A-scheme, and let PrA =
Proj(A[x0, . . . , xr]) be projective r-space over A.

(i) If ϕ : X → PrA is a morphism of A-schemes, then ϕ∗(OPrA(1)) is an
invertible sheaf on X which is generated by the global sections si =
ϕ∗(xi) for i = 0, . . . , r.

(ii) Conversely, suppose s0, . . . , sr ∈ Γ(X,L ) are global sections which gen-
erate an invertible sheaf L on X. Then there exists a unique morphism
ϕ :X → PrA of A-schemes such that L ∼= ϕ∗(OPrA(1)) and si = ϕ∗(xi).

Proof. See Hartshorne [17, Theorem II.7.1].

Corollary 1.3.5. A very ample sheaf is generated by global sections.

Proof. This follows directly from Theorem 1.3.4.

Proposition 1.3.6. Let X be a smooth projective curve of genus g over a
field k. Let L be an invertible sheaf on X.

(i) If deg(L ) > 2g, then L is generated by global sections.

(ii) If deg(L ) > 2g + 1, then L is very ample.

Proof. See Hartshorne [17, Corollary IV.3.2].

Proposition 1.3.7. Let A be a ring.

(i) If Y is a closed subscheme of PrA, then there is a homogeneous ideal
I ⊆ A[x0, . . . , xr] such that Y is the closed subscheme determined by I.

(ii) A scheme Y over Spec(A) is projective if and only if it is isomorphic
to Proj(S) for some graded ring S = ⊕

d∈Z Sd, where S0 = A and S is
finitely generated by S1 as an S0-algebra.

Proof. See Hartshorne [17, Corollary II.5.16].
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Let A be a ring and let X be a closed subscheme of PrA. The homogeneous
coordinate ring S(X) of X for the given embedding is defined to be

S(X) = A[x0, . . . , xr]/I

where I is the homogeneous ideal Γ∗(IX) associated to the ideal sheaf IX

of X. A scheme X is normal if its local rings are integrally closed domains.
A closed subscheme X ⊆ PrA is projectively normal for the given embedding
if its homogeneous coordinate ring S(X) is an integrally closed domain.

Let L be an ample invertible sheaf on a scheme X. Then L is said to
be normally generated if

Γ(X,L )⊗n → Γ(X,L ⊗n)

is surjective for all n > 1. This is equivalent to the condition that

Γ(X,L ⊗i)⊗k Γ(X,L ⊗j)→ Γ(X,L ⊗(i+j))

is surjective for all i, j > 1.

Theorem 1.3.8. Let X be smooth, complete curve of genus g over an alge-
braically closed field k. Let M and N be invertible sheaves on X such that
deg(M ) > 2g + 1 and deg(N ) > 2g. Then the map

Γ(X,M )⊗k Γ(X,N )→ Γ(X,M ⊗OX N )

is surjective.

Proof. See Mumford [31, Theorem 2.6].

Corollary 1.3.9. Let X be a smooth, complete curve of genus g over an
algebraically closed field k. If L is an invertible sheaf on X of degree
deg(L ) > 2g + 1, then L is normally generated.

Proof. See Mumford [31, Corollary to Theorem 2.6].

1.4 The Picard group
Proposition 1.4.1. If L and M are invertible sheaves on a ringed space
X, then so is L ⊗OX M . Let L be an invertible sheaf on X and define

L −1 = HomOX (L ,OX)

(this is the dual sheaf of L ). Then L −1 is an invertible sheaf on X and

L ⊗OX L −1 ∼= OX .
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Proof. See Hartshorne [17, Proposition II.6.12].

Let X be a ringed space. We define the Picard group of X, denoted
by Pic(X), to be the set of isomorphism classes of invertible sheaves on X.
Proposition 1.4.1 shows that Pic(X) is in fact a group under the operation
of tensor product of OX-modules with identity element OX .
Proposition 1.4.2. Let X be a scheme. Then we have the following:
(i) For any Cartier divisor D, the sheaf OX(D) is invertible. There is

a bijection between Div(X) and the set of invertible subsheaves of K
given by D 7→ OX(D).

(ii) For any two Cartier divisors D1 and D2 on X,
OX(D1 −D2) ∼= OX(D1)⊗OX OX(D2)−1.

(iii) Let D1 and D2 be two Cartier divisors on X. Then D1 ∼rat D2 if and
only if OX(D1) ∼= OX(D2) as invertible sheaves.

Proof. See Hartshorne [17, Proposition II.6.13].
Theorem 1.4.3. Let X be a scheme and define a map

ϕ :CaCl(X)→ Pic(X) by D 7→ OX(D).
Then ϕ is an injective homomorphism. If X is integral, then ϕ is an iso-
morphism.
Proof. See Hartshorne [17, Corollary II.6.14, Proposition II.6.15].

If X is a projective, flat S-scheme with integral geometric fibres, then the
Picard group of X has the structure of a scheme (see Kleiman [24, Theorem
4.8]). We denote by Pic0(X) the union of the connected components of the
identity of Pic(Xs) for s ∈ S.
Theorem 1.4.4. Let k be an algebraically closed field and let X be a smooth
projective variety over k. Then Pic0(X) is an abelian variety. If X is a
curve, then Pic0(X) is dual to the Jacobian of X.
Proof. See Kleiman [24, Remarks 5.24, 5.25 and 5.26].

A morphism of schemes f :X → Y induces a homomorphism
f ∗ :Pic(Y )→ Pic(X)

sending M on Y to f ∗M on X, which in turn induces a homomorphism
f ∗ :Pic0(Y )→ Pic0(X).

In particular, for any invertible sheaves L and M on Y ,
f ∗(L ⊗OX M ) ∼= f ∗L ⊗OY f

∗M . (1.2)
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1.5 Quotient varieties
Theorem 1.5.1. Let X be an variety over an algebraically closed field k and
let G be a finite subgroup of Aut(X). Suppose that, for any x ∈ X, the orbit
of x is contained in an affine open subset of X. Then there is a variety Y
and a morphism π :X → Y satisfying the following properties:
(i) As a topological space, Y is the quotient of X for the action of G; that

is, Y = X/G as a set and U ⊂ Y is open if and only if π−1(U) is open.

(ii) For any open affine set U ⊂ Y , we have

Γ(U,OY ) = Γ(π−1(U),OX)G

where Γ(π−1(U),OX)G denotes the elements of Γ(π−1(U),OX) fixed by
the action of G.

These conditions determine the pair (Y, π) up to isomorphism. The mor-
phism π is finite, surjective and separable. If X is affine, then so is Y .
Proof. See Mumford [32, Theorem 7.1].

The pair (Y, π) appearing in Theorem 1.5.1 is called the geometric quo-
tient of X by G.

Let G ⊆ Aut(X) be a finite group acting on X, let π :X → X/G be the
quotient, and let F be a coherent sheaf on X/G. For any g ∈ G, we have
π = π ◦ g and it follows that g induces an automorphism g∗ :π∗F → π∗F .
Hence G acts on π∗F in a manner compatible with the action on X. We
define a coherent G-sheaf on X to be a coherent OX-module on X on which
G acts in a manner compatible with the action on X.

Let F be a sheaf on X. Recall that the direct image of F is defined by
Γ(V, π∗F ) = Γ(π−1(V ),F ) for all open V ⊆ X/G. If F is a G-sheaf on X,
then, for all open V ⊆ X/G, the group G acts on Γ(π−1(V ),F ) and hence
π∗F is a G-sheaf on X/G since G acts trivially on X/G. For any G-sheaf
F on X we denote by π∗(F )G the sheaf on X/G defined by

V 7→ Γ(V, π∗F )G = Γ(π−1(V ),F )G.

The following result is a modification of Mumford [32, Proposition 7.2]
where we have removed the condition that G act freely, but we impose the
condition that L be locally free.
Proposition 1.5.2. Let π :X → X/G be the geometric quotient of a variety
X by a finite group of automorphisms G, and let L be a locally free sheaf on
X/G. Then L ∼= π∗(π∗L )G and, in particular,

Γ(X/G,L ) ∼= Γ(X, π∗L )G.
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Proof. We first reduce to the affine case as in the proof of Mumford [32, The-
orem 7.1]. For any x in X, let U ′ be an open affine subset of X containing the
orbit Gx of x. Then U = ⋂

g∈G gU
′ is an affine open subset of X containing

x which is stable under the action of G. Thus X has a covering of G-stable
affine open sets U . If the proposition holds for X and X/G affine, then
L (U) ∼= π∗(π∗L )G(U) for this covering and consequently L ∼= π∗(π∗L )G.

Now assume X = Spec(A) is affine, so X/G = Spec(B) with B = AG,
and let Γ(X/G,L ) = M . We have

Γ(X/G, π∗(π∗L )G) = Γ(X, π∗L )G ∼= (M ⊗B A)G ∼= MG,

so it suffices to prove that M = MG. As M is locally free, we can assume
that B is local and M is free, in which case the result follows from the fact
that (Br)G = (BG)r = Br for any r > 1.

Let X be a variety. The symmetric group Sn in n letters acts on the
n coordinates of the n-fold product Xn = X × · · · × X by permutation.
We define the nth symmetric product of X, denoted by Symn(X), to be the
geometric quotient of Xn by Sn; the symmetric product exists by Theorem
1.5.1. If X is a smooth curve, then Symn(X) will be smooth. Moreover the
effective divisors of degree d can be identified with points on Symd(X).

1.6 Abelian varieties
An abelian variety is a complete group variety. An abelian variety of di-
mension one is called an elliptic curve and an abelian variety of dimension
two is called an abelian surface. The group law on an abelian variety is al-
ways commutative (see Milne [27, Corollary 2.4]) and every abelian variety
is projective (see Milne [27, Theorem 7.1]). A morphism of abelian varieties
ϕ : A → B is a morphism of varieties that is also a group homomorphism
with respect to the group laws of A and B. If ϕ is finite and surjective it is
called an isogeny, and two abelian varieties are said to be isogenous if there
exists an isogeny between them.

Let L be an invertible sheaf on an abelian variety A. To L we associate
a map ϕL :A → Pic(A) defined by x 7→ τ ∗xL ⊗L −1, where τ ∗x :A → A is
the translation-by-x map on A. We define KL to be

KL = {x ∈ A | τ ∗xL ∼= L −1};

it is a reduced closed subscheme of A (see Milne [27, Section 9]). If L =
OA(D) for a divisor D on A, we write ϕD for ϕL and KD for KL .
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Theorem 1.6.1. Let A be an abelian variety of dimension g, and let L be
an invertible sheaf on A. Then

(i) The degree of ϕL is χ(L )2.

(ii) If dimKL = 0, then there exists a unique integer r = r(L ), 0 6 r 6 g,
such that H i(A,L ) = 0 for i 6= r and Hr(A,L ) 6= 0.

Proof. See Milne [27, Theorem 13.3].

There is a canonical way to attach an abelian variety to a curve, as
described in the following theorem.

Theorem 1.6.2. Let X be a smooth projective curve of genus g > 1 over a
field k. Then there exists an abelian variety JX over k and an injection

j :X → JX

(not necessarily defined over k) with the following properties:

(i) If j is extended linearly to divisors on X, then the induced group ho-
momorphism

Pic0(X)→ JX

is an isomorphism.

(ii) Let W0 be the subvariety {0} of JX and for each r > 1, define Wr to be
the image in JX of the map

Symr(X)→ JX

defined by

(P1, . . . , Pr) 7→
r∑
i=1

j(Pi).

Then dim(Wr) = min{r, g} and Wg is birationally equivalent to JX . In
particular, dim(JX) = g.

Proof. See Hindry and Silverman [18, Theorem A.8.1.1] for a sketch of the
above result. A more intrinsic account can be found in the survey of Milne
[28], who describes the variety JX as representing the functor Pic0.

The variety JX appearing in Theorem 1.6.2 is called the Jacobian of the
curve X and the map j is called the Abel-Jacobi map. The theta divisor on
JX is the divisor W g−1; it is effective and moreover ample (see Milne [28,
Section 6]).
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Remark 1.6.3. Note that, if X is defined over k, then JX will be defined
over k, however it may not be possible to define Abel-Jacobi map over k.
The injection j is defined by choosing a divisor D on X of degree one and
sending a point P on X to the class

j(P ) = [(P )−D]

where (P ) denotes the divisor corresponding to P . As D has degree one,
j(P ) has degree zero and hence gives a valid element of Pic0(X) ∼= JX . If X
has a known k-rational point P0, then taking D = (P0) allows one to define
j over k.

1.7 Hyperelliptic curves
Let k be a field and let X be a smooth, geometrically connected curve of
genus g > 2 over k. Then X is called a hyperelliptic curve if there exists a
finite separable morphism

κX :X → P1
k

of degree 2. A hyperelliptic curve X always comes endowed with a Cartier
divisor D0 such that dim Γ(X,OX(D0)) = deg(D0) = 2 (Liu [26, Lemma
7.4.8]), though D0 is not guaranteed to be defined over k, nor is D0 unique
(indeed, any divisor κ−1

X (u) for some rational point u ∈ P1
k will produce a

divisor of degree 2). All smooth geometrically connected curves of genus
2 are hyperelliptic (Liu [26, Proposition 7.4.9]), however when the genus is
greater than 2, being hyperelliptic becomes a rather special property.

Proposition 1.7.1. Let X be a hyperelliptic curve of genus g over a field
k. Let D0 be the divisor κ−1

X (∞) on X of degree 2. Then OX((g + 1)D0) is
normally generated. In particular, it is very ample and hence generated by
global sections. There exists a basis for Γ(X,OX((g + 1)D0)) of the form

{1, x, x2, . . . , xg, y, xg+1}

such that k(X) = k(x)[y] is the function field of X.

Proof. That OX((g+1)D0) is normally generated follows from Corollary 1.3.9
since deg(OX((g + 1)D0)) = 2(g + 1) > 2g + 1. That OX((g + 1)D0) is very
ample follows from Proposition 1.3.6(ii) and so it is generated by global
sections.

Since dim Γ(X,OX(D0)) = 2, it has a basis {1, x}. The set of functions
{1, x, . . . , xi} is linearly independent in Γ(X,OX(iD0)), hence

dim Γ(X,OX(iD0)) > i+ 1.
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Since deg((g + 1)D0) > 2g − 2, Corollary 1.2.8 implies that

dim Γ
(
X,OX((g + 1)D0)

)
= deg

(
(g + 1)D0

)
+ 1− g = g + 3.

Thus there exists a function y in Γ(X,OX((g+ 1)D0)) which is linearly inde-
pendent of the g+ 2 elements {1, x, x2, . . . , xg+1}, and the result follows.

The following proposition shows that the defining equations of a hyper-
elliptic curve have a rather rigid form.

Proposition 1.7.2. Let k be a field and let X/k be a hyperelliptic curve of
genus g.

(i) The function field of X is given by k(X) = k(x)[y] with the defining
relation

y2 + h(x)y = f(x) (1.3)
where h and f are polynomials in k[x] whose degrees are at most g + 1
and 2g+ 2 respectively. If, moreover, char(k) 6= 2, then we can assume
that h = 0.

(ii) The curve X is covered by the open affine schemes

U = Spec k[x, y]/
(
y2 + h(x)y − f(x)

)
V = Spec k[u, v]/

(
v2 + h′(u)v − f ′(u)

)
where h′(u) = h(1/u)ug+1 and f ′(u) = f(1/u)u2g+2 and the two patches
glue along the open sets D(u) ' D(x) with relations u = 1/x and
v = y/xg+1 (where D(u) is the basic open set Spec(OU(U)[1/u]) and
similarly for D(x)).

Proof. See Liu [26, Proposition 7.4.24].

An equation of the form (1.3) is called an affine model for a hyperelliptic
curve. If

y2 + h(x)y = f(x) and v2 + h′(u)v = f ′(u)

are two affine models for a hyperelliptic curve X of genus g > 2, then there
exists a matrix

(
a b
c d

)
∈ GL2(k), an element e ∈ k∗, and a polynomial H ∈

k[x] of degree at most g + 1 such that

u = ax+ b

cx+ d
and v = H(x) + ey

(cx+ d)g+1 (1.4)
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(see Liu [26, Corollary 7.4.33(a)]).
Let X be a hyperelliptic curve over k. The generator η of Gal(k(X)/k(x))

induces an automorphism of order 2 of X, also denoted by η, called the
hyperelliptic involution of X. The hyperelliptic involution of X is unique if
the genus ofX is at least 2 (Liu [26, Proposition 7.4.29]). The non-uniqueness
of the rational subfield of degree 2 and the corresponding involution in the
case of elliptic curves is the reason why elliptic curves are not generally
subsumed in the definition of hyperelliptic curves.
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Part I

Relative curves and their
Jacobians





Chapter 2

Divisors on relative curves

In this chapter we prove that natural generalisations of Khuri-Makdisi [22,
Lemmas 2.2 and 2.3] continue to hold in the case of relative effective Cartier
divisors on projective schemes which are smooth of relative dimension one
over an arbitrary affine Noetherian base scheme.

Throughout this chapter we fix a scheme S = Spec(R) where R is a
Noetherian ring. We use the following notation: let X be an S-scheme, let
s be a closed point of S and let L be sheaf on X. Denote the the maximal
ideal of the local ring OS,s by ms and its residue field by k(s) = OS,s/ms.
Denote the fibre of X above s by Xs = X ×S Spec k(s), the projection map
from Xs to X by ρs :Xs → X, and set Ls = ρ∗sL .

2.1 Relative effective Cartier divisors
We begin by recalling some facts about relative effective Cartier divisors.
This material can be found in Katz and Mazur [20, Chapter 1]. Let f :X → S
be an S-scheme. Recall (see Section 1.1) that an effective Cartier divisor is
a closed subscheme ι :D → X of X whose ideal sheaf is invertible. We call
D a relative effective Cartier divisor if f ◦ ι :D → S is flat.

The set of relative effective Cartier divisors on X is closed under the
usual sum of Cartier divisors. If T → S is another S-scheme, then for any
relative effective Cartier divisor D on X, the fibre DT = D×S T is a relative
effective Cartier divisor on XT = X ×S T . If f :Y → X is a flat morphism of
S-schemes, then f ∗(D) is a relative effective Cartier divisor on Y . The usual
correspondence between isomorphism classes of invertible sheaves and effec-
tive Cartier divisors carries over to a correspondence between isomorphism
classes of invertible sheaves flat over S and relative effective Cartier divisors.
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Proposition 2.1.1. Let X be a flat S-scheme of finite type and let D be an
effective divisor on X. Then D is a relative effective Cartier divisor on X if
and only if, for all geometric points Spec(k) → S, the closed subscheme Dk

is a relative effective Cartier divisor on Xk.

