
Progress in Computer Science and Applied Logic, Vol. 20 
© 2001 Birkhiiuser Verlag Basel/Switzerland 

Counting the Number of Points 
on Affine Diagonal Curves 

Cunsheng Ding, David R. Kohel, and San Ling 

Abstract. The number of points on affine diagonal curves aXm + byn 
c over finite fields can be computed in terms of cyclotomic numbers. The 
approach of Berndt, Evans and Williams [1] is to express the number of points 
in terms of generalized Jacobi sums, then to relate the Jacobi sums Jr(-xu, XV) 
to cyclotomic numbers. In this article we present the direct elementary method 
for the number of points on the affine curves aXm + byn = c over finite fields 
in terms of cyclotomic numbers. This approach is applicable when explicit 
formulas are already known for cyclotomic numbers, and circumvents the use 
of Jacobi sums. It generalizes to the determination of the number of points on 
affine diagonal hypersurfaces of higher dimension. The curves for which this 
method applies includes examples of elliptic and hyperelliptic curves which 
are of interest for public-key cryptosystems, coding theory and the design and 
analysis of sequences. 

1. Introduction 

Public-key cryptosystems play an important role in information and system se
curity [21]. Elliptic and hyperelliptic curves have been successfully employed to 
construct public-key cryptosystems [12, 13, 19, 20]. Counting the number of points 
on these curves is necessary for the construction of such cryptosystems [14, 18]. 
Curves have also important applications in sequences and coding theory [24, 25]. 

Let a be a generating element of GF(q)*, and let e be a positive divisor of 

q - 1. The cyclotomic classes CJe) of order e are defined with respect to a as 

CJe) = ai Cae) for i = 0, ... , e - 1, where Cae) = {,6e 1,6 E GF(q)*} is the set 
of e-th residues in GF(q). The corresponding cyclotomic numbers of order e are 
defined by 

(i,j)e = I (Ci(e) + 1) n C?)I, 0::; i,j::; e-1. 

Cyclotomic numbers were introduced by Gauss [11, §358] in his treatment of 
the number of solutions (x, y) of 

aX3 == by3 + 1 (mod p). 
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In the course of his general study he also defines the periods [11, §343]' which we 
now refer to as Gaussian periods. The study of relations, properties and formulas 
for cyclotomic numbers and Gaussian periods is referred to as cyclotomy. 

Cyclotomy finds applications in Waring's problems [5], the construction of 
difference sets [26, 27, 29] and almost difference sets [3], coding theory [7, 8, 9, 
16, 17], and cryptography [3]. Dickson [6] used cyclotomy to derive results on the 
number of solutions of the diagonal surfaces aXm + bym + cZm = d. 

The connection between the number of points on affine diagonal curves and 
cyclotomy is generally expressed in terms of the theory of Jacobi sums. Berndt 
et al. [1], for example, express the number of points on an affine diagonal curve 
aXm + byn = c in terms of cyclotomic numbers via a two step process. First 
the number of points is expressed in terms of generalized Jacobi sums, then they 
show that the collection of Jacobi sums Jr(XU , XV) can be expressed in terms of 
cyclotomic numbers. In this paper we present the direct elementary method for the 
calculation of the number of points on the affine diagonal curves aXm + byn = c 
over finite fields in terms of cyclotomic numbers. This applies in particular when m 
and n divide an exponent e for which explicit formulas are known for cyclotomic 
numbers. If one of the exponents m = 2, and n > 4, then the corresponding 
curve is hyperelliptic, and when (m, n) is one of (2,3), (2,4), or (3,3), the curve 
is elliptic. In the latter cases the curves have complex multiplication, and the 
determination of the number of points over a finite field does not require any of 
the sophisticated methods of Schoof, Atkin, and Elkies (see [22, 23, 10]). This 
direct approach circumvents the need to compute or analyse Jacobi sums, and 
provides an effective means of computing the number of points on more general 
diagonal hypersurfaces in terms of cyclotomic numbers. 

2. Cyclotomy and Affine Diagonal Curves 
In this section we use cyclotomic numbers to express the number of points on the 
curve 

(1) 

over GF(q), where a and b are in GF(q)*, in terms of the cyclotomic numbers of 
certain order. It is straightforward to see that when m = n I q-1, then the number 
of points (x, y) on (1) with xy =1= 0 is m 2 times a cyclotomic number. 