Proof. See Katz and Mazur [20, Corollary 1.1.5.2].

We now look more closely at the case where the fibres of X/S form a flat
family of smooth curves. We will call X/S a relative curve if X is a smooth
projective S-scheme of relative dimension one whose geometric fibres are
connected. Therefore X corresponds to a family of geometrically connected,
smooth, projective algebraic curves parametrised by S. A relative effective
Cartier divisor on a relative curve X/S is automatically proper over S.

Proposition 2.1.2. Let X/S be a relative curve and let L be an invertible
sheaf on X. Then the mapping

χ(L ) :S → Z defined by s 7→ χ(Ls)

is locally constant on S.

Proof. See Grothendieck [15, Théorème 7.4.3].

Proposition 2.1.2 shows that the genus map gX :S → Z sending s 7→ gXs
of a relative curve is locally constant where gXs denotes the genus of the
algebraic curve Xs. Hence by Riemann-Roch, the degree function deg(L ) :
S → Z defined by s 7→ deg(Ls) is locally constant on S. If D is a relative
effective Cartier divisor on X, then deg(D) is given by deg(OX(D)).

Proposition 2.1.3. Let X/S be a relative curve and let D1 and D2 be relative
effective Cartier divisors on X. Then

deg(D1 +D2) = deg(D1) + deg(D2).

Proof. See Katz and Mazur [20, Lemma 1.2.6].

Proposition 2.1.4. Let X/S be a relative curve and let D be a relative
effective Cartier divisor on X. Then for any S-scheme T , we have

deg(DT ) = deg(D).

Proof. See Katz and Mazur [20, Lemma 1.2.9].
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Proposition 2.1.5. Let X/S be a relative curve and let D and D′ relative
effective Cartier divisors on X satisfying D′ ⊂ D. Then there exists a relative
effective Cartier divisor D′′ such that D = D′ + D′′ and the degree of D′′
satisfies

deg(D′′) = deg(D)− deg(D′).

Proof. See Katz and Mazur [20, Section 1.3].

Proposition 2.1.6. Let X/S be a relative curve and let D and D′ be relative
effective Cartier divisors on X satisfying D′ ⊂ D. Then the cokernel of the
injection OX(D′)→ OX(D) is flat over S.

Proof. By Proposition 2.1.5 we have a relative effective Cartier divisor D′′ =
D −D′; let ι :D′′ → X be the embedding. Tensoring the exact sequence

0→ ID′′ → OX → ι∗OD′′ → 0

with OX(D) yields the exact sequence

0→ OX(D′)→ OX(D)→ OX(D)⊗ ι∗OD′′ → 0

because

ID′′ ⊗ OX(D) ∼= OX(−D′′)⊗ O(D) ∼= OX(D −D′′) ∼= OX(D′).

Hence the cokernel of OX(D′)→ OX(D) is given by OX(D)⊗ ι∗OD′′ , which
is flat because it is the tensor product of flat sheaves.

Proposition 2.1.7. Let R be a Noetherian ring, let S = Spec(R), let X/S
be a relative curve and let F be an OX-module which is flat over S. If
H1(X,F ) is a projective R-module, then so is H0(X,F ).

Proof. Let U = {Ui}i∈I be an open affine covering of X which is closed
under intersection. Since X is Noetherian we may assume that I is finite,
say I = {1, . . . , n}. Write Uij = Ui ∩ Uj. Consider the map of Čech modules

d0 :
n∏
i=1

H0(Ui,F )→
∏

16i<j6n
H0(Uij,F )

where d0 is the boundary map, defined by sending (fi)i∈I to the element
(fi|Uij − fj|Uij)16i<j6n. Then H0(X,F ) = Ker(d0) by definition and we
have H1(X,F ) = Coker(d0) since the higher cohomology groups vanish by
Theorem 1.2.4(i). Note that, since F is flat, the modules ∏n

i=1H
0(Ui,F )

and ∏16i<j6nH
0(Uij,F ) are finite direct products of flat R-modules and so

are flat over R.
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Now, since H1(X,F ) is projective, we obtain an exact sequence

0→ Im(d0)→
∏

16i<j6n
H0(Uij,F )→ H1(X,F )→ 0.

Hence Im(d0) is flat since both ∏H0(Uij,F ) and H1(X,F ) are flat. Thus,
from the induced short exact sequence

0→ H0(X,F )→
n∏
i=1

H0(Ui,F )→ Im(d0)→ 0,

we see that H0(X,F ) is flat since both ∏
H0(Ui,F ) and Im(d0) are flat.

Therefore H0(X,F ) is a finitely generated R-module (by Theorem 1.2.3)
and flat which implies it is projective (see Weibel [39, Theorem 3.2.7]).

Corollary 2.1.8. Let X/S be a relative curve and let D and D′ be relative
effective Cartier divisors on X satisfying D′ ⊂ D. If H1(X,OX(D)) = 0 and
H1(X,OX(D′) is projective, then the cokernel of the injection

ϕ :H0(X,OX(D′))→ H0(X,OX(D))

is projective.

Proof. Let F = OX(D)/OX(D′). From the short exact sequence of OX-
modules

0→ OX(D′)→ OX(D)→ F → 0

we obtain the long exact sequence

0→ H0(X,OX(D′)) ϕ→ H0(X,OX(D))→ H0(X,F )
→ H1(X,OX(D′))→ H1(X,OX(D))→ H1(X,F )→ 0.

Then H1(X,F ) = 0 since H1(X,OX(D)) = 0. Proposition 2.1.6 implies
that F is flat and so H0(X,F ) is projective by Proposition 2.1.7. Thus

H0(X,F ) ∼= Coker(ϕ)⊕H1(X,OX(D′))

since H1(X,OX(D′)) is projective. Therefore Coker(ϕ) is projective.

All the modules with which we will be dealing in the remainder of this
chapter are either global sections of a relative effective Cartier divisor, or
the cokernel of a homomorphism between such modules. Together, Proposi-
tion 2.1.7 and Corollary 2.1.8 show that all such modules are projective.
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2.2 Criteria for very ampleness
Let f :X → Y be a morphism of schemes and let F be a coherent sheaf on
X. Then the ith higher direct image of F is the sheaf Rif∗(F ) associated
to the presheaf

V 7→ H i(f−1(V ),F |f−1(V ))

on Y . The most important property of Rif∗(F ) for our purposes is given by
the following proposition.

Proposition 2.2.1. Let X be a Noetherian scheme, let Y = Spec(A) be an
affine scheme, and let f :X → Y be a morphism. Then for any quasi-coherent
OX-module F on X, we have

Rif∗(F ) ∼= H i(X,F )∼

where H i(X,F )∼ denotes the sheaf on Y associated to the A-module H i(X,F ).

Proof. See Hartshorne [17, Chapter III, Proposition 8.5].

Theorem 2.2.2. Let f : X → S be a projective morphism of Noetherian
schemes and let F be a coherent sheaf on X which is flat over S. Let s be a
point in S.

(i) If the natural map

ϕ(s)i :Rif∗(F )⊗ k(s)→ H i(Xs,Fs)

is surjective, then it is an isomorphism in a neighbourhood of s.

(ii) If ϕ(s)i is surjective, then the following conditions are equivalent.

(a) ϕ(s)i−1 is surjective;
(b) Rif∗(F ) is locally free in a neighbourhood of s.

Proof. See Hartshorne [17, Chapter III, Theorem 12.11].

Proposition 2.2.3. For 0 < i < n and all d ∈ Z we have

H i(PnS,OPnS(d)) = 0.

Proof. See Hartshorne [17, Chapter III, Theorem 5.1(b)].

The following two lemmas give convenient reformulations of Nakayama’s
Lemma (see Atiyah and Macdonald [1, Proposition 2.6]).
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Lemma 2.2.4. Let A be a ring and let M be a finitely generated A-module.
If M/mM = 0 for all maximal ideals m of A, then M = 0.

Proof. We have M = 0 if and only if Mm = 0 for all maximal ideals m of
A, so we reduce to the case where A is local. Then m coincides with the
Jacobson radical of A and so the result follows by Nakayama’s Lemma.

Lemma 2.2.5. Let A be a ring, let u : M → N be a homomorphism of
A-modules, and assume that N is finitely generated. If the induced homo-
morphisms um :M/mM → N/mN are surjective for all maximal ideals m of
A, then u is surjective.

Proof. By assumption N/u(M) ⊗ A/m = 0 for all maximal ideals m ⊂ A,
hence u(M) = N by Lemma 2.2.4.

Lemma 2.2.6. For all d > 1 we have

H1(P1
S,OP1

S
(d)) = 0.

Proof. Let s be a closed point of S and let k = k(s). Then by Theo-
rem 1.2.4(ii), we have

H1(P1
k,OP1

k
(d)) = H0(P1

k, ωP1
k
⊗ OP1

k
(−d)) = 0

where ωP1
k
is the canonical sheaf on P1

k, and so the natural map

π : H1(P1
S,OP1

S
(d))→ H1(P1

k,OP1
k
(d))

is (trivially) surjective. Then Theorem 2.2.2(i) implies that π is an isomor-
phism and so H1(P1

S,OP1
S
(1)) ⊗ k(s) = 0 for all closed s. The result then

follows from Lemma 2.2.4.

Proposition 2.2.7. Let X/S be a relative curve and let L be a very ample
invertible sheaf on X/S. Then H1(X,L ) = 0.

Proof. As L is very ample we have L ∼= ι∗OPn(1) for some n > 1. Then

H1(X,L ) ∼= H1(Pn, ι∗ι∗OPn(1)) ∼= H1(Pn,OPn(1)) = 0

where the last equality follows from Proposition 2.2.3 when n > 2 from and
Lemma 2.2.6 when n = 1.

Proposition 2.2.8. Let f : X → S be a relative curve over S = Spec(R)
and let L be a very ample invertible sheaf on X. Then for all closed points
s ∈ S, we have

H0(X,L )⊗R k(s) ∼= H0(Xs,Ls).
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Proof. Let s be a closed point in S. We have H1(X,L ) = 0 by Propo-
sition 2.2.7 so R1f∗(L ) and H1(Xs,Ls) are zero. Hence ϕ(s)1 is (triv-
ially) surjective and R1f∗(L ) is (trivially) locally free at s. Thus ϕ(s)0 :
R0f∗(L )⊗ k(s)→ H0(Xs,Ls) is surjective by Theorem 2.2.2(ii) and there-
fore an isomorphism by Theorem 2.2.2(i). Taking global sections we see that
H0(X,L )⊗ k(s) ∼= H0(Xs,Ls) as required.

Let L be a locally free coherent sheaf on a Noetherian scheme X. Let
Symd(L ) denote the dth symmetric tensor product of L and let S =⊕
d>0 Symd(L ) be the symmetric algebra of L . It is a sheaf of OX-algebras.

The projective space bundle of L is defined to be the global Proj of S , and
is denoted by P(L ).

Proposition 2.2.9. Let f :X → S be a quasi-compact morphism and let L
be an invertible sheaf on X. Then L is very ample if and only if

(i) the canonical map f ∗f∗L → L is surjective, and

(ii) the induced map X → P(f∗L ) is an immersion.

Proof. See Grothendieck [14, Proposition 4.4.4]

Corollary 2.2.10. Let f :X → S be a quasi-compact morphism of schemes
and let L be an invertible sheaf on X. Then L is very ample if and only
if there exists an open covering {Uα} of S such that L |f−1(Uα) is very ample
relative to Uα for all α.

Proof. See Grothendieck [14, Corollaire 4.4.5].

Proposition 2.2.11. Let X/S be a scheme and let L and L ′ be very ample
OX-modules. Then L ⊗L ′ is very ample.

Proof. See Grothendieck [14, Corollaire 4.4.9(ii)].

Proposition 2.2.12. Let f : X → S be a relative curve, let L be an invert-
ible sheaf on X. Then L is very ample if and only if Ls is very ample for
all closed points s ∈ S.

Proof. Suppose L is very ample and let s ∈ S be a closed point. By definition
L induces a closed immersion ι :X → PnS such that L ∼= ι∗OPnS(1). Very
ampleness is local on S by Corollary 2.2.10, so Ls

∼= (ι × idk(s))∗OPn
k(s)

(1)
gives a closed immersion and hence Ls is very ample.

To see the converse, we check the conditions of Proposition 2.2.9, noting
that they hold on each closed fibre. Since f ∗s (fs)∗Ls → Ls is surjective,
it is surjective on stalks. Hence f ∗f∗L → L is surjective on stalks by
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Nakayama’s Lemma and is thus surjective. Secondly, iLs :Xs → P((fs)∗Ls) is
a closed immersion for each closed s ∈ S and H0(X,L )⊗k(s) ∼= H0(Xs,Ls)
follows from Proposition 2.2.8. Hence P((fs)∗Ls) ∼= P(f∗L )×Spec(k(s)) for
all closed s and so iL : X → P(f∗L ) is a closed immersion.

Corollary 2.2.13. Let X/S be a relative curve of genus g and let L be an
invertible sheaf on X. If deg(L ) > 2g + 1, then L is very ample.

Proof. The lower bound on the degree implies that Ls is very ample for all
closed points s ∈ S by Riemann-Roch. Hence L is very ample by Proposi-
tion 2.2.12.

2.3 Tensor products and sheaf quotients
In this section we prove Propositions 2.3.5 and 2.3.7, which form the ba-
sis of all the algorithms for performing divisor arithmetic described in the
next chapter. These two propositions are generalisations of Khuri-Makdisi
[22, Lemmas 2.2 and 2.3] to the case of relative curves. Given a very ample
sheaf L on a relative curve X over Spec(R), these two propositions amount
to a description of the R-algebra structure of the homogeneous coordinate
ring ⊕i>1H

0(X,L i) of X with respect to the embedding by L . Proposi-
tions 2.3.5 will be realised explicitly in Algorithm 3.4.1 and Proposition 2.3.7
in Algorithm 3.4.2.

Recall that an ample invertible sheaf L on a relative curve X/S is nor-
mally generated if the maps

H0(X,L )⊗d → H0(X,L d)

are surjective for all d > 1.
The following proposition is a direct generalisation of a proof of Mumford

[31, pp38–39].

Proposition 2.3.1. Let X/S be a relative curve and let L be an invertible
sheaf on X. If L is normally generated, then it is very ample.

Proof. Let L be normally generated. As L is ample we obtain morphisms

ϕL :X → Pm and ϕL d :X → Pn

for all d > 1. The d-uple embedding of Pm is a morphism vd : Pm → Pm′

where m′ =
(
m+d
m

)
− 1. We can identify Pn with a subspace of Pm′ via the

surjections
H0(X,L )⊗d → H0(X,L d).
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We thus obtain the following commutative diagram:

X
ϕ

Ld
//

ϕL

��

Pn

��

Pm vd
// Pm′

As L is ample, L d is very ample for all sufficiently large d and hence ϕL d

is a closed immersion for all sufficiently large d. Hence, from the diagram we
see that L is also a closed immersion and is thus very ample.

Proposition 2.3.2. Let X/S be a relative curve and let L be an invertible
sheaf on X. Then L is normally generated if and only if L is very ample
and the natural maps

H0(Pn,OPn(d))→ H0(X,L d)

are surjective for all d > 1.

Proof. If L is normally generated, then it is very ample by Proposition 2.3.1.
For all d > 1, we have canonical isomorphisms

H0(Pn,OPn(d)) ∼= H0(Pn,OPn(1))⊗d ∼= H0(X,L )⊗d.

Hence, for all d > 1, we see that H0(X,L )⊗d → H0(X,L ⊗d) is surjective if
and only if H0(Pn,OPn(d))→ H0(X,L ⊗d) is surjective.

Proposition 2.3.3. Let X/S be a relative curve of genus g and let L be an
invertible sheaf on X. If deg(L ) > 2g + 1, then L is normally generated.

Proof. The lower bound on the degree implies L is very ample by Proposi-
tion 2.2.13. Then by Proposition 2.3.2 it remains to prove that

ϕ∗L : H0(Pn,OPn(d))→ H0(X,L d)

is surjective for all d > 1. For any closed point s of S we have a commutative
diagram

H0(Pn,O(d))
ϕ∗L //

��

H0(X,L d)

��

H0(Pnk(s),O(d)s)ϕ∗Ls

// H0(Xs,L d
s )

where the map ϕ∗Ls
is surjective by Proposition 2.3.2 because Ls is normally

generated by Corollary 1.3.9, and the vertical maps arise from taking tensor
products with k(s). As this holds for all closed points, we see that ϕ∗L is
surjective by Lemma 2.2.5.
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Lemma 2.3.4. The natural map

H0(PmS ,OPmS (1))⊗H0(PnS,OPnS(1))→ H0(PmS × PnS,OPmS ×P
n
S
(1))

is surjective.

Proof. Let p1 :Pm × Pn → Pm and p2 :Pm × Pn → Pn be the projection maps.
We have

p∗1OPmS (1)⊗ p∗2OPnS(1) ∼= OPmS ×P
n
S
(1)

(see Hartshorne [17, Chapter II, Exercise 5.2]), so it suffices to prove that

H0(PmS ,OPmS (1))⊗H0(PnS,OPnS(1))→ H0(PmS × PnS, p∗1OPmS (1)⊗ p∗2OPnS(1))
(2.1)

is surjective. Let s be a closed point of S and let k = k(s). Then Theo-
rem 1.2.5 implies that the map

H0(Pmk ,OPm
k

(1))⊗H0(Pnk ,OPn
k
(1))→ H0(Pmk × Pnk , p∗1OPm

k
(1)⊗ p∗2OPn

k
(1)),

obtained by tensoring (2.1) with k, is an isomorphism. Hence (2.1) is surjec-
tive by Lemma 2.2.5.

Proposition 2.3.5. Let X/S be a relative curve and let M and N be nor-
mally generated sheaves on X/S. Then

µMN :H0(X,M )⊗H0(X,N )→ H0(X,M ⊗N ) (2.2)

is surjective.

Proof. By Proposition 2.3.2 there exist integers m and n such that the maps

H0(Pm,OPm(1))→ H0(X,M ) and H0(Pn,OPn(1))→ H0(X,N )

are surjective. Now M ⊗ N is very ample by Proposition 2.2.11 and the
embedding it defines factors through the Segre embedding, hence the map

H0(Pm × Pn,OPm×Pn(1))→ H0(X,M ⊗N )

is surjective. But

H0(Pm,OPm(1))⊗H0(Pn,OPn(1))→ H0(Pm × Pn,OPm×Pn(1))

is surjective by Lemma 2.3.4, and so we obtain a commutative diagram

H0(Pm,OPm(1))⊗H0(Pn,OPn(1)) //

��

H0(X,M )⊗H0(X,N ) //

µ

��

0

H0(Pm × Pn,OPm×Pn(1)) // H0(X,M ⊗N ) // 0

where all maps except µ are known to be surjective. Thus µ is surjective.
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Combining Propositions 2.3.3 and 2.3.5 we see that, if M and L have
sufficiently large degrees, then H0(X,M ) and H0(X,N ) contain all the
information needed to describe H0(X,M ⊗N ), which in turn completely
describes M ⊗N .

For any submodules N ′ ⊆ N and P ′ ⊆ P , define the module quotient
of P ′ by N ′ with respect to a homomorphism µ : M ⊗N → P to be the
submodule

(P ′ : N ′)µ = {m ∈M | µ(m⊗N ′) ⊆ P ′}

of M . (Similarly, one can define (P ′ : M ′)µ ⊆ N for a submodule M ′ of M ,
but we will not need this.) We will often drop µ from the notation when
it clear from the context. By definition the module quotient satisfies the
following property: for any submodule M ′ ⊆ M , if µ(M ′ ⊗ N) ⊆ P ′, then
M ′ ⊆ (P ′ : N ′).

Proposition 2.3.6. Let X/S be a relative curve of genus g and let s be a
closed point of S. Let Ms and Ns be invertible sheaves on Xs and assume
Ns is generated by global sections. Then for any divisor D on Xs, we have

H0(Xs,Ms(−D)) =
(
H0(Xs,Ms ⊗Ns(−D)) : H0(Xs,Ns)

)
µMsNs

with respect to the canonical map

µMsNs :H0(Xs,Ms)⊗H0(Xs,Ns)→ H0(Xs,Ms ⊗Ns).

Proof. See Khuri-Makdisi [22, Lemma 2.3].

Proposition 2.3.7. Let X/S be a relative curve of genus g and let M and
N be invertible sheaves on X, each of degree at least 2g + 1. Then for any
relative effective Cartier divisor D on X of degree at most deg(M )−(2g+1),
we have

H0(X,M (−D)) =
(
H0(X,M ⊗OX N (−D)) : H0(X,N )

)
µMN

with respect to the canonical homomorphism µMN of (2.2).

Proof. Let s be a closed point of S. Let

M = H0(X,M ), N = H0(X,N ), P = H0(X,M ⊗N )
M ′ = H0(X,M (−D)), and P ′ = H0(X,M ⊗N (−D)).

Note that P ′ ∼= H0(X,M (−D)⊗N ). Denote the corresponding modules on
the fibre of X over s by a subscript s; for example M ′

s = H0(Xs,M (−D)s).
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We have a homomorphism µ :M ′ ⊗N → P ′ obtained from µ :M ⊗N →
P by restriction. This induces a homomorphism which, after applying Propo-
sition 2.2.8, is given by µ :M ′

s ⊗Ns → P ′s. Then Proposition 2.3.6 gives the
equality

M ′
s = (P ′s : Ns). (2.3)

Now, by the definition of the module quotient we have

M ′ ⊆ (P ′ : N). (2.4)

Applying Proposition 2.2.8, we obtain an induced homomorphism(
(P ′ : N)⊗ k(s)

)
⊗Ns → P ′s,

and so by (2.3) we have

(P ′ : N)⊗ k(s) ⊆ (P ′s : Ns) = M ′
s. (2.5)

Hence, combining (2.4) with (2.5), we obtain (P ′ : N)/M ′ ⊗ k(s) = 0 for all
closed points s ∈ S and so (P ′ : N) = M ′ by Lemma 2.2.4.



Chapter 3

Divisor arithmetic on relative
Jacobians

In this chapter we describe how to perform arithmetic of relative effective
Cartier divisors on a relative curve. The choice of base ring is limited only
by the presence of effective linear algebra functions; we formalise this notion
in Section 3.2. In Section 3.3 to describe how to calculate homomorphic
images of modules and module quotients with respect to a given bilinear
map. This leads to the algorithmic realisation of Propositions 2.3.5 and 2.3.7
in Section 3.4. Finally, these algorithms are used to describe arithmetic of
divisors on relative curves in Section 3.5, and on relative Jacobians of relative
curves in Section 3.6, in a manner directly analogous to the algorithms of
Khuri-Makdisi [22].

3.1 Complexity analysis
Let A = R[x1, . . . , xs] be a multivariate polynomial ring with real coefficients
and let f be an element of A. The big O class of f , denoted by O(f), is
defined to be the set consisting of the polynomials g ∈ A which satisfy the
following condition: there exist Mg, Cg ∈ R such that |g(m1, . . . ,ms)| 6
Cg|f(m1, . . . ,ms)| for all (m1, . . . ,ms) ∈ Rs satisfying mi > Mg for all i =
1, . . . , s.

LetM be a projective R-module. ThenM is locally free and so there is a
map rankM :Spec(R)→ N defined by rankM(p) = rank(Mp) where rank(Mp)
is the rank of the free Rp-module Mp. The map rankM is locally constant
on Spec(R), and, since R is Noetherian, takes on finitely many values on X.
We define the size of M to be max{rankM(p) | p ∈ Spec(R)}. The example
to keep in mind is of a free module Rm where the size is simply m.
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The space complexity of an R-module is an estimation of the amount of
storage space required to represent it. In the following sections, the space
complexity will be estimated relative to the sizes of certain fixed projective
modules.

By the time complexity of a procedure, we mean the asymptotic num-
ber of arithmetic operations in the base ring R required by the procedure
to execute, where an operation in the base ring R is an addition, subtrac-
tion, multiplication, division by a unit and assignment of elements of R. We
will always assume that multiplications and divisions by units are asymp-
totically more expensive than additions, subtractions and assignments. The
performance of the algorithms we discuss will be expressed in terms of the
time complexity of the steps that constitute them as a function of the space
complexity of the input.

LetM be a projective R-module of size m. We will assume that the space
complexity of M is in O(m). If N is a second projective R-module of size n,
we will assume that the space complexity of a homomorphism ϕ :M → N is
in O(mn). This is analogous to the case of a homomorphism ϕ :Rn → Rm

between free modules being represented by an m× n matrix.
A finitely generated submodule N of a projective module M of size m

will always be given as a homomorphic image; that is Im(ϕ) = N for some
homomorphism ϕ : Rn → M . We will often write simply N ⊆ M leaving
the homomorphism defining N implicit. By rights, the space complexity
of the submodule N is the space complexity of its defining homomorphism,
which is in O(mn). However, we will make a further assumption that the
space complexity of N is in O(m2). This assumption will always hold in the
applications in Sections 3.4, 3.5 and 3.6 and serves to considerably simplify
the expressions describing the time complexities of the algorithms.

3.2 Amenable rings
There are several operations that we need to perform projective R-modules,
their finitely generated submodules, and homomorphisms between them.
Here we give a name to those rings for which the module operations can
be computed. We will say that a ring R is amenable if we can perform ex-
act arithmetic on elements of R, and the following functions are effectively
computable on projective R-modules and homomorphisms between them:

Dual: Given a homomorphism ϕ :M → N , return the dual homomorphism
between the dual modules ϕ∨ :N∨ →M∨ where M∨ = Hom(M,R). If
the space complexities of M and N are in O(m) and O(n) respectively,
then we assume that the space complexities of M∨, N∨ and ϕ∨ are in



3.2 Amenable rings 33

O(m), O(n) and O(mn) respectively, and that the computation of ϕ∨
has time complexity in O(mn).

Composite: Given homomorphisms ϕ : M → N and ψ : N → P , return
the homomorphism ψ ◦ ϕ :M → P . If the space complexities of M , N
and P are in O(m), O(n), and O(p) respectively, then we assume that
the space complexity of ψ ◦ϕ is in O(mp) and that the computation of
ψ ◦ ϕ has time complexity in O(mnp).

Kernel: Given a homomorphism ϕ : M → N , return a homomorphism
κ : K → M for some K such that Im(κ) = Ker(ϕ). If the space
complexities of M and N are in O(m) and O(n) respectively, then we
assume that K has space complexity in O(m), so κ has space complex-
ity in O(m2). We denote the time complexity to compute Ker(ϕ) by
K(m,n).

Common kernel: Given homomorphisms ϕi : M → N for i = 1, . . . , r,
return the common kernel ⋂ri=1 Ker(ϕi) of the ϕi. If the space com-
plexities of M and N are in O(m) and O(n) respectively, then we
assume that the space complexity of the common kernel is in O(m2).
We denote the cost of computing the common kernel by CK(r,m, n).

Sum: Given submodulesM1 ⊆M andM2 ⊆M , return the sumM1 +M2 ⊆
M . If the space complexity of M is in O(m), then the space complex-
ities of M1 and M2 will be in O(m2) and we assume that the space
complexity of M1 +M2 is in O(m2). We denote the time complexity of
computing M1 +M2 by S(m).

Note that the assumptions for the number operations of each of the func-
tions above are inspired by the analogous case of homomorphisms between
free modules given by matrices. Of course the correctness of the following
algorithms is not effected in case these assumptions fail to hold for a given
amenable ring.

As the primary application is to finite rings, we have made no attempt to
analyse the size of intermediate expressions of the algorithms, although this
can certainly play a significant role for calculations over infinite rings. Where
applicable, working in a quotient ring or employing appropriate variants of
the LLL algorithm are common techniques for controlling intermediate ex-
pression swell. See Cohen [9, Chapter 2] for some examples over the integers.

For the remainder of this section we provide a brief survey of some rings
which are known to be amenable. Cohen [9] discusses the two “classical”
amenable rings, namely fields with exact arithmetic and the ring of integers



34 Divisor arithmetic on relative Jacobians

(or indeed any domain with exact arithmetic and an effectively computable
Euclidean function).

Recall that a principal ideal ring is ring in which every ideal is principal;
such a ring need not be a domain in general. The work of Storjohann [37],
Mulders and Storjohann [29] and Buchmann and Neis [5] shows that a large
class of principal ideal rings and their quotients are amenable. This class
includes all finite semi-local rings, and in particular, quotients of discrete
valuation rings.

The work of Bosma and Pohst [3], Cohen [10] and Neis [33] shows that
Dedekind domains are amenable. Caruso and Lubicz [6] have announced
algorithms that make certain quotients of the ring Zp [[u]] amenable.

3.3 Arithmetic of modules
In this section we describe the algorithms that allow us to evaluate a given
homomorphism µ :M ⊗N → P between projective modules M , N and P ,
and to compute the module quotient (also known as the colon module; not
to be confused with a quotient module) with respect to µ.

The following operations are described for vector spaces by Khuri-Makdisi
[23, Definition 2.5] and algorithms are given by [23, Proposition 2.6]. (Note
that Khuri-Makdisi provides several different representations of µ in [23,
Section 2]; we follow what he calls “Representation A”.) We will describe
the analogous operations and algorithms for finitely generated submodules
of fixed projective R-modules.

Throughout the remainder of this section we suppose given fixed projec-
tive R-modules M , N and P , and a homomorphism

µ :M ⊗R N → P.

Any element x in M induces a homomorphism

µx :N → P defined by µx(y) = µ(x⊗ y).

Similarly, we obtain a homomorphism µy :M → P for any element y in N .
If {xi | i = 1, . . . ,m}, {yj | j = 1, . . . , n} and {zk | k = 1, . . . , p} are fixed

generating sets for M , N and P respectively, then µ can be given as follows:
For all i = 1, . . . ,m and j = 1, . . . , n, there exist elements aijk ∈ R such that

µ(xi ⊗ yj) =
∑
k

aijkzk.

The (j, k) entry of the underlying matrix of µxi will then be aikj. Similarly
the (i, k) entry of the underlying matrix of µyj will be akji.
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Throughout we assume that M , N , and P have sizes m, n and p respec-
tively. Then µ has space complexity in O(mnp) and µx has space complexity
in O(np) for all x ∈ M . We assume that the time complexity to derive µx
from µ is O(mnp).

Let M ′ ⊆M and N ′ ⊆ N be submodules of M and N . Since µ is linear,
the image of M ′ ⊗ N ′ under µ is generated by the set {µ(si ⊗ tj)} were
M ′ = 〈s1, . . . , sm′〉 and N ′ = 〈t1, . . . , tn′〉. The following algorithms show
how to compute this image µ(M ′ ⊗N ′).

The following algorithm is analogous to Khuri-Makdisi [23, Algorithms
2.6(1) and 2.6(2)].

Algorithm 3.3.1 (Simple product). Given a submodule N ′ ⊆ N and an
element x of M , the following algorithm calculates the submodule µ(x⊗N ′)
of P . If the space complexity of N ′ is in O(n2), then the time complexity of
the algorithm is in O(np(m + n)) and the space complexity of µ(x ⊗ N ′) is
in O(p2).

1. Compute the multiplication-by-x homomorphism µx : N → P .

2. Return µx(N ′).

Proof. Clearly µx(N ′) = µ(x⊗N ′), which is the result of step 2.
The time complexity of the computation of µx in step 1 is in O(mnp) by

assumption. The computation of µx(N ′) in step 2 is the composite of µx and
N ′ having space complexities in O(np) and O(n2) respectively. Hence step 2
has a time complexity in O(n2p). Thus the time complexity of the algorithm
is in O(np(m + n)). The space complexity of µx(N ′) ⊆ P is in O(p2) by
assumption.

The following algorithm is analogous to that of Khuri-Makdisi [23, Algo-
rithm 2.6(3)].

Algorithm 3.3.2 (General product). Given submodules M ′ ⊆M and N ′ ⊆
N , the following algorithm calculates the submodule µ(M ′⊗N ′) of P . If the
space complexities of M ′ and N ′ are in O(m2) and O(n2) respectively, then
the time complexity of the algorithm is in O(mnp(m+ n) +mS(p)) and the
space complexity of µ(M ′ ⊗N ′) is in O(p2).

1. Let {g1, . . . , gm′} be a generating set for M ′ where m′ ∈ O(m).

2. For each i = 1, . . . ,m′, compute the image µ(gi ⊗ N ′) of N ′ under
multiplication-by-gi using Algorithm 3.3.1.

3. Return the sum ∑m′

i=1 µ(gi ⊗N ′).
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Proof. In step 2, we compute µ(gi ⊗ N ′) ⊆ P for each i = 1, . . . ,m′. Then
step 3 calculates

m′∑
i=1

µ(gi ⊗N ′) = µ(M ′ ⊗N ′).

There are m′ ∈ O(m) calls to Algorithm 3.3.1 in step 2; hence the time
complexity of step 2 is in O(mnp(m + n)). The space complexity of each
submodule µ(gi ⊗ N ′) is in O(p2), as is the sum of two such modules, so
the time complexity to calculate the sum in step 3 is in O(mS(p)) and the
space complexity of the result is in O(p2). The time complexity of the whole
algorithm is thus in O(mnp(m+ n) +mS(p)).

The following algorithm computes the module quotient (P ′ : N ′)µ of
submodules P ′ ⊆ P and N ′ ⊆ N . It is analogous to that of Khuri-Makdisi
[23, Algorithm 2.6(4)].

Algorithm 3.3.3 (Module quotient). Given finitely generated projective
submodules N ′ ⊆ N and P ′ ⊆ P where P ′ is a direct summand of P , the
following algorithm calculates the submodule (P ′ : N ′) of M . If the space
complexities of N ′ and P ′ are in O(n2) and O(p2) respectively, then the time
complexity of the algorithm is in O(mnp(n+ p) + K(p, p) + CK(n,m, p)) and
the space complexity of (P ′ : N ′) is in O(m2).

1. Let χ :Rp′ → P be such that Im(χ) = P ′ and p′ ∈ O(p).

2. Form the dual χ∨ :P∨ → Rp′ of χ.

3. Compute the kernel κ :Rk → P∨ of χ∨.

4. Take the dual of κ to obtain κ∨ :P → Rk.

5. Let {g1, . . . , gn′} be a generating set for N ′ where n′ ∈ O(n).

6. For each i = 1, . . . , n′, compute the multiplication-by-gi homomorphism
µgi :M → P .

7. For each i = 1, . . . , n′, compute the composite κ∨ ◦ µgi :M → Rk.

8. Return the intersection of the kernels ⋂n′i=1 Ker(κ∨ ◦ µgi).

Proof. Let θ :K →M be the intersection calculated in step 8, that is

θ(K) =
n′⋂
i=1

Ker(κ∨ ◦ µgi).
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We need to show that θ(K) = (P ′ : N ′)µ. First, steps 2 and 3 construct a
sequence

Rk κ // P∨
χ∨

// Rp′ (3.1)
which is exact at P∨. We first show that Ker(κ∨) = P ′. Since P ′ is a direct
summand of P , we have P ∼= P ′ ⊕ P ′′ for P ′′ ∼= P/P ′ projective. Then
exactness of (3.1) implies Im(κ) = Ker(χ∨) = (P/P ′)∨. Equating P and
P∨∨, we see that

Ker(κ∨) = {x ∈ P | ϕ(x) = 0 for all ϕ ∈ (P/P ′)∨}.

But (P/P ′)∨ is a direct summand of P∨ because direct sums commute with
duals, hence if x = x′ + x′′ for x′ ∈ P ′ and x′′ ∈ P ′′, then ϕ(x′ + x′′) =
ϕ(x′′ + P ′) and since x′′ + P ′ is nonzero there exists a function in (P/P ′)∨
which is nonzero at x′′ + P ′. Hence Ker(κ∨) = P ′. The homomorphism κ∨

is calculated in step 4.
Now let v ∈ θ(K). Then v ∈ ⋂n′

i=1 Ker(κ∨ ◦ µgi) if and only if v ∈
Ker(κ∨ ◦ µgi) for all i if and only if µ(v ⊗ gi) ∈ Ker(κ∨) = P ′ for all i if and
only if µ(v ⊗N ′) ⊆ P ′. Hence θ(K) = (P ′ : N ′) as required.