Given a curve aXm + byn = c, we first write m = mlm2 and n = nln2, 
where m2 = gcd(q -1, m) and n2 = gcd(q - 1, n). Then there exist integers rand 
s, relatively prime to q -1, such that rm == m2 mod q - 1 and sn == n2 mod q - 1. 
Since the maps 0: I-t o:r and 0: I-t o:S are automorphisms of GF(q)* sending k
th residues to k-residues, the curve axmr + byns = 1, or equivalently the curve 
aXm2 + byn 2 = 1, has the same number of points as the curve (1). We can thus 
reduce to the case that m and n both divide q - 1. Henceforth, we assume that 
m and n divide q - 1. We set e equal to the least common multiple of m and n, 
which clearly also divides q - 1. 
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The genus of the curve (1) is known to be 

(m - l)(n - 1) - gcd(m, n) + 1 
2 

For exponents (m, n) with 1 < m ~ n, the curve has genus zero if and only if 
(m, n) = (2,2) and has genus one if and only if (m, n) is in {(2, 3), (2,4), (3, 3)}. 
Of particular interest are the hyperelliptic curves, where m = 2 and n > 4. 

As before, fix a primitive element a:: of GF(q), and define cyclotomic classes 

cim) of order m. Now we consider the relation among the cyclotomic classes of 
orders m and e. 

Lemma 2.1. Suppose that e = mr. Then CJm) is the disjoint union of the r cyclo

tomic classes Ci~+j for 0 ~ i < r. 

Proof. It is straightforward to see that Cam) = U;,:~ Ci~' Hence ct) = a::jCam) 
has the form indicated. 0 

Let N (a, b) denote the number of points on the curve (1), and define 15m (c) to 
be the number of solutions of the equation cXm = 1. It is clear that Dm(C) equals 
m if c is an m-th residue and is zero otherwise. 

Theorem 2.2. Let rand s be the integers such that e = mr = ns, and define h 
and k to be integers such that -a and b lie in Che ) and Cke), respectively. Then 

r-18-1 

N(a, b) = Dm(a) + Dn(b) + mn L L(in + h,jm + k)e. 
i=O j=O 

Proof. It is clear that N(a, b) - 15m (a) - Dn(b) is the number of points (x, y) on (1) 
such that xy i=- O. Since xm takes on each element of Cam) exactly m times as x 
ranges over GF(q)*, it follows that 

mnl( - a Cam) + 1) nbcan)1 
8-1 8-1 

mnl( u -aC;~ + 1) n (U bCJ~)1 
i=O j=O 
r-1 8-1 

mnl ( U Ci(~+h + 1) n ( U C;~+k) I 
i=O j=O 

r-18-1 

mn L L(im + h,jn + k)e, 
i=O j=O 

which completes the proof. o 
In the next section we apply the theorem to the determination of the number 

of points on curves which have the form (1). 
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3. Examples and Computations 

Theorem 2.2 shows that the number of points on curves of form (1) can be cal
culated when cyclotomic numbers of order e are known. We now do some specific 
computations to illustrate this idea. 

Example 3.1. We consider the genus one curve 

aX2 +by4 = 1, 

over GF(q), where q == 1 mod 4. By definition o2(a) = 2 if a E Ca4) u C~4), and 

o2(a) = 0 otherwise. Similarly o4(b) = 4 if b E Ca4), and o4(b) = 0 otherwise. To 
calculate the number of points on this curve, we apply the known formulas for the 
cyclotomic numbers of order 4. 

It has been proven [26] that the 16 possible cyclotomic numbers (h, k)4 are 
determined by the decomposition q = u2 + 4v2 , where u == 1 mod 4 and the sign 
of v is dependent on the choice of the primitive root used to define the cyclotomic 
classes. There are at most five distinct cyclotomic numbers of order 4. The relations 
of these numbers are given in Table 1, and the values A, B, C, D and E are given 
by Table 2. 

h\k 0 1 2 3 h\k 0 1 2 3 
0 A B C D 0 A B C D 
1 B D E E 1 E E D B 
2 C E C E 2 A E A E 
3 D E E B 3 E D B E 
when q == 1 mod 8 when q == 5 mod 8 

TABLE 1. The relations of the cyclotomic numbers of order 4. 

q == 1 mod 8 q==5mod8 
16A q-U-6u q-7 +2u 
16B q - 3+ 2u+8v q+ 1 +2u-8v 
16C q - 3+ 2u q+I-6u 
16D q- 3+ 2u - 8v q+ 1 +2u+8v 
16E q+ 1- 2u q - 3 - 2u 

TABLE 2. The values of the cyclotomic numbers of order 4. 