The time complexity to compute the dual of χ∨ in step 2 is in O(p2), to
compute the kernel in step 3 is in O(K(p, p)) since k ∈ O(p) by assumption,
and to compute the dual in step 4 is in O(p2). The total time complexity for
steps 2 to 4 is thus in O(p2 + K(p, p)), and the space complexity of κ∨ is in
O(p2).

The time complexity to calculate each µgi in step 6 is in O(mnp) and each
has space complexity in O(mp). Since there are n′ ∈ O(n) homomorphisms
µgi , the time complexity of step 6 is in O(mn2p).

For each i = 1, . . . , n′, the time complexity to calculate each composite
κ∨ ◦ µgi in step 7 is in O(mp2) since the space complexities of µgi :M → P
and κ∨ :P → Rk are in O(mp) and O(p2) respectively. There are n′ ∈ O(n)
such composites, so the time complexity of step 7 is in O(mnp2).

In step 8 the time complexity to compute the common kernel is CK(n,m, p)
since n′ ∈ O(n) and the space complexity of each κ∨ ◦µgi is in O(mp). Hence
the total time complexity of the algorithm is in O(mnp(n + p) + K(p, p) +
CK(n,m, p)). The space complexity of (P ′ : N ′) ⊆ M is in O(m2) by as-
sumption.

3.4 Tensor products and sheaf quotients
Recall from Theorem 1.2.3 that, for any invertible sheaf L on X, the set
H0(X,L ) of global sections of L is a finitely generated R-module. We will
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represent relative effective Cartier divisors on a relative curveX by first fixing
a very ample invertible sheaf L with large degree whose module H0(X,L )
of global sections is projective. Then a relative effective Cartier divisor D on
X will be given by a set of generators for the finitely generated R-submodule
H0(X,L (−D)). By choosing L such that L (−D) is very ample, D can
always be recovered from H0(X,L (−D)), at least in principle.

The algorithms in Section 3.3 allow us to explicitly compute the results
of Propositions 2.3.5 and 2.3.7. Let R be an amenable ring, let S = Spec(R)
and let X/S be a relative curve. Let L be a normally generated invertible
sheaf on X. Then Propositions 2.1.7 and 2.3.5 imply that

µij :H0(X,L i)⊗H0(X,L j)→ H0(X,L i+j)

is a surjective homomorphism of projective R-modules.
We assume that the size of H0(X,L i) is in O(ig) for all i > 1. In

practice, the maximum i required is determined by the maximum degree
relative effective Cartier divisor one wishes to represent. Thus in the case of
arithmetic on Pic0

X(S), as we consider in Section 3.6, i is bounded above by
a small constant (in Algorithms 3.6.3 and 3.6.4 we have i 6 5).

Algorithm 3.4.1 (Product of global sections). Let i and j be positive in-
tegers, let M be a subsheaf of L i and let N be a subsheaf of L j, each of
degree at least 2g + 1. Given the submodules H0(X,M ) ⊆ H0(X,L i) and
H0(X,N ) ⊆ H0(X,L j), the following procedure calculates the submodule
H0(X,M ⊗N ) of H0(X,L i+j). If the space complexities of H0(X,M ) and
H0(X,N ) are in O(i2g2) and O(j2g2) respectively, then the time complexity
of the algorithm is in O(ij(i+j)2g4 + igS((i+j)g)) and the space complexity
of the result is in O((i+ j)2g2).

1. Return H0(X,M ⊗N ) obtained by applying Algorithm 3.3.2 to the
modules H0(X,M ) and H0(X,N ).

Proof. By the hypothesis on the lower bounds of the degrees of M and
N , Proposition 2.3.5 implies that H0(X,M ) ⊗ H0(X,N ) surjects via µij
onto H0(X,M ⊗N ). The call to Algorithm 3.3.2 calculates this image of
H0(X,M )⊗H0(X,N ). The time complexity of the call to Algorithm 3.3.2
is in O(ij(i+j)2g4+igS((i+j)g)) and the space complexity ofH0(X,M⊗N )
is in O((i + j)2g2) since it is a submodule of H0(X,L i+j) which has space
complexity in O((i+ j)g) by assumption.

The following algorithm is a generalisation of the descriptions provided
by Khuri-Makdisi in [22, Remark 3.8] and [23, Proposition 2.6(4)].
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Algorithm 3.4.2 (Sheaf quotient). Let i and j be positive integers, let M
be a subsheaf of L i and let N be a subsheaf of L j, each of degree at least
2g + 1. Let E be a relative effective Cartier divisor on X whose degree
satisfies

deg(E) 6 min{deg(M ), deg(N )} − (2g + 1).
Given the submodules H0(X,M ) ⊆ H0(X,L i), H0(X,N ) ⊆ H0(X,L j)
and H0(X,N (−E)) ⊆ H0(X,L j), the following procedure calculates the
submodule H0(X,M (−E)) of H0(X,L i). If the space complexities of the
submodulesH0(X,M ),H0(X,N ) andH0(X,N (−E)) are inO(i2g2), O(j2g2)
and O(j2g2) respectively, then the time complexity of the algorithm is in
O(ij(i+ j)2g4 + igS((i+ j)g) + K((i+ j)g, (i+ j)g) + CK(jg, ig, (i+ j)g)) and
the result has space complexity in O(i2g2).

1. Apply Algorithm 3.4.1 to H0(X,M ) and H0(X,N (−E)) to obtain
the module H0(X,M ⊗N (−E)).

2. Return the moduleH0(X,M (−E)) obtained by applying Algorithm 3.3.3
to H0(X,M ⊗N (−E)) and H0(X,N ).

Proof. By Proposition 2.3.5, the result of step 1 is H0(X,M ⊗ N (−E))
which is isomorphic to H0(X,M (−E) ⊗ N ). The bounds on the degrees
imply that all the sheaves under consideration are normally generated by
Proposition 2.3.3 thus have zero higher cohomology by Proposition 2.2.7 and
are hence projective by Proposition 2.1.7. Then H0(X,M⊗N )/H0(X,M⊗
N (−E)) is projective by Corollary 2.1.8 and so H0(X,M ⊗N (−E)) is a
direct summand of H0(X,M ⊗N ). This proves that the arguments satisfy
the conditions for the application of Algorithm 3.3.3 in step 2. Then Propo-
sition 2.3.7 implies that the module quotient calculation in step 2 gives(

H0(X,M ⊗N (−E)) : H0(X,N )
) ∼= H0(X,M (−E))

as required. Step 1 has time complexity in O(ij(i + j)2g4 + igS((i + j)g))
and step 2 has time complexity in O(ij(i + j)2g4 + K((i + j)g, (i + j)g) +
CK(jg, ig, (i+j)g)). Hence the time complexity of the algorithm is in O(ij(i+
j)2g4 + igS((i+ j)g) + K((i+ j)g, (i+ j)g) + CK(jg, ig, (i+ j)g)). The result
H0(X,M (−E)) is a submodule of H0(X,L i) hence has space complexity in
O(i2g2) by assumption.

3.5 Arithmetic of divisors
In this section we give descriptions of the arithmetic operations on divisors
given as modules of global sections as described in the previous section.
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To this end we employ the theory developed in Section 3.3 to demonstrate
that the main algorithms of Khuri-Makdisi [22] continue to hold for relative
effective Cartier divisors on relative curves over S = Spec(R) for an amenable
ring R.

Throughout this section and the next we fix the following notation. Let
R be an amenable ring, let S = Spec(R) and let X/S be a relative curve
of genus g. Let L be an invertible sheaf on X of degree ∆ > 2g + 1, so
L is normally generated by Proposition 2.3.3. We will assume the size of
H0(X,L i) is in O(ig) for all i > 1 and that the space complexity of a
submodule of H0(X,L i) is in O(i2g2).

The first algorithm is analogous to Khuri-Makdisi [22, Algorithm 3.6].

Algorithm 3.5.1 (Divisor addition). Let D1 and D2 be relative effective
Cartier divisors on X satisfying deg(D1 + D2) 6 ∆ − (2g + 1). Given the
submodules H0(X,L (−D1)) and H0(X,L (−D2)) of H0(X,L ), the follow-
ing procedure calculates H0(X,L (−D1 −D2)). If the space complexities of
H0(X,L (−D1)) and H0(X,L (−D2)) are in O(g2), then the time complex-
ity of the algorithm is in O(g4 + gS(g) + K(g, g) + CK(g, g, g)) and the result
has space complexity O(g2).

1. Apply Algorithm 3.4.1 to H0(X,L (−D1)) and H0(X,L (−D2)) to ob-
tain the submodule H0(X,L 2(−D1 −D2)) in H0(X,L 2).

2. Return H0(X,L (−D1−D2)) obtained by applying Algorithm 3.4.2 to
the modules H0(X,L ), H0(X,L 2) and H0(X,L 2(−D1 −D2)).

Proof. Step 1 produces H0(X,L 2(−D1 − D2)) since deg(D1 + D2) 6 ∆ −
(2g + 1) implies deg(L (−Di)) > 2g + 1 for i = 1, 2. Now deg(L ) > 2g + 1
and deg(L 2(−D1 −D2)) > 2g + 1, so the application of Algorithm 3.4.2 in
step 2 returns H0(X,L (−D1 −D2)).

The time complexity of step 1 is in O(g4 +gS(g)) and the time complexity
of step 2 is in O(g4 +gS(g)+K(g, g)+CK(g, g, g)), hence the time complexity
of the algorithm is in O(g4 + gS(g) + K(g, g) + CK(g, g, g)) operations.

The following algorithm is analogous to Khuri-Makdisi [22, Algorithm 3.10].

Algorithm 3.5.2 (Divisor ‘flip’). LetD be a relative effective Cartier divisor
on X of degree at most ∆ − (2g + 1) and let s be a non-zero element of
H0(X,L (−D)). Considering s as a section of H0(X,L ), write

div(s) = E = D +D′

whereH0(X,OX(D′)) ∼= H0(X,L (−D)). Given the submoduleH0(X,L (−D))
of H0(X,L ) and the element s of H0(X,L (−D)), the following procedure
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computes H0(X,L (−D′)). If the space complexity of H0(X,L (−D)) is in
O(g2), then the time complexity of the algorithm is in O(g4+gS(g)+K(g, g)+
CK(g, g, g)) and the space complexity of the result is in O(g2).

1. Compute H0(X,L 2(−D −D′)) by applying Algorithm 3.4.1 to s and
H0(X,L ).

2. Return H0(X,L (−D′)) obtained by applying Algorithm 3.4.2 to the
modules H0(X,L ), H0(X,L (−D)) and H0(X,L 2(−D −D′)).

Proof. Since s generates H0(X,L (−D−D′)) and since deg(L (−D−D′)) =
deg(L ) > 2g + 1, Algorithm 3.4.1 returns H0(X,L 2(−D −D′)) in step 1.
As deg(L (−D)) > 2g + 1, the call to Algorithm 3.4.2 in step 2 produces
H0(X,L (−D′)) as claimed.

The time complexity of the call to Algorithm 3.4.1 in step 1 is in O(g4 +
gS(g)) operations. The time complexity of step 2 is in O(g4+gS(g)+K(g, g)+
CK(g, g, g)). Hence the time complexity for the algorithm is in O(g4+gS(g)+
K(g, g) + CK(g, g, g)). The result is a submodule of H0(X,L ) and hence has
space complexity in O(g2).

3.6 Arithmetic on a relative Jacobian
Khuri-Makdisi [22] describes three models for divisor class arithmetic in the
Picard group of a curve: the large, medium and small models. Though
the complexity of the algorithms for each of the three models is the same,
the medium and small models reduce the size of the vector spaces used by
a constant factor at the expense of more complicated algorithms. We will
describe the algorithms in terms of the medium model. We keep the notation
as described at the beginning of the previous section.

Recall that, for a scheme X, the Picard group, Pic(X), is the group
H1(X,O∗X) of isomorphism classes of invertible sheaves on Y and that the
map X 7→ Pic(X) is a functor. Let f :X → S be a relative curve and let
T → S be an S-scheme. For the purposes of this section, we define

Pic0
X(T ) = {L ∈ Pic(XT ) | deg(Lt) = 0 for all t ∈ T}/f ∗T Pic(T ).

WhenX/S is a relative curve, the group Pic0
X(S) can be given the structure of

a scheme; it thus becomes an abelian S-scheme whose fibres are isomorphic
to the Jacobians of the fibres of X. For more details, see Bosch et al. [2,
Chapter 9, Section 4].

Let M be an invertible sheaf of degree 0. Then the isomorphism class
of M is represented by any relative effective Cartier divisor D of degree
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deg(L ) such that M ∼= L (−D). Since deg(L ) > 2g + 1, for such D we
have deg(L 2(−D)) = deg(L ) > 2g+1 and so Proposition 2.3.3 implies that
L 2(−D) is normally generated. Elements of Pic0

X(S) will be represented in
this way, as the submodule H0(X,L 2(−D)) of H0(X,L 2) for some relative
effective Cartier divisor D of degree deg(L ).

Algorithm 3.6.1 (Zero element). The following procedure computes the
zero element of Pic0

X(S). The time complexity of the algorithm is in O(g4 +
gS(g)) and the space complexity of the result is in O(g2).

1. Choose any non-zero element s of H0(X,L ).

2. Apply Algorithm 3.4.1 to s and H0(X,L ) and return the result.

Proof. This algorithm constructs a submodule corresponding to the relative
effective Cartier divisor D = div(s), which is in the zero class in Pic0

X(S). In
step 2, the result of Algorithm 3.4.1 is µ(s⊗H0(X,L )) = H0(X,L 2(−D)).
The time complexity is determined by the call to Algorithm 3.4.1, hence is in
O(g4 + gS(g)). The result is a submodule of H0(X,L 2) and hence its space
complexity is in O(g2).

The following algorithm is analogous to that of Bruin [4, Algorithm 2.10].

Algorithm 3.6.2 (Zero test). Let x be a point in Pic0
X(S) given by a sub-

module H0(X,L 2(−D)) of H0(X,L 2). The following procedure determines
whether x = 0. If the space complexity of H0(X,L 2(−D)) is in O(g2), then
the time complexity of the algorithm is in O(g4+gS(g)+K(g, g)+CK(g, g, g)).

1. Apply Algorithm 3.4.2 to H0(X,L ), H0(X,L 2) and H0(X,L 2(−D))
to obtain H0(X,L (−D)).

2. Return false if H0(X,L (−D)) = 0 and true otherwise.

Proof. Correctness follows from the fact that L 2(−D) is trivial if and only if
there exists an element s ∈ H0(X,L (−D)) such thatD = div(s). This is the
test performed in step 2. The calculation is dominated by Algorithm 3.4.2
and so the time complexity is in O(g4 + gS(g) + K(g, g) + CK(g, g, g)).

The following algorithm is analogous to that of Khuri-Makdisi [22, Algo-
rithm 5.1]; see also Bruin [4, Algorithm 2.11].

Algorithm 3.6.3 (Addflip). Let x and y be elements of Pic0
X(S) given by

submodules H0(X,L 2(−D1)) and H0(X,L 2(−D2)) of H0(X,L 2). The



3.6 Arithmetic on a relative Jacobian 43

following procedure computes the submodule H0(X,L 2(−E)) and a global
section s of H0(X,L 3), where s and E satisfy

div(s) = D1 +D2 + E.

If the space complexities of H0(X,L 2(−D1)) and H0(X,L 2(−D2)) are in
O(g2), then the time complexity of the algorithm is in O(g4+gS(g)+K(g, g)+
CK(g, g, g)) and the space complexity of the result is in O(g2).

1. Apply Algorithm 3.4.1 to H0(X,L 2(−D1)) and H0(X,L 2(−D2)) to
obtain H0(X,L 4(−D1 −D2)).

2. Apply Algorithm 3.4.2 to the modules H0(X,L 3), H0(X,L ) and
H0(X,L 4(−D1 −D2)) to obtain H0(X,L 3(−D1 −D2)).

3. Choose a non-zero element s of H0(X,L 3(−D1 −D2)).

4. Apply Algorithm 3.4.1 to s and H0(X,L 2) to obtain the module
H0(X,L 5(−D1 −D2 − E)).

5. Apply Algorithm 3.4.2 to the modules H0(X,L 2), H0(X,L 3(−D1 −
D2)) and H0(X,L 5(−D1 −D2 − E)) to obtain

H0(X,L 2(−E)) = (H0(X,L 5(−D1−D2−E)) : H0(X,L 3(−D1−D2))).

6. Return H0(X,L 2(−E)) and the section s.

Proof. As deg(L 2(−Di)) > 2g+1 for i = 1, 2, Algorithm 3.4.1 can be applied
in step 1 to obtain H0(X,L 4(−D1−D2)). As deg(L 3(−D1−D2)) > 2g+1,
Algorithm 3.4.2 in step 2 calculates H0(X,L 3(−D1 −D2)). The element s
chosen in step 3 corresponds to H0(X,L 3(−D1−D2−E)), which has degree
3(2g+ 1), and so Algorithm 3.4.1 gives H0(X,L 5(−D1−D2−E)) in step 4.
Now deg(L 5(−D1 −D2 −E)) = 5(2g + 1) and so Algorithm 3.4.2 in step 5
produces H0(X,L 2(−E)).

The space complexity of each submodule appearing in the algorithm is
O(g2). Since each step of the algorithm makes at most one call to either
Algorithm 3.4.1 or 3.4.2, the time complexity is in O(g4 + gS(g) + K(g, g) +
CK(g, g, g)). As H0(X,L 2(−E)) is a submodule of H0(X,L 2), its space
complexity is O(g2).

All of the familiar arithmetic operations on Pic0
X(S) can be described in

terms of the ‘Addflip’ operation given by Algorithm 3.6.3; we show this in
the following algorithm.
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Algorithm 3.6.4 (Negation, addition, subtraction, and equality). Let x and
y be elements of Pic0(X) given as submodules of H0(X,L 2). Then we can
calculate the negation of x, the sum of x and y, the difference of x and y,
and whether x and y are equal. If the inputs have space complexities in
O(g2), then each operation has time complexity in O(g4 + gS(g) + K(g, g) +
CK(g, g, g)) and the results have space complexities in O(g2) (except the
equality test which is simply true or false).

(i) Negation: Apply Algorithm 3.6.3 to x and the result of Algorithm 3.6.1
to produce −x− 0 = −x.

(ii) Addition: Apply Algorithm 3.6.3 to x and y and then negate the result,
giving x+ y = −(−x− y).

(iii) Subtraction: Negate x and apply Algorithm 3.6.3 to −x and y, giving
x− y = −(−x)− y.

(iv) Equality: Subtract y from x, then apply Algorithm 3.6.2 to test whether
the result is zero.

Proof. That the calculations are correct is clear. The dominant calculation
in each case is Algorithm 3.6.3, whose time complexity is in O(g4 + gS(g) +
K(g, g) + CK(g, g, g)) and whose results have space complexity in O(g2).

We can define scalar multiplication by an arbitrary integer using the addi-
tion and negation defined in Algorithm 3.6.4. Implemented as the well-known
double-and-add algorithm based on Horner’s rule for scalar multiplication in
an additive group, its time complexity is in O(log(n)(g4 + gS(g) + K(g, g) +
CK(g, g, g))) operations in R.



Part II

Spaces of sections on algebraic
surfaces





Chapter 4

Cohomology of surfaces

In this chapter we analyse the structure of the cohomology groups of divisors
on several classes of surfaces, namely C ×C and Sym2(C) for a hyperelliptic
curve C of genus at least two. We prove decompositions of the spaces of
global sections of divisors on these surfaces and deduce formulæ for their
dimensions.

Throughout this chapter and the next, by surface we will mean a nonsin-
gular projective algebraic surface over an algebraically closed field.

4.1 Intersection theory on surfaces
In this section we recall the basic facts of intersection theory on surfaces.
The primary reference is Hartshorne [17, Chapter V].

Let C and D be two prime divisors on a surface X and let x be a point in
C∩D. Let f and g be respectively local equations for C and D at x. We say
that C and D intersect transversally at x if f and g generate the maximal
ideal mx of OX,x; this implies, in particular, that C and D are nonsingular
at x.

Theorem 4.1.1. Let X be a surface and let C and D be divisors on X.
There exists a unique bilinear symmetric pairing

Div(X)×Div(X)→ Z,

denoted by (C,D) 7→ C ·D, such that the following conditions are satisfied:

(i) If C and D meet transversally, then C ·D = #(C ∩D), the number of
points of intersection of C and D.
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(ii) For all C1 and C2 in Div(X), if C1 ∼rat C2, then C1 ·D = C2 ·D. In
particular, the pairing induces a well-defined bilinear symmetric pairing

Pic(X)× Pic(X)→ Z

which we also denote by ([C], [D]) 7→ C ·D.

Proof. Hartshorne [17, Theorem V.1.1].

We call C · D the intersection number of the divisors C and D. The
self-intersection number of C is C · C which we will often write as C2 when
there is no chance for confusion with the scheme product of curves. More
generally we write Cn = C · C · · · · · C (n times).

Proposition 4.1.2 (Adjunction formula). Let X be a surface and let KX be
a canonical divisor on X. Then for any nonsingular curve C of genus g on
X,

2g − 2 = C · (C +KX).

Proof. See Hartshorne [17, Proposition V.1.5].

Proposition 4.1.3. Let f :X → Y be a surjective, projective morphism of
Noetherian integral schemes and suppose n = [K(X) : f ∗K(Y )] is finite.
Then for any Cartier divisor D on Y ,

f∗f
∗D = nD.

Proof. See Liu [26, Proposition 9.2.11].

Proposition 4.1.4. Let f :X → Y be a dominant map of smooth projective
surfaces. Then n = [K(X) : f ∗K(Y )] is finite and for any divisors C and D
on Y ,

f ∗C · f ∗D = nC ·D.

Proof. See Liu [26, Proposition 9.2.12(c)].

Proposition 4.1.5 (Riemann-Roch for surfaces). Let X be a surface, let D
be a divisor on X, and let KX be a canonical divisor on X. Then

χ(D) = 1
2D · (D −KX) + χ(OX).

Proof. See Hartshorne [17, Theorem V.1.6].
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4.2 Equivalence classes of divisors
In this section we introduce the notions of algebraic and numerical equiva-
lence, and the corresponding quotient groups: the Néron-Severi group and
the numerical equivalence group of a variety. We will analyse the structure
of these groups in the case of squares and symmetric squares of hyperelliptic
curves. Many of the results in the first part of this section are true in much
greater generality; see Kleiman [24, Sections 4–6] for details.

Let X be a nonsingular projectively variety. Recall from Section 1.4 that
the Picard group of X is defined to be the group of isomorphism classes of in-
vertible sheaves on X. By Theorem 1.4.3, Pic(X) is isomorphic to CaCl(X),
the group of equivalence classes of divisors on X modulo rational equivalence.
In the interests of brevity, we will (re)define Pic(X) to be Pic(X) = CaCl(X),
and if D is a divisor on X, we will write [D] for the class in Pic(X).

Let X be a surface and let D be a divisor on X. Then D is said to be
pre-algebraically equivalent to zero if there exists a nonsingular curve T , an
effective divisor E on X × T which is flat over T , and two closed points s
and t on T , such that

D = E ∩ (X × {s})− E ∩ (X × {t}).

Two divisors are said to be pre-algebraically equivalent if their difference
is pre-algebraically equivalent to zero. Two divisors D and D′ on X are
said to be algebraically equivalent if there exists a finite sequence D0 =
D,D1, . . . , Dn = D′ of divisors with Di pre-algebraically equivalent to Di+1
for each i = 0, . . . , n − 1. If D and D′ are algebraically equivalent we write
D ∼alg D

′.

Lemma 4.2.1. Let D1 and D2 be divisors on a surface X. If D1 ∼rat D2,
then D1 ∼alg D2.

Proof. Let D = div(f) be a principal divisor on X and let D′ = div(uf − v)
be a divisor on X × P1 were u and v are the coordinates on P1. Then D′ is
flat over P1 and

D′ ∩ (X × {(1 : 0)})−D′ ∩ (X × {(0 : 1)}) = div(f)− div(1) = D

as required.

Proposition 4.2.2. Let X be a surface. The set of divisor classes alge-
braically equivalent to zero forms a subgroup of Pic(X) isomorphic to Pic0(X).
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Proof. Fulton [13, Proposition 10.3] shows that the set of divisors alge-
braically equivalent to zero is a subgroup of Div(X). Applying Lemma 4.2.1,
we obtain the same result for divisor classes in Pic(X). Kleiman [24, Propo-
sition 5.10] shows that this subgroup is isomorphic to Pic0(X).

Proposition 4.2.2 allows us to make the following definition. Let X be a
surface. Then the quotient

NS(X) = Pic(X)/Pic0(X)

is called the Néron-Severi group of X.
We now discuss a coarser notion of equivalence, that of numerical equiv-

alence. For any integer n > 0, we have a multiplication-by-n map

n :Div(X)→ Div(X)

defined by sending a divisor D to nD. There are induced maps

n :Pic(X)→ Pic(X) and n :Pic0(X)→ Pic0(X)

on divisor classes. Define the set Picτ (X) by the formula

Picτ (X) =
⋃
n>0

n−1 Pic0(X).

Thus [D] ∈ Picτ (X) if and only if there exists a positive integer n such that
n[D] = [nD] ∈ Pic0(X).

Let X be a surface and let D be a divisor on X. Then D is said to be
numerically equivalent to zero if D · E = 0 for every divisor E on X. Two
divisors are said to be numerically equivalent if their difference is numerically
equivalent to zero. We write D1 ∼num D2 when D1 and D2 are numerically
equivalent.

Proposition 4.2.3. Let X be a surface. The set of divisor classes numeri-
cally equivalent to zero forms a subgroup of Pic(X) isomorphic to Picτ (X).

Proof. See Kleiman [24, Theorem 6.3 and Exercise 6.11].

Proposition 4.2.3 allows us to make the following definition. Let X be a
surface. Then

Num(X) = Pic(X)/Picτ (X)

is called the numerical divisor class group of X.
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Remark 4.2.4. Let X be a surface. An element [D] ∈ Pic0(X) is alge-
braically equivalent to zero by Proposition 4.2.2 and Pic0(X) ⊆ Picτ (X) by
definition. Hence [D] is numerically equivalent to zero. Combining this with
Lemma 4.2.1, we see that rational equivalence implies algebraic equivalence
implies numerical equivalence.

Proposition 4.2.5. Let D1 and D2 be numerically equivalent divisors on a
surface X. Then χ(D1) = χ(D2).

Proof. From the definition of numerical equivalence we have D2
1 = D1 ·D2 =

D2
2 and D1 · KX = D2 · KX for any canonical divisor KX on X. Hence by

Proposition 4.1.5

χ(D1) = 1
2(D2

1 −D1 ·KX) + χ(OX) = 1
2(D2

2 −D2 ·KX) + χ(OX) = χ(D2)

as required.

Remark 4.2.6. In Theorem 4.1.1 we saw that the intersection pairing on a
surface X is a bilinear pairing

Div(X)×Div(X)→ Z

which induces a pairing

Pic(X)× Pic(X)→ Z.

Remark 4.2.4 shows that we have induced pairings

NS(X)× NS(X)→ Z and Num(X)× Num(X)→ Z

on NS(X) and Num(X) as well.

Theorem 4.2.7 (Néron-Severi Theorem). Let X be a surface. Then NS(X)
is a finitely generated abelian group.

Proof. See Lang and Néron [25].

Theorem 4.2.8 (Matsusaka’s Theorem). Let X be a surface. Then the
group

NS(X)tors = Picτ (X)/Pic0(X)
is finite.

Proof. See Kleiman [24, Corollary 6.17].

The following corollary is immediate.



52 Cohomology of surfaces

Corollary 4.2.9. Let X be a surface. Then

Num(X) = NS(X)/NS(X)tors.

In particular, Num(X) is free.

We will now look more closely at the structure of the Picard group, the
Néron-Severi group, and the numerical divisor class group in the case of a
product of curves.

Lemma 4.2.10. For any curve C, the degree map on divisors induces an
isomorphism NS(C) ∼= Z.

Proof. See Hartshorne [17, Corollary II.6.10].

Proposition 4.2.11. Let C1 and C2 be curves and let JC1 and JC2 be their
respective Jacobians. Then

Pic(C1 × C2) ∼= Pic(C1)× Pic(C2)× Hom(JC1 , JC2).

Proof. See Smith [36, Theorem 3.3.12 and Example 3.3.16].

The remainder of this section is dedicated to the proof of Proposition 4.2.19,
which is a direct analogue of Proposition 4.2.11 for the Néron-Severi group.
The proof of Proposition 4.2.19 relies on the fact that

Pic0(X)× Pic0(Y ) ∼= Pic0(X × Y ).

when X and Y are nonsingular projective varieties and either char k = 0 or
char k > 0 and X and Y are each isomorphic to the reductions of nonsingular
projective varieties over a field of characteristic zero. We now explain what
this means in detail.

Let k be a field of positive characteristic and let X be a nonsingular
projective variety over k. A nonsingular projective lifting of X is a separated
scheme X over a discrete valuation ring (R, p) such that (i) char Frac(R) = 0
and R/p = k, (ii) X ×R k ∼= X, and (iii) X is nonsingular and projective
over R.

Lemma 4.2.12. Let X and Y be smooth projective varieties over an alge-
braically closed field k of positive characteristic. If X and Y have nonsingular
projective liftings, then so does X × Y .

Proof. See Diem [11, Proof of Proposition A.4].
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Proposition 4.2.13. Let X be a nonsingular projective variety over a field
of positive characteristic. If X has a nonsingular projective lifting, then
Pic0(X) is reduced.

Proof. See Diem [11, Lemma A.3].

Theorem 4.2.14. Let X be a nonsingular projective variety over a field of
positive characteristic. If

H2(X,Ω∨X) = H2(X,OX) = 0,

then X has a nonsingular projective lifting and so Pic0(X) is reduced.

Proof. Grothendieck [16, Exposé III, Théorème 7.3] proves that the lifting
exists in this case; then Pic0(X) is reduced by Proposition 4.2.13.

Corollary 4.2.15. Let X be a nonsingular projective curve. Then Pic0(X)
is reduced.

Proof. For a curve, H2(X,Ω∨X) = H2(X,OX) = 0 by Theorem 1.2.4(i), so
the result follows from Theorem 4.2.14.

Theorem 4.2.16 (Cartier). Let k be a field of characteristic 0 and let G be
a group scheme over k. Then G is nonsingular and hence reduced.

Proof. See Mumford [30, Lecture 25].

Proposition 4.2.17. Let X and Y be smooth projective varieties over an
algebraically closed field k. Then the map

ϕ :Pic0(X)× Pic0(Y )→ Pic0(X × Y )

given by
ϕ(L ,L ′) = π∗1L ⊗ π∗2L ′

induces an isomorphism of abelian varieties

ϕred :Pic0(X)red × Pic0(Y )red → Pic0(X × Y )red

where ·red denotes the associated unique reduced subscheme.

Proof. See Diem [11, Proposition A.4].

Corollary 4.2.18. Let X and Y be smooth projective varieties over an al-
gebraically closed field k. If char k = 0 or if char k > 0 and X and Y have
nonsingular projective liftings, then

ϕ :Pic0(X)× Pic0(Y )→ Pic0(X × Y )

is an isomorphism of abelian varieties.
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Proof. This follows upon combining Theorem 4.2.16, Proposition 4.2.13 and
Lemma 4.2.12 with Proposition 4.2.17.

Proposition 4.2.19. Let C1 and C2 be curves over a field k and let JC1 and
JC2 be their respective Jacobians. Then the Néron-Severi group of C1×C2 is
given by

NS(C1 × C2) ∼= NS(C1)× NS(C2)× Hom(JC1 , JC2).

Proof. Consider the following diagram:

0

��

0

��

0 // Pic0(C1)× Pic0(C2) //

��

Pic0(C1 × C2) //

��

0

��

0 // Pic(C1)× Pic(C2) //

��

Pic(C1 × C2) //

��

Hom(JC1 , JC2) //

��

0

0 // NS(C1)× NS(C2) //

��

NS(C1 × C2) //

��

Hom(JC1 , JC2) //

��

0

0 0 0

The diagram is commutative by construction and the columns are exact by
definition (the last column being simply the identity map). The first row is
exact by Corollary 4.2.18 and the second row is exact by Proposition 4.2.11.
Hence, by the 9-Lemma, the bottom row is exact, giving

NS(C1 × C2) ∼= NS(C1)× NS(C2)× Hom(JC1 , JC2)

as required.

Milne [27, Theorem 12.5] shows that for abelian varieties A and B,
Hom(A,B) is a finitely generated free Z-module of rank at most 4 dim(A) dim(B).
In particular Hom(JC1 , JC2) ∼= Zr for some r 6 4g1g2, where g1 and g2 are the
genera of C1 and C2 respectively. Further analysis of Hom(JC1 , JC2) usually
takes place by means of the theory of correspondences, for which the reader
is invited to consult Smith [36], in particular Chapter 3.
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4.3 Notation

The purpose of this section is to collect together the notation used in the
remaining sections of this chapter in one place, thus providing an easy refer-
ence.

Let f :X → Y be a morphism of varieties. We denote by Γf the divisor
on X × Y corresponding to the graph of f ; that is

Γf = (idC × f)(X) = {(P, f(P )) ∈ X × Y | for all P ∈ X},

where idC :C → C is the identity map.
We fix the following notation for the remainder of this chapter. Let k be

a field of characteristic different from two with fixed algebraic closure k and
let C be a hyperelliptic curve of genus g > 2 over k. For convenience we set
γ = g − 1. Let JC denote the Jacobian of C. Let η denote the hyperelliptic
involution on C, and let pi :C × C → C, i = 1, 2, be the projection maps.
We define the divisor D∞ = κ∗(∞) in Div(C) where κ : C → P1 is the
hyperelliptic covering of P1.

Fix a Weierstrass point∞ ∈ C(k). Define the following divisors on C×C:

V∞ := p∗1(∞) = {∞} × C; H∞ := p∗2(∞) = C × {∞};
V := p∗1(D∞); H := p∗2(D∞);

F := V +H

∆ = ΓidC ; ∇ = Γη
D∇ = (Γη)∗(D∞) ∈ ∇.

Note that V × k ∼rat 2V∞ and H × k ∼rat 2H∞, so V and H are rational.
Let σ :C × C → C × C be defined by σ(P,Q) = (Q,P ) and set G = 〈σ〉.

Let S = Sym2(C) = (C × C)/G and let π :C × C → S denote the quotient
map (see Section 1.5). Define the following divisors on S:

ΘS = π(V∞) = π(H∞);
∆S = π(∆); ∇S = π(∇)

(these are the scheme-theoretic images of V∞, H∞, ∆ and ∇). Note that 2ΘS

is a k-rational divisor since 2ΘS ∼rat π∗(V ), even though ΘS is not k-rational
in general.
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4.4 Cohomology of divisors on a hyperelliptic
Jacobian

In this section we give formulæ for the dimensions of the cohomology groups
of a divisor on an abelian variety. We are primarily interested in the case of
surfaces, which, for an abelian variety, often arise as the Jacobian of a curve
of genus two. This section is included for completeness to cover the case of
abelian surfaces.

Proposition 4.4.1. The canonical divisor on an abelian variety is trivial.

Proof. See Shafarevich [35, Example II.6.3].

Proposition 4.4.2. Let A be an abelian variety and let L be an invert-
ible sheaf on A such that H0(A,L ) 6= 0. Then L is ample if and only if
dimKL = 0 (where KL is the closed subscheme of A defined in Section 1.6).

Proof. See Milne [27, Proposition 9.1].

Proposition 4.4.3. Let A be an abelian variety of dimension g. Then for
i = 0, . . . , g, we have

hi(A,OA) =
(
g

i

)
.

In particular, χ(OA) = 0.

Proof. See Mumford [32, Section 13, Corollary 2] for the dimension formula.
The last part follows from the well known identity: ∑g

i=0(−1)i
(
g
i

)
= 0 for

any g > 0.

Theorem 4.4.4 (Riemann-Roch for abelian varieties). Let A be an abelian
variety of dimension g, and let D be a divisor on A. Then

χ(D) = Dg

g! ·

Proof. See Milne [27, Theorem 13.3].

Remark 4.4.5. Let A be an abelian surface and let D be a divisor on A.
Then Theorem 4.4.4 and Proposition 4.1.5 give two different formulæ for
χ(D). To see that they agree, note that KA ∼rat 0 for any canonical divisor
KA on A by Proposition 4.4.1 and χ(OA) = 0 by Proposition 4.4.3. Hence

1
2D · (D −KA) + χ(OA) = 1

2D
2

which shows that Theorem 4.4.4 and Proposition 4.1.5 agree when g = 2.
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Lemma 4.4.6. Let J be a Jacobian variety of dimension g and let Θ be the
theta divisor of J . Then h0(J,mΘ) 6= 0 and hi(J,mΘ) = 0 for all i > 0 and
m > 0. In particular, χ(mΘ) = h0(J,mΘ) > 0 for all m > 0.

Proof. We have h0(A,mΘ) 6= 0 because Θ is effective and hence mΘ is effec-
tive. Further, mΘ is ample since Θ is ample, and so Proposition 4.4.2 implies
that dimKmΘ = 0. Thus hi(A,mΘ) = 0 for i > 0 by Theorem 1.6.1(ii).

Proposition 4.4.7. Let J be a Jacobian variety of dimension g and let Θ
be the theta divisor of J . Then Θg = g! and χ(mΘ) = h0(J,mΘ) = mg for
m > 0.

Proof. The map ϕΘ :J → Pic(J) is an isomorphism (see Milne [28, Theorem
6.6]) and hence has degree 1. Thus χ(Θ)2 = 1 by Theorem 1.6.1(i) and hence
χ(Θ) = ±1. But χ(Θ) > 0 by Lemma 4.4.6, hence χ(Θ) = h0(A,Θ) = 1.

Now Theorem 4.4.4 implies that 1 = χ(Θ) = Θg/g!, hence Θg = g!.
Applying Theorem 4.4.4 to mΘ for m > 0 gives χ(mΘJ) = h0(J,mΘ) = mg

by the linearity of the intersection pairing and Lemma 4.4.6.

Proposition 4.4.8. Let A be an abelian variety. Then NS(A) ∼= Zρ for
some ρ satisfying 1 6 ρ 6 4 dim(A)2.

Proof. As ΘJC is ample, rank NS(A) > 1. Mumford [32, Section 19, Corollar-
ies 1 and 2] shows that the map ϕL :A→ Pic(A) defined by x 7→ τ ∗xL ⊗L −1

induces an injection of NS(A) into End(A) and that End(A) has rank at most
4 dim(A)2.

Proposition 4.4.9. Let J be the Jacobian of a curve of genus g. Then

(i) hi(J,OJ) =
(
g
i

)
for i = 0, . . . , g.

(ii) If m 6= 0, then hi(J,OJ(mΘJ)) = 0 for 0 < i < g.

(iii) If m > 0, then h0(J,OJ(mΘJ)) = mg and hg(J,OJ(mΘJ)) = 0.

(iv) If m < 0, then hg(J,OJ(mΘJ)) = mg and h0(J,OJ(mΘJ)) = 0.

Proof. The case m = 0 is proved in Proposition 4.4.3, and the case m > 0 in
Proposition 4.4.7.

Let m < 0. Then H i(J,mΘ) ∼= Hg−i(J,−mΘ) by Theorem 1.2.4(ii),
since the canonical divisor of J is trivial by Proposition 4.4.1. Since −m > 0,
Proposition 4.4.7 gives hi(J,mΘ) = hg−i(J,−mΘ) = 0 for i = 0, . . . , g − 1
and hg(J,mΘ) = h0(J,−mΘ) = mg.
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4.5 Cohomology of divisors on the square of
a hyperelliptic curve

This section forms the core of this chapter. We prove a decomposition result
for the space of sections of a divisor on the square of a hyperelliptic curve in
Theorem 4.5.11, from which we derive explicit formulæ for the dimension of
such a space.

Lemma 4.5.1. A canonical divisor on C × C is given by

KC×C = γF

and we have χ(OC×C) = γ2.

Proof. Let KC = γD∞ be a canonical divisor on C. Hartshorne [17, Exercise
II.8.3(b)] states that p∗1KC + p∗2KC is in the canonical class of C × C hence
KC×C = p∗1KC+p∗2KC = γ(V +H) is a canonical divisor. We have χ(OC×C) =
g2 − 2g + 1 = (g − 1)2 by Hartshorne [17, Exercise I.7.2(e)].

Lemma 4.5.2. On C × C we have

∆ +∇ ∼rat 2V∞ + 2H∞.

Proof. Let {1, x} is a basis for Γ(C,D∞) and write x1 = x⊗1 and x2 = 1⊗x
in k(C × C). Then

div(x1 − x2) = ∆ +∇− 2V∞ − 2H∞.

Proposition 4.5.3. The intersection pairing on Div(C × C)×Div(C × C)
is given by the following table:

· V∞ H∞ ∆ ∇
V∞ 0 1 1 1
H∞ 1 0 1 1
∆ 1 1 2− 2g 2 + 2g
∇ 1 1 2 + 2g 2− 2g

Let D = mV∞ + nH∞ + r∇ be a divisor on C × C. Then

χ(D) = (m− γ)(n− γ) + r(m+ n)− γr(r + 2).

In particular, when m = n and g = 2,

χ(D) = (m− 1)2 + 2mr − r(r + 2).
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Proof. First note that 2V∞ ∼rat {P}×C + {η(P )}×C for any point P ∈ C.
Pick P 6=∞ ∈ C(k). Then 2V 2

∞ ∼rat V∞ · ({P}×C + {η(P )}×C) = 0 since
V∞ ∩ {P} × C = V∞ ∩ {η(P )} × C = ∅. Hence V 2

∞ = 0. The same proof,
mutatis mutandis, shows that H2

∞ = 0.
Next, we have

V∞ ·H∞ = V∞ ·∆ = V∞ · ∇ = H∞ ·∆ = H∞ · ∇ = 1

because each pair intersect transversally at a unique point.
We have ∆ · ∇ = #(∆∩∇) = 2g+ 2 since each point of intersection cor-

responds to a Weierstrass point on C and the intersections are non-singular
hence transversal. Then

∆2 = ∆ · (2V∞ + 2H∞ −∇) = 2 + 2− (2g + 2) = 2− 2g.

A similar calculation yields ∇2 = 2− 2g.
Now let D = mV∞+nH∞+ r∇. By Lemma 4.5.1, a canonical divisor on

C × C is given by KC×C = 2γ(V∞ +H∞), so Proposition 4.1.5 gives

χ(D) = 1
2D · (D −KC×C) + χ(OC×C)

= 1
2(mV∞ + nH∞ + r∇) · ((m− 2γ)V∞ + (n− 2γ)H∞ + r∇) + γ2

= 1
2((r +m)(n− 2γ) + r(m+ n) + (r + n)(m− 2γ)− 2γr2) + γ2

= (m− γ)(n− γ) + r(m+ n)− γr(r + 2)

as required. In particular, when g = 2 and m = n, we obtain

χ(D) = (m− 1)2 + 2mr − r(r + 2),

which completes the proof.

Lemma 4.5.4. The divisor classes [V∞], [H∞] and [∆] are linearly indepen-
dent in Num(C × C). In particular, rank Num(C × C) > 3.

Proof. Let Dm,n,r = m[V∞]+n[H∞]+r[∆] be numerically equivalent to zero.
Then by Proposition 4.5.3 we obtain the simultaneous equations

0 = Dm,n,r · [V∞] = n+ r

0 = Dm,n,r · [H∞] = m+ r

0 = Dm,n,r · [∆] = m+ n− 2γr.

Since γ > 1, it immediately follows that m = n = r = 0; hence [V∞], [H∞]
and [∆] are linearly independent in Num(C × C).
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Proposition 4.5.5. The Néron-Severi group of C × C is given by

NS(C × C) ∼= Z2+ρ

for some ρ satisfying 1 6 ρ 6 4g2. In particular, NS(C×C) ∼= Num(C×C).

Proof. That NS(C×C) ∼= Z2+ρ follows immediately from Lemma 4.2.10 and
Proposition 4.2.19. So NS(C × C) is free, hence Num(C × C) ∼= NS(C × C)
by Corollary 4.2.9.

Proposition 4.5.5 shows that, up to algebraic equivalence, all divisors on
C ×C are of the form mV∞ + nH∞ + r∆ or come from additional structure
of End(J).

Lemma 4.5.6. Let m and r be non-negative integers. Then

0→ OC×C(mF + (r− 1)∇)→ OC×C(mF + r∇)→ ι∗O∇((2m− γr)D∇)→ 0

is an exact sequence where ι :∇ → C × C is the embedding. We thus obtain
a long exact sequence of cohomology

0→ H0(C × C,mF + (r − 1)∇)→ H0(C × C,mF + r∇)
→ H0(∇, (2m− γr)D∇)→ H1(C × C,mF + (r − 1)∇)
→ H1(C × C,mF + r∇)→ H1(∇, (2m− γr)D∇)→ · · ·

(4.1)

Proof. By definition we have a short exact sequence

0→ OC×C(−∇)→ OC×C → ι∗O∇ → 0. (4.2)

Tensoring (4.2) with OC×C(mF + r∇) (which is invertible, hence flat) pre-
serves exact sequences, so we obtain

0→ OC×C(mF+(r−1)∇)→ OC×C(mF+r∇)→ OC×C(mF+r∇)⊗ι∗O∇ → 0.

Thus it remains to show that OC×C(mF + r∇)⊗O∇ ∼= ι∗O∇((2m− γr)D∇).
First note that OC×C(mF+r∇) ∼= OC×C((m+r)F−r∆) by Lemma 4.5.2.

Then, using the fact that ∇ is effective, we have

OC×C(mF + r∇)⊗ O∇ ∼= OC×C((m+ r)F − r∆)⊗ ι∗O∇
∼= OC×C((m+ r)F − r∆)|∇
∼= ι∗O∇((m+ r)F |∇ − r∆|∇).

Since F |∇ ∼rat 2D∇ and ∆|∇ ∼rat (g + 1)D∇, we have

(m+ r)F |∇ − r∆|∇ ∼rat (2m+ r − gr)D∇ = (2m− γr)D∇
as required. Finally, the long exact sequence follows from Proposition 1.2.2.
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Lemma 4.5.7. Let m > γ be an integer. Then

H1(C × C,mF ) = H2(C × C,mF ) = 0.

Proof. Note that mF = p∗1(mD∞) + p∗2(mD∞), so by Theorem 1.2.5,

H1(C × C,mF ) ∼= (H0
C ⊗H1

C)⊕ (H1
C ⊗H0

C) (4.3)

and

H2(C × C,mF ) ∼= (H0
C ⊗H2

C)⊕ (H1
C ⊗H1

C)⊕ (H2
C ⊗H0

C) (4.4)

where we have denoted H i(C,mD∞) by H i
C for i = 0, 1, 2. Theorem 1.2.4(i)

implies that H2
C = 0, so it suffices to prove that H1

C = 0, for then (4.3)
and (4.4) will be sums of zero spaces and hence zero.

By Theorem 1.2.4(ii), H1(C,mD∞) ∼= H0(C,KC −mD∞) where KC =
γD∞ is a canonical divisor on C. But deg(KC−mD∞) = deg((γ−m)D∞) < 0
since m > γ, and so H0(C,KC −mD∞) = 0 by Proposition 1.1.3.

Proposition 4.5.8. Let m be an integer satisfying m > γ and let r be a
positive integer satisfying 2m− γr > 0. Then

H1(C × C,mF + (r − 1)∇) = 0.

Proof. We proceed by induction on r. The case r = 1 follows from Lemma 4.5.7.
Now assume H1(C ×C,mF + (r− 2)∇) = 0 for r > 2 and 2m− γr > 0.

Considering the long exact sequence of cohomology (4.1) of Lemma 4.5.6
(with r − 1 in place of r there) it suffices to prove that

H1(∇, (2m− γ(r − 1))D∇) = 0,

for then, applying the induction hypothesis, H1(C ×C,mF + (r− 1)∇) will
be surrounded by zeros in (4.1) and hence must be zero. But

H1(∇, (2m− γ(r − 1))D∇) ∼= H0(∇, K∇ − (2m− γ(r − 1))D∇)

by Theorem 1.2.4(ii), where K∇ = γD∇ is a canonical divisor on ∇. Then
deg∇(K∇−(2m−γ(r−1))D∇) = deg∇(−(2m−γr)D∇) < 0 since 2m−γr > 0
and so by Proposition 1.1.3 we obtain H1(∇, (2m− γ(r − 1))D∇) = 0.

Proposition 4.5.9. Let m be an integer satisfying m > γ. Then for all
positive integers r satisfying 2m− γr 6= 0, we have a short exact sequence

0→ H0(C × C,mF + (r − 1)∇)
→ H0(C × C,mF + r∇)

→ H0(∇, (2m− γr)D∇)→ 0.
(4.5)
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Proof. If 2m−γr < 0, then Proposition 1.1.3 implies H0(∇, (2m−γr)D∇) =
0. From the long exact sequence (4.1) of Lemma 4.5.6 we thus obtain

H0(C × C,mF + (r − 1)∇) ∼= H0(C × C,mF + r∇) (4.6)

and so (4.5) follows.
If 2m− γr > 0, we obtain

0→ H0(C × C,mF + (r − 1)∇)→ H0(C × C,mF + r∇)
→ H0(∇, (2m− γr)D∇)→ H1(C × C,mF + (r − 1)∇)→ · · ·

from the long exact sequence (4.1) of Lemma 4.5.6. Proposition 4.5.8 implies
H1(C × C,mF + (r − 1)∇) = 0 from which (4.5) follows.

Unfortunately we have been unable to prove Proposition 4.5.9 in the case
where 2m − γr = 0, nor have we been able to find a counterexample. In
Chapter 5 we present an algorithm which produces an explicit basis for the
space H0(C × C,mF + r∇) for all integers m > γ and r > 0. Using this
algorithm we are able to compute the codimension of the space H0(C ×
C,mF + (r − 1)∇) in H0(C × C,mF + r∇). In each of the many tests we
performed, the codimension has always been equal to one, in which case we
can deduce that the injection

H0(C × C,mF + r∇)
H0(C × C,mF + (r − 1)∇) → H0(∇,O∇)

must be surjective since h0(∇,O∇) = 1 and hence that (4.5) is exact. So
we see that the numerical evidence thus supports the claim that the se-
quence (4.5) is exact, though a proof has not been forthcoming. In lieu of
a proof, we present the exactness of (4.5) in the case 2m − γr = 0 as the
following conjecture, and we therefore treat the case 2m− γr = 0 separately
in the results which follow.

Conjecture 4.5.10. Let m and r be integers satisfying 2m = γr. Then the
sequence

0→ H0(C×C,mF + (r−1)∇)→ H0(C×C,mF + r∇)→ H0(∇,O∇)→ 0.

is exact.

Theorem 4.5.11. Let m and r be integers satisfying m > γ and r > 0.
Suppose 2m− γi 6= 0 for i = 1, . . . , r. We have

H0(C × C,mF + r∇) ∼= H0(C × C,mF )⊕
r⊕
i=1

H0(∇, (2m− γi)D∇). (4.7)
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and

h0(C × C,mF + r∇)

=


(2m− γ)2 + 4mr − γr(r + 2) if γ < 2m− γr,
(2m− γ)2 + 4mr − γr(r + 1)− 2m+ g if 0 < 2m− γr 6 γ,
h0(C × C,mF +

⌊
2m
γ

⌋
∇) if 2m− γr < 0.

If 2m − γi = 0 for some i satisfying 1 6 i 6 r and if Conjecture 4.5.10 is
true, then (4.7) holds and

h0(C × C,mF + r∇) = (2m− γ)2 + 2m(i− 2) + g + 1.

Proof. We first consider the case where 2m− γi 6= 0 for all i = 1, . . . , r.
The isomorphism (4.7) is trivial for r = 0, so assume r > 0. Since the

sequence (4.5) is exact, H0(C × C,mF + r∇) splits as

H0(C × C,mF + r∇)
∼= H0(C × C,mF + (r − 1)∇)⊕H0(∇, (2m− γr)D∇).

(4.8)

and we obtain (4.7) by applying (4.8) recursively. It follows that

h0(C × C,mF + r∇) = h0(C × C,mF ) +
r∑
i=1

h0(∇, (2m− γi)D∇).

As m > γ, deg(mD∞) = 2m > 2γ so Riemann-Roch for curves implies
h0(C,mD∞) = 2m− g + 1 = 2m− γ. Then by Theorem 1.2.5,

h0(C × C,mF ) = h0(C,mD∞)2 = (2m− γ)2.

For an integer i satisfying γ < 2m− γi, we have

h0(∇, (2m− γi)D∇) = 2(2m− γi)− γ

by Riemann-Roch for curves. When γ < 2m− γr we thus obtain
r∑
i=1

h0(∇, (2m− γi)D∇) = 4mr − γr(r + 2) (4.9)

and hence

h0(C × C,mF + r∇) = (2m− γ)2 + 4mr − γr(r + 2). (4.10)

Now suppose 0 < 2m− γr 6 γ. In this case γ < 2m− γ(r− 1) so we can
apply (4.10) to obtain

h0(C × C,mF + (r − 1)∇) = (2m− γ)2 + 4m(r − 1)− γ(r − 1)(r + 1).
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Note that, since∇ ∼= C, we have h0(∇, nD∇) = h0(C, nD∞) = h0(C, 2n(∞)).
Hence the Weierstrass Gap Theorem (see, for example, Hirschfeld et al. [19,
Theorem 6.89]) implies that h0(∇, (2m − γr)D∇) = 2m − γr + 1. We thus
obtain

h0(C × C,mF + r∇)
= h0(C × C,mF + (r − 1)∇) + h0(∇, (2m− γr)D∇)
= (2m− γ)2 + 4mr − γr(r + 1)− 2m+ g. (4.11)

Next, when 2m− γr < 0, we have h0(∇, (2m− γr)D∇) = 0 and so

h0(C × C,mF + r∇) = h0(C × C,mF ) +
b2m/γc∑
i=1

h0(∇, (2m− γi)D∇)

= h0(C × C,mF +
⌊

2m
γ

⌋
∇). (4.12)

Finally, suppose 2m − γi = 0 for some i such that 1 6 i 6 r and that
Conjecture 4.5.10 is true. Then the arguments used to show (4.8) and (4.12)
carry over mutatis mutandis. Since 2m− γr 6 0, from (4.12) we obtain

h0(C × C,mF + r∇) = h0(C × C,mF +
⌊

2m
γ

⌋
∇) = h0(C × C,mF + i∇).

Now 2m− γ(i− 1) = γ, so we can apply (4.11) to obtain

h0(C × C,mF + (i− 1)∇) = (2m− γ)2 + 2m(i− 2) + g. (4.13)

Since h0(∇, (2m− γi)D∇) = h0(∇,O∇) = 1, we have

h0(C × C,mF + i∇)
= h0(C × C,mF + (i− 1)∇) + h0(∇,O∇)
= (2m− γ)2 + 2m(i− 2) + g + 1.

This completes the proof.

In Theorem 4.5.11, we see that

h0(C × C,mF + r∇) = h0(C × C,mF +
⌊

2m
γ

⌋
∇)

when r satisfies 2m− γr < 0 which is essentially a consequence of (4.6). In
this case, 0 6

⌊
2m
γ

⌋
< γ and so h0(C × C,mF + r∇) is indeed described by

the other cases of the theorem.
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Corollary 4.5.12. Let m > γ and r > 0 be integers. Then

h2(C × C,mF + r∇) = 0. (4.14)

If 2m− γi 6= 0 for all i = 1, . . . , r, then

h1(C×C,mF+r∇) =


0 if γ < 2m− γr,
g − (2m− γr) if 0 < 2m− γr 6 γ, and
h1(C × C,mF +

⌊
2m
γ

⌋
∇) if 2m− γr < 0.

If 2m − γi = 0 for some i satisfying 1 6 i 6 r and if Conjecture 4.5.10 is
true, then

h1(C × C,mF + r∇) = g + 1.

Proof. By Lemma 4.5.1, KC×C = γF is a canonical divisor on C × C. Then
using Theorem 1.2.4(ii) we obtain

H2(C × C,mF + r∇) ∼= H0(C × C, (γ −m)F − r∇)
⊆ H0(C × C, (γ −m)F )

and since γ − m < 0, we must have H0(C × C, (γ − m)F ) = 0; this
proves (4.14). Consequently

h1(C × C,mF + r∇) = h0(C × C,mF + r∇)− χ(mF + r∇)

and the formulæ for h1(C × C,mF + r∇) follow immediately by combining
the formulæ for χ(mF+r∇) in Proposition 4.5.3 and for h0(C×C,mF+r∇)
in Theorem 4.5.11.

4.6 Cohomology of divisors on the symmetric
square of a hyperelliptic curve

This section follows the form of the previous section. We prove a decomposi-
tion result for the space of sections of a divisor on the symmetric square of a
hyperelliptic curve in Theorem 4.6.12, from which we derive explicit formulæ
for the dimension of such a space.

Proposition 4.6.1. A canonical divisor on S is given by

KS = 2(g − 2)ΘS +∇S.

The following proof of Proposition 4.6.1 was communicated to the author
by Qing Liu.
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Proof of Proposition 4.6.1. Since the quotient morphism π is étale outside of
∆ on C × C, the canonical map of differentials

π∗Ω1
S/k → Ω1

C×C/k

is then an isomorphism outside of ∆, and induces an injective homomorphism
π∗ωS/k → ωC×C/k of canonical sheaves. So π∗ωS/k = ωC×C/k(−D) for some
effective divisor D on C × C, with support in ∆, hence D = r∆ for some
integer r > 0. It remains to show that r = 1, for then

π∗ωS/k = ωC×C/k(−∆)

and the result will follow from the fact that

2KS = π∗(ωC×C/k(−∆)) = π∗(γF −∆) ∼rat π∗((γ − 1)F +∇) = 4(g − 2)ΘS + 2∇S

where the first equality follows from Proposition 4.1.3.
Let ξ be the generic point of ∆. Then

ωS/k,π(ξ) ⊗ OC×C,ξ = (π∗ωS/k)ξ = ωC×C/k(−r∆)ξ = ωC×C/k,ξ(−r∆)

and thus r may be computed Zariski locally. Let U be a dense open subset
of C. Then one can compute r on U2 → Sym2(U). If we can write U as an
étale cover U → V ⊆ A1

k, then the map

π∗Ω1
Sym2(U)/k → Ω1

U×U/k

is just the pull-back of the map

π∗Ω1
Sym2(V )/k → Ω1

V×V/k.

Let {dx2, dx2} be a local basis for Ω1
V×V/k. Then {d(x1 + x2), d(x1x2)} is

a local basis for Ω1
Sym2(V )/k, and their pull-backs to U × U (respectively

Sym2(U)) are local bases, and r can be computed with respect to these local
bases. Now ωV×V/k is generated by dx1 ∧ dx2, and ωSym2(V )/k is generated
by d(x1 + x2) ∧ d(x1x2) whose image in ωV×V/k is (x1 − x2)(dx1 ∧ dx2). As
x1 − x2 generates locally the ideal of ∆, we see that r = 1 as required.

Corollary 4.6.2. The self-intersection of KS is K2
S = (g − 1)(4g − 9).

Proof. In the proof of Proposition 4.6.1 we saw that π∗(KS) = KC×C − ∆.
Since [K(C × C) : K(S)] = 2, Proposition 4.1.4 implies

2K2
S = (KC×C −∆)2.
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Now calculating the self-intersection with Proposition 4.5.3 we obtain

2K2
S = (KC×C −∆)2

= 4γ2(V∞ +H∞)2 − 4γ∆ · (V∞ +H∞) + ∆2

= 8γ2 − 8γ − 2γ
= 2(g − 1)(4g − 9)

and so K2
S = (g − 1)(4g − 9) as required.

Lemma 4.6.3. For m > γ,

h0(S, 2mΘS) =
(

2m− γ + 1
2

)
·

Proof. By Proposition 1.5.2 we have

H0(S, 2mΘS) ∼= H0(C × C, π∗(2mΘS))G = H0(C × C,mF )G,

by Theorem 1.2.5 we have

H0(C × C,mF )G ∼=
(
H0(C,mD∞)⊗H0(C,mD∞)

)G
,

and by Riemann-Roch for curves we have

h0(C,mD∞) = 2m− γ

for m > γ. So let X1, . . . , X2m−γ be a basis of H0(C,mD∞). Then {Xi⊗Xj |
1 6 i, j 6 2m− γ} is a basis for H0(C,mD∞)⊗2. An element∑

i,j

αijXi ⊗Xj ∈ H0(C,mD∞)⊗2

is fixed by G if and only if αij = αji for all i and j. A basis for such elements
is given by

B = {Xi ⊗Xj +Xj ⊗Xi | 1 6 i, j 6 2m− γ}

of which there are

#B =
(

2m− γ + 1
2

)
= (2m− γ)(2m− γ + 1)

2 ·

This completes the proof.
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Proposition 4.6.4. The Euler characteristic of S is

χ(OS) = (g − 1)(g − 2)
2 ·

Proof. Let m > γ and note that and π∗(mF ) = 4mΘS. By Proposition 1.2.6,

H i(S, 4mΘS) ∼= H i(C × C,mF )

for any i > 0, but our choice of m implies

H1(C × C,mF ) = H2(C × C,mF ) = 0

by Proposition 4.5.7. Hence H1(S, 4mΘS) = H2(S, 4mΘS) = 0 and so
χ(4mΘS) = h0(S, 4mΘS) for m > γ. Then using Lemma 4.6.3, we see
that

χ(4mΘS) = h0(S, 4mΘS)

=
(

4m− γ + 1
2

)

= 4m(4m− 2γ + 1)
2 +

(
γ

2

)
·

But χ(4mΘS) is a polynomial for all m (see Hartshorne [17, Exercise III.5.2]),
so the result follows upon setting m = 0.

Lemma 4.6.5. On S we have

4ΘS ∼rat ∆S + 2∇S.

Proof. The result follows from the facts that

π∗(4ΘS − 2∇S −∆S) = 2F − 2∇− 2∆ = div((x1 − x2)2)

and div((x1−x2)2) is symmetric, hence corresponds to a function on Sym2(C).

Proposition 4.6.6. The intersection pairing on Div(S) × Div(S) is given
by the following table:

· ΘS ∆S ∇S

ΘS 1 2 1
∆S 2 4 - 4g 2 + 2g
∇S 1 2 + 2g 1 - g
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Proof. The entries in the table follow immediately from Propositions 4.1.4
and 4.5.3:

Θ2
S = 1

2(π∗ΘS)2 = 1
2(V∞ +H∞)2 = 1;

∆2
S = 1

2(π∗∆S)2 = 2∆2 = 4− 4g;
∇2
S = 1

2(π∗∇S)2 = 1
2∇

2 = 1− g;
ΘS ·∆S = 1

2π
∗(ΘS) · π∗(∆S) = (V∞ +H∞) ·∆ = 2;

ΘS · ∇S = 1
2π
∗(ΘS) · π∗(∇S) = 1

2(V∞ +H∞) · ∇ = 1;
∆ · ∇ = 1

2π
∗(∆) · π∗(∇) = ∆ · ∇ = 2 + 2g.

The remaining entries in the table then follow by the symmetry of the inter-
section pairing (see Theorem 4.1.1).
Proposition 4.6.7. If D = mΘS + r∇S is an element of Div(S), then

χ(D) = (m− γ)(m− γ + 1)
2 + r(m+ 1)− γ r(r + 1)

2
where γ = g − 1.
Proof. This follows Propositions 4.1.5, 4.6.1 and 4.6.4 and the table of inter-
section pairings from Proposition 4.6.6: we have

χ(D) = 1
2D · (D −KS) + χ(OS)

= 1
2(mΘS + r∇S) · ((m− 2(g − 2))ΘS + (r − 1)∇S) + (g − 1)(g − 2)

2
= 1

2
(
m2 − (2γ − 1)m+ γ(γ − 1) + 2r(m− (g − 2))− γr(r − 1)

)
= (m− γ)(m− γ + 1)

2 + r(m+ 1)− γ r(r + 1)
2

as required.
Remark 4.6.8. Let D = mΘS +n∆S + r∇S be an element of Div(S). Then
by Lemma 4.6.5,

D ∼num mΘS + n(4ΘS − 2∇S) + r∇S = (m+ 4n)ΘS + (r − 2n)∇S.

Since χ is constant on numerical equivalence classes by Proposition 4.2.5, we
can apply Proposition 4.6.7 to obtain

χ(D) = χ((m+ 4n)ΘS + (r − 2n)∇S)

= (m− γ)(m− γ + 1)
2 + 2mn+ (m+ 1)r + 2εnr

− γn(2n+ 3)− γ r(r + 1)
2

where γ = g − 1 and ε = g + 1.
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Proposition 4.6.9. The torsion subgroup of NS(S) is given by

NS(S)tors ∼= (Z/2Z)τ

for some τ satisfying 0 6 τ <∞.

Proof. Let D be a class in NS(S) and suppose that mD = 0 for some m.
Then taking the pullback we get mπ∗(D) = 0 on NS(C × C), which implies
π∗(D) = 0 since NS(C×C) is torsion free by Proposition 4.5.5. Since π∗π∗ is
multiplication-by-2 on Div(S) by Proposition 4.1.3, we have 2D = π∗π

∗(D) =
0, so D is 2-torsion. Hence NS(S)tors = (Z/2Z)τ . That τ is finite follows from
Theorem 4.2.7.

Proposition 4.6.10. The rank of Num(S) satisfies

2 6 rank Num(S) 6 rank Num(C × C).

The divisor classes [ΘS] and [∆S] are linearly independent in Num(S).

Proof. Let D1, . . . , Dρ in Num(S) be a set of linearly independent divisor
classes, where ρ > rank Num(C × C). Then ∑ρ

i=1 niπ
∗(Di) = 0 for some

integers ni not all zero, and so by linearity we have π∗(∑ρ
i=1 niDi) = 0. Since

π∗π
∗ is multiplication-by-2 on Div(S) by Proposition 4.1.3, we obtain

2
ρ∑
i=1

niDi = π∗π
∗(

ρ∑
i=1

niDi) = 0

which shows that ∑ρ
i=1 niDi is 2-torsion, contradicting the linear indepen-

dence of the Di. Hence ρ 6 rank Num(C × C).
Let Dm,r = m[ΘS] + r[∆S] be numerically equivalent to zero. Then by

Proposition 4.6.6 we obtain the simultaneous equations

0 = Dm,r · [ΘS] = m+ 2r
0 = Dm,r · [∆S] = 2m− 4γr

and it immediately follows that m = r = 0; hence [ΘS] and [∆S] are linearly
independent in Num(S) and so rank Num(S) > 2.

Corollary 4.6.11. The Néron-Severi group of S is given by

NS(S) ∼= Z1+ρ × (Z/2Z)τ

for ρ satisfying 1 6 ρ 6 4g2 and τ satisfying 0 6 τ <∞.
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Proof. By Corollary 4.2.9, this is immediate from Proposition 4.6.10 and
Proposition 4.6.9.

Theorem 4.6.12. Let m and r be integers satisfying m > γ and r > 0.
Assume that Conjecture 4.5.10 is true. Then

H0(S, 2mΘS + r∇S) ∼= H0(S, 2mΘS)⊕
r⊕
i=1

H0(P1, (2m− γi)(∞)).

If 2m− γr > 0, then

h0(S, 2mΘS + r∇S) =
(

2m− γ + 1
2

)
+ r(2m+ 1)− γ

(
r + 1

2

)
·

Otherwise
h0(S, 2mΘs + r∇) = h0(S, 2mΘS +

⌊
2m
γ

⌋
∇).

If Conjecture 4.5.10 is false, then the theorem holds for r such that 2m−γi 6=
0 for all i = 1, . . . , r.

Proof. First assume that Conjecture 4.5.10 is true. By Proposition 1.5.2 and
Theorem 4.5.11 we have

H0(S, 2mΘS + r∇S) ∼= H0(C × C, π∗(2mΘS + r∇S))G
∼= H0(C × C,mF + r∇)G

∼= H0(C × C,mF )G ⊕
r⊕
i=1

H0(∇, (2m− γi)D∇)G

∼= H0(S, 2mΘS)⊕
r⊕
i=1

H0(∇, (2m− γi)D∇)G

where the second last isomorphism follows from the fact that the isomorphism
of Theorem 4.5.11 is an isomorphism of G-modules. Since

∇/〈σ〉 ∼= P1 ∼= C/〈η〉,

we have
H0(∇, (2m− γi)D∇)G ∼= H0(P1, (2m− γi)(∞)).

It follows that

h0(S, 2mΘS + r∇S) = h0(S, 2mΘS) +
r∑
i=1

h0(P1, (2m− γi)(∞)).

First, Lemma 4.6.3 shows that

h0(S, 2mΘS) =
(

2m− γ + 1
2

)
= (2m− γ)(2m− γ + 1)

2 · (4.15)
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We have h0(P1, (2m−γi)(∞)) 6= 0 if and only if 2m−γi > 0, and a basis
of H0(P1, (2m− γi)(∞)) is given by all monomials in two variables of degree
2m − γi. Hence, when 0 6 2m − γr 6 2m − γi, we obtain h0(P1, (2m −
γi)(∞)) = 2m− γi+ 1 and so

r∑
i=1

h0(P1, (2m− γi)(∞)) = r(2m+ 1)− γ r(r + 1)
2 (4.16)

If 2m− γr < 0, then we obtain
r∑
i=1

h0(P1, (2m− γi)(∞)) =
b2m/γc∑
i=1

h0(P1, (2m− γi)(∞)). (4.17)

Combining (4.16) and (4.17) with (4.15) completes the proof in the case when
Conjecture 4.5.10 is true. If the conjecture is false, it is clear that the proof
remains the same except that we must omit the cases where 2m− γi = 0 for
some i satisfying 1 6 i 6 r.
Corollary 4.6.13. Let m > γ and r > 0 be integers. Then

h2(S, 2mΘS + r∇S) = 0. (4.18)
Assume Conjecture 4.5.10 is true. Then

h1(S, 2mΘS + r∇S) = (r − r′)
(γ

2 (r + r′ + 1)− (2m+ 1)
)

where r′ = min{r,
⌊

2m
γ

⌋
}. In particular, h1(S, 2mΘS + r∇S) = 0 if 0 6

2m − γr. If Conjecture 4.5.10 is false, then the corollary remains true for
r > 0 such that 2m− γi 6= 0 for all i = 1, . . . , r.
Proof. By Proposition 4.6.1, a canonical divisor on S is given by KS =
2(g − 2)ΘS + ∇S and π∗KS = γF − ∆. Hence by Theorem 1.2.4(ii) and
Proposition 1.5.2,

H2(S, 2mΘS + r∇S) ∼= H0(S,KS − 2mΘS − r∇S)
= H0(C × C, γF −∆−mF − r∇)G

⊆ H0(C × C, (γ −m)F )G.
But H0(C × C, (γ −m)F ) = 0 since m > γ. This proves (4.18).

Assume Conjecture 4.5.10 is true. Combining the formula for χ(2mΘS +
r∇S) in Proposition 4.6.7 with the formula for h0(S, 2mΘS + r∇S) in Theo-
rem 4.6.12, we obtain

h1(S, 2mΘS + r∇S)
= h0(S, 2mΘS + r∇S)− χ(2mΘS + r∇S)

= (r − r′)
(γ

2 (r + r′ + 1)− (2m+ 1)
)
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where r′ = min{r,
⌊

2m
γ

⌋
}. If 0 6 2m− γr, then r = r′ and so

h1(S, 2mΘS + r∇S) = 0.

This completes the proof of the case where Conjecture 4.5.10 is true. If the
conjecture is false, the same proof holds for r such that 2m − γi 6= 0 for
i = 1, . . . , r.
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Chapter 5

Explicit bases of sections and
applications

The goal of this chapter is to describe an algorithm which produces an explicit
basis for spaces of global sections of divisors on the square and the symmetric
square of a hyperelliptic curve that we studied in Chapter 4.

Let C be a curve of genus 2 and let JC be its Jacobian. With this
algorithm in hand, we show how to re-derive the rational map Sym2(C)→ JC
described by Cassels [7], Flynn [12] and Cassels and Flynn [8, Chapter 2].
We will subsequently consider several other applications, including various
embeddings of C × C and Sym2(C) and applications to coding theory on
these surfaces.

Throughout this chapter we continue to assume the setup and notation
described in Section 4.3. Let x1, y1, x2, y2 be the coordinate functions in
k(C × C) = k(x1, y1, x2, y2).

5.1 Eigenspace decompositions
Let ε = ±1 and define W ε

m to be the subspace of H0(C × C,mF ) on which
σ has the eigenvalue ε. Set W ε

m,r = W ε
m ∩H0(C × C,mF − r∆).

Lemma 5.1.1. Let m and r be non-negative integers. Then there is a de-
composition

H0(C × C,mF − r∆) ∼= W 1
m,r ⊕W−1

m,r.

Proof. Since σ is idempotent, the group ring k[〈σ〉] decomposes as k[〈σ〉] ∼=
k × k which induces the stated decomposition of H0(C × C,mF − r∆).

Lemma 5.1.1 is true more generally for any divisor D on C × C which
satisfies Dσ = D.
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The following proposition shows that the σ-invariant sections of the space
H0(C×C,mF + r∇) are the sections of H0(C×C, (m+ r)F − r∆) on which
σ acts by (−1)r, thus reducing the task of computing H0(S, 2mΘS + r∇S)
to computing a basis of W (−1)r

m+r,r.

Proposition 5.1.2. Let m and r be non-negative integers. Then there is an
isomorphism

ϕ :H0(C × C,mF + r∇)〈σ〉 → W
(−1)r
m+r,r

where ϕ is defined by ϕ(w) = (x1 − x2)rw.

Proof. There is an isomorphism

ϕ :H0(C × C,mF + r∇)→ H0(C × C, (m+ r)F − r∆)

defined by ϕ(w) = (x1 − x2)rw, since div((x1 − x2)r) = rF − r∆ − r∇ by
Lemma 4.5.2. For all w in H0(C×C,mF+r∇) we have wσ = w if and only if
ϕ(w)σ = (−1)r(x1−x2)rw. Hence σ-invariant sections inH0(C×C,mF+r∇)
correspond to sections in H0(C×C, (m+r)F−r∆) on which σ acts by (−1)r.
Since

H0(C × C, (m+ r)F − r∆) ∼= W 1
m+r,r ⊕W−1

m+r,r

by Lemma 5.1.1, the subspace of sections of H0(C × C, (m + r)F − r∆) on
which σ acts by (−1)r is W (−1)r

m+r,r as required.

Lemma 5.1.3. A basis of H0(C × C,mF ) is given by the submodule of
polynomials in k[x1, y1, x2, y2] of the form

w = a+ by1 + cy2 + dy1y2 (5.1)

where a, b, c and d are polynomials in k[x1, x2] satisfying the following bounds
on the degrees:

degx1(a), degx2(a), degx1(c), degx2(b) 6 m

degx1(b), degx2(c), degx1(d), degx2(d) 6 m− (g + 1).

Proof. By Theorem 1.2.5, H0(C × C,mF ) ∼= H0(C,mD∞)⊗2, so every ele-
ment can be written as a product of an element in {1, x1, . . . , x

r
1, y1, x

r+t
1 , . . .}

with an element from {1, x2, . . . , x
r
2, y2, x

r+t
2 , . . .} for some non-negative inte-

gers r and t. Any occurrence of y2
i can be replaced by f(xi) which shows

that degyi(w) 6 1 for i = 1, 2 and hence gives the form of w in (5.1). The
degree bounds on a, b, c and d are then imposed by mF .
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Lemma 5.1.4. Let
w = a+ by1 + cy2 + dy1y2 (5.2)

be an element of H0(C×C,mF ) with a, b, c and d as in Lemma 5.1.3. Then
w belongs to W 1

m if and only if a = aσ, d = dσ and c = bσ.

Proof. Let w have the stated form. Then

wσ = aσ + cσy1 + bσy2 + dσy1y2. (5.3)

By definition w ∈ W 1
m if and only if w = wσ, so the result follows upon

equating the coefficients of 1, y1, y2 and y1y2 in (5.2) and (5.3).

Lemma 5.1.5. Let w be in H0(C ×C,mF ). Then w is in W−1
m if and only

if there exists w′ ∈ W 1
m−1 such that w = (x1 − x2)w′.

Proof. By definition, w belongs to W−1
m if and only if wσ = −w, in which

case x1 − x2 divides w. Hence w = (x1 − x2)w′ where w′ is symmetric, so w′
belongs to W 1

m−1. The converse is immediate.

5.2 Hasse-Schmidt derivations
In this section, we describe the Hasse partial derivative of a multivariate
polynomial. This derivative is a generalisation of the usual formal derivative
of a polynomial, and it has the advantage that it allows us to calculate Taylor
series expansions in arbitrary characteristic. The primary references for this
section are Vojta [38, §1] and Hirschfeld et al. [19, Section 5.10].

Let A be a ring, let α :A → B and A → R be A-algebras and let m be
a positive integer. A higher derivation of order m from B to R over A is a
sequence (D0, . . . , Dm) whereD0 :B → R is an A-algebra homomorphism and
Di :B → R are homomorphisms of additive abelian groups for i = 1, . . . ,m
satisfying

(i) Di(α(a)) = 0 for all a ∈ A and all i = 1, . . . ,m, and

(ii) (Leibniz rule) for all x and y in B and all h = 0, . . . ,m,

Di(xy) =
i∑

j=0
Dj(x)Di−j(y).

It follows immediately that the maps Di : B → R are in fact A-module
homomorphisms for all i = 0, . . . ,m.
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Let A be a ring and let j > 0 be an integer. The jth Hasse derivative of
a polynomial w = ∑n

i=0 ait
i in A[t] is defined to be

D
(j)
t w =

n∑
i=j

(
i
j

)
ait

i−j.

When char(A) is coprime to j! we haveD(j)
t w = 1

j!
dj

dtj
w, where d

dt
w is the usual

formal derivative of a polynomial. In particular, D(0)
t w = w and D(1)

t w = d
dt
w

for all w in A[t], however D(i)
t D

(j)
t w 6= D

(i+j)
t w in general.

Proposition 5.2.1. Let A be a ring. Then the sequence (D(0)
t , . . . , D

(m)
t ) of

Hasse derivatives is a higher derivation of order m from A[t] to A[t] over A.

Proof. See Hirschfeld et al. [19, Lemma 5.72].

Proposition 5.2.2. Let A be a ring, let a be in A, and let w be an element
of A[t]. Then

w =
deg(w)∑
i=0

(D(i)
t w)(a)(t− a)i.

Proof. By linearity it suffices to consider the case w = tn. Then

deg(w)∑
i=0

(D(i)
t w)(a)(t− a)i =

deg(w)∑
i=0

(
n
i

)
an−i(t− a)i = tn

as required.

5.3 Formal neighbourhoods of ∆
Define s = (x1 + x2)/2 and t = (x1 − x2)/2 (recall that we assume char(k)
is not two). Then t is a uniformising parameter at ∆ in C × C; that is,
t generates the maximal ideal m∆ of the local ring OC×C,∆. The formal
expansion of an element w ∈ OC×C,∆ in the neighbourhood of ∆ is given by
its image in the completion ÔC×C,∆ ∼= k(∆) [[t]] of OC×C,∆ with respect to m∆
(here we are abusing notation by writing t for the variable in power series
k(∆) [[t]] which is the image of the element t = (x1 − x2)/2 in OC×C,∆). By
Proposition 5.2.2, this image is given by

w =
∞∑
j=0

D
(j)
t w

∣∣∣
∆
tj
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where D(j)
t w

∣∣∣
∆
denotes the image of D(j)

t w under the quotient

OC×C,∆ → OC×C,∆/m∆ ∼= k(∆),

which, for i = 1, 2, sends xi to x and yi to y in k(∆) = k(x, y).

Proposition 5.3.1. For i = 1, 2 and for all j > 0 we have

D
(j)
t xm1 =

(
m
j

)
xm−j1

D
(j)
t xm2 = (−1)j

(
m
j

)
xm−j2

D
(j)
t yi = 1

2f(xi)

(
D

(j)
t f(xi)−

j−1∑
`=1

D
(`)
t yiD

(j−`)
t yi

)
yi

Proof. Let b ∈ k(∆). From the Leibniz rule, we obtain

D
(j)
t (b− t)m =

∑
06r1,...,rm61∑

r`=j

D
(r1)
t (b− t) · · ·D(rm)

t (b− t)

by induction on m, from which it follows that

D
(j)
t xm2 = (−1)j

(
m
j

)
xm−j2

since x2 = s− t and s ∈ k(∆). A similar argument shows that

D
(j)
t xm1 =

(
m
j

)
xm−j1 .

Since y2
i −f(xi) = 0 for i = 1, 2, linearity and the Leibniz rule imply that

0 = D
(j)
t y2

i −D
(j)
t f(xi) = 2yiD(j)

t yi +
j−1∑
`=1

D
(`)
t yiD

(j−`)
t yi −D(j)

t f(xi)

and so
D

(j)
t yi = 1

2yi

(
D

(j)
t f(xi)−

j−1∑
`=1

D
(`)
t yiD

(j−`)
t yi

)
.

The result follows upon noting that 1/yi = yi/f(xi).

Proposition 5.3.2. For i = 1, 2 and all j > 1, there exists a polynomial Gj

in k[xi] of degree at most j(deg(f)− 1) such that

D
(j)
t yi = Gj(xi)

(2f(xi))j
yi.
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Proof. For j = 1, we have

D
(1)
t yi = D(1)f(xi)

2f(xi)
yi

by Proposition 5.3.1. Now suppose the result holds for ` < j. We obtain

D
(j)
t yi = 1

2f(xi)

(
D

(j)
t f(xi)−

j−1∑
`=1

D
(`)
t yiD

(j−`)
t yi

)
yi

= 1
2f(xi)

(
D

(j)
t f(xi)−

j−1∑
`=1

G`(xi)Gj−`(xi)
2jf(xi)j−1

)
yi

= 1
2jf(xi)j

(
2j−1f(xi)j−1D

(j)
t f(xi)−

1
2

j−1∑
`=1

G`(xi)Gj−`(xi)
)
yi

where the first equality follows from Proposition 5.3.1 and the second the
induction hypothesis. Hence by induction

Gj(xi) = 2j−1f(xi)j−1D
(j)
t f(xi)−

1
2

j−1∑
`=1

G`(xi)Gj−`(xi)

is the required polynomial. Clearly deg(f(xi)j−1D
(j)
t f(xi)) 6 j(deg(f) − 1)

and, by induction, deg(G`(xi)Gj−`(xi)) 6 j(deg(f) − 1), so it follows that
deg(Gj) 6 j(deg(f)− 1).

Let m and j be non-negative. Define the map

ϕ(j)
m :H0(C × C,mF )→ k(∆)

by ϕ(j)
m (w) = D

(j)
t w|∆. DefineM (j)

m to be the sub-vector space of k[x, y, f−1] ⊂
k(∆) consisting of those polynomials g such that

degx(g) 6 2m+ j(deg(f)− 1), degy(g) 6 1, and degf−1(g) 6 2j,

where we write f = f(x).

Corollary 5.3.3. The image of ϕ(j)
m lies in M (j)

m

Proof. Letm and r be integers and assumem is non-negative. By Lemma 5.1.3,
an element w of H0(C×C,mF ) has the form w = a+by1 +cy2 +dy1y2 where
a, b, c, d are in k[x1, x2] and have degrees satisfying

degx1(a), degx2(a), degx2(b), degx1(c) 6 m,

degx1(b), degx2(c), degx1(d), degx2(d) 6 m− (g + 1).
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From the Leibniz rule and Proposition 5.3.1 we see that

D
(j)
t w = a′ + b′y1 + c′y2 + d′y1y2,

whose image in k(∆) is given by

D
(j)
t w

∣∣∣
∆

= a′(∆) + d′(∆)f(x) + (b′(∆) + c′(∆))y.

Let an, bn, cn and dn be the numerators of a′(∆), b′(∆), c′(∆) and d′(∆)
respectively. Then by Propositions 5.3.1 and 5.3.2,

degx(an) 6 2m− j
degx(bn) + degx(cn) 6 2m− (g + 1) + j(deg(f)− 1)

degx(dn) 6 2(m− (g + 1)) + j(deg(f)− 1).

Let ad, bd, cd and dd be the denominators of a′(∆), b′(∆), c′(∆) and d′(∆)
respectively. Then by Proposition 5.3.2,

degf−1(ad) = degf−1(bd) = degf−1(cd) = 0
degf−1(bd), degf−1(cd) = j

degf−1(dd) = 2j

where we write f = f(x). This completes the proof.

5.4 Explicit bases of sections
In this section we describe an algorithm for generating explicit bases for
H0(C × C,mF + r∇) and H0(S, 2mΘS + r∇S).

Algorithm 5.4.1. Let m and r be non-negative integers and let V be a
subspace of H0(C2, (m+r)F ) given as a basis B of monomials. The following
procedure computes a basis for V ∩H0(C2, (m+ r)F − r∆).

1. Fix a basis for the vector space M (r−1)
m+r .

2. Set K ← V .

3. For j ← 0, . . . , r − 1,

(a) Calculate the map ϕ
(j)
m+r : V → M

(j)
m+r ⊆M

(r−1)
m+r by applying the

Leibniz rule and the formulæ of Proposition 5.3.1 to the elements
of B.
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(b) Set K ← K ∩Ker(ϕ(j)
m+r).

4. Return K.

Proof. Let w be an element of V . If r = 0, then the loop in step 3 is
not executed and so K = V from step 2. If r > 0, then it is clear from
step 3(b) that K = ⋂r−1

j=0 Ker(ϕ(j)
m+r) at step 4. Hence we have w ∈ K if

and only if ϕ(j)
m+r(w) = D

(j)
t w|∆ = 0 for j = 0, . . . , r − 1 if and only if

w ∈ V ∩H0(C2, (m+ r)F − r∆).

Applying Algorithm 5.4.1 to the basis of H0(C2, (m + r)F ) given by
Lemma 5.1.3 produces a basis for

H0(C2, (m+ r)F − r∆) = (x1 − x2)rH0(C2,mF + r∇),

and applying Algorithm 5.4.1 to the basis of W (−1)r
m+r described by Lem-

mas 5.1.4 and 5.1.5 produces a basis for

W
(−1)r
m+r,r = (x1 − x2)rH0(S, 2mΘS + r∇S).

The following proposition shows that a certain constant improvement to
the time complexity of Algorithm 5.4.1 is possible.

Proposition 5.4.2. Let m and r be integers with m non-negative. Let w be
an element of W (−1)r

m and let i be a non-negative integer. If i 6≡ r (mod 2),
then D(i)

t w|∆ = 0.

Proof. Consider the power series expansion of w at ∆:

w(t) =
∑
i>0

wit
i where wi = D

(i)
t w

∣∣∣
∆
.

As w ∈ W (−1)r
m , we have w(t)σ = (−1)rw(t). But

w(t)σ =
∑
i>0

(−1)iwiti

since tσ = −t and wσi = wi for all i; hence (−1)rwi = (−1)iwi for all i. If
i 6≡ r (mod 2), then −wi = wi and so wi = 0 since char(k) 6= 2.

Proposition 5.4.2 shows that when the input to Algorithm 5.4.1 isW (−1)r
m+r ,

then the kernel intersection on step 3(b) need only be executed r/2 times
since D(i)

t w|∆ = 0 when i 6≡ r (mod 2). The map ϕ
(j)
m+r in step 3(a) of

Algorithm 5.4.1 should nevertheless be calculated as this permits iterative
calculation of the Hasse derivatives of the monomial basis of V using the
formulæ of Proposition 5.3.1.
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5.5 Applications
In this final section we look at several applications of Algorithm 5.4.1.

5.5.1 Projective embeddings
Let X be a smooth projective variety of dimension n, let KX be a canonical
divisor on X, and let H be an ample divisor on X. The Fujita Conjecture
states that KX + λH is generated by global sections if λ > n + 1 and it is
very ample if λ > n + 2. The Fujita conjecture was proved for surfaces by
Reider [34]. As Lemma 4.5.1 and Proposition 4.6.1 give the forms of canonical
divisors on C × C and Sym2(C) respectively, we can use Algorithm 5.4.1 to
explicitly find many projective embeddings of these surfaces.

Let C be a curve of genus 2 and let JC be its Jacobian. In this case
S = Sym2(C) is the blowup of JC at the identity and ∇S is the exceptional
divisor on S. Then ∇S is a canonical divisor on S (see Hartshorne [17,
Chapter V, Proposition 3.3]). The pullback of 4ΘJ from JC to S is given by
4ΘS + 4∇S and this is very ample by the result of Reider. In the work of
Cassels [7], Flynn [12] and Cassels and Flynn [8, Chapter 2] they describe
a basis for H0(S, 4ΘS + 4∇S) which we can verify (up to projective linear
transformation) with Algorithm 5.4.1.

5.5.2 Conjecture 4.5.10
First note that the conjecture is true in the case g = 2 on account of the
explicit basis forH0(S, 4ΘS+4∇S) described in the work of Cassels and Flynn
cited at the end of the previous section. It therefore suffices to consider g > 3.

Let m > γ and r satisfy 2m − γr = 0. We can deduce from Theo-
rems 4.5.11 and 4.6.12 that Conjecture 4.5.10 holds if and only if

h0(C × C,mF + r∇) = (2m− γ)2 + 2m(r − 2) + g + 1

and

h0(Sym2(C), 2mΘS + r∇S) =
(

2m− γ + 1
2

)
+ r(2m+ 1)−γ

(
r + 1

2

)
· (5.4)

Algorithm 5.4.1 allows us to confirm these formulæ in any given special case.
For each g with 3 6 g 6 6 we randomly selected ten hyperelliptic curves C
over Q of genus g, and calculated bases of the spaces H0(C × C,mF + r∇)
and H0(Sym2(C), 2mΘS + r∇S) for m and r such that 2m − γr = 0 and
gcd(m, r) = 1. In each case we confirmed that the number of basis elements
calculated agreed with the dimension predicted by the conjecture.
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5.5.3 Codes on surfaces
Let C be a hyperelliptic curve of genus g > 2 over a field Fq of characteristic
different from two and let S denote either C × C or Sym2(C). We finish by
showing how to construct linear codes on C × C and Sym2(C).

Let T ⊆ S(Fq) be a subset of cardinality n and let D be a very ample
divisor on S giving an embedding ϕ : S → Pk−1. Note that the result of
Reider [34] described in Section 5.5.1 gives one means of producing very
ample divisors D. The set ϕ(T ) ⊂ Pk−1(Fq) defines a linear [n, k, d]-code.
The parameters n and k are called the block length and dimension of the
code respectively. The dimension of the code is given by Theorem 4.5.11
or 4.6.12 depending on where S = C × C or S = Sym2(C). Algorithm 5.4.1
can be used to compute a basis of H0(S,D) which determines the map into
Pk−1; this provides a means of calculating the image of T . The parameter d
is called the minimal distance and is given by

d = n−max
H
{ϕ(T ) ∩H}

where H runs over all hyperplanes in Pk−1. The minimal distance is difficult
to compute in general.
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