Let (-a,b) E Ch2) x Ck4). From Theorem 2.2 and the tables of cyclotomic 
numbers and their relations, it follows that the number of points N(a, b) on the 
curves aX2 + by4 = 1 are those given by Table 3. D 
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(h, k) q == 1 mod 8 q == 5 mod 8 
(0,0) q -1- 2u q -1 + 2u 
(0,1) q+ 1 +4v q+ 1- 4v 
(0,2) q -1 +2u q -1- 2u 
(0,3) q + 1- 4v q+ 1 +4v 
(1,0) q+ 1 +2u q + 1- 2u 
(1,1) q -1- 4v q -1 +4v 
(1,2) q+ 1- 2u q+ 1 + 2u 
(1,3) q -1 +4v q -1- 4v 

TABLE 3. The number of points on aX2 + by4 = 1. 

Remark 3.2. Since the genus of the curve is one, the number of points of the 
projective model C : aX2 Z2 + by4 = Z4 of the curve of Example 3.1 must satisfy 
the Hasse bound 

IIC(GF(q))l- q - 11:::; 2LJQJ· 
If u = 1 or v = ±1 remains fixed, then for q = u2 + 4v2 sufficiently large, one 
verifies from Table 3 that there exist curves C of this form attaining the maximal 
possible points for this genus. 

Example 3.3. We consider the genus 2 hyperelliptic curve 

X2 = y6 + 1. 

over GF(q), where q == 7 mod 12. In the notation of Theorem 2.2 we have m = 2, 
n = 6, e = 6, and a = -b = 1, so find 82 (a) = 2 and 86 (b) = O. To calculate the 
number of points on this curve, we apply known formulas for cyclotomic numbers 
of order 6 (see [26]). The relations of these numbers are given in Table 4. 

h\k 0 1 2 3 4 5 
0 A B C D E F 
1 G H I E C I 
2 H J G F I B 
3 A G H A G H 
4 G F I B H J 
5 H I E C I G 

TABLE 4. The relations of the cyclotomic numbers of order 6. 

For q == 7 mod 12, the 36 cyclotomic numbers are functions of a representa
tion q = u2 + 3v2 , where u == 1 mod 3 and the sign of v is dependent on the choice 
of primitive root used to define the cyclotomic classes. 

Let a be the primitive element of GF(q) employed to define the cyclotomic 
classes of order 6, and let 2 = am. The values of the 10 basic constants are given 
in Table 5. By Theorem 2.2 and the above cyclotomic numbers of order 6, we find 
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m == 0 mod 3 m == 1 mod 3 m == 2 mod 3 
36A q -11- 8u q -11- 2u q -11- 2u 
36B q + 1- 2u + 12v q + 1- 2u -12v q+ 1 +4u 
36C q + 1- 2u + 12v q + 1- 8u + 12v q + 1- 2u + 12v 
36D q + 1 + 16u q + 1 + lOu + 12v q + 1 + lOu - 12v 
36E q + 1- 2u -12v q + 1- 2u -12v q + 1- 8u -12v 
36F q + 1- 2u -12v q + 1 +4u q + 1- 2u + 12v 
36G q - 5+4u+6v q - 5 +4u+6v q - 5 - 2u + 6v 
36H q - 5 + 4u - 6v q - 5 - 2u - 6v q- 5 +4u -6v 
36I q + 1- 2u q+ 1 +4u q+ 1 +4u 
36J q + 1- 2u q + 1- 8u + 12v q + 1- 8u -12v 

TABLE 5. The values of the cyclotomic numbers of order 6. 

2 

N(l,-l)= 2+12L(0,2i+3)6 
i=O 

= 2 + 12(E + A + C) = q -1- 4u 

for the number of points on the curve X 2 = y6 + 1. o 

Let F(X) and G(X) be permutation polynomials for GF(q). Then Theo
rem 2.2 also applies to curves of the form 

aF(x)m + bG(y)n = 1. 

We indicate in the next example how this can be applied to point counting on 
curves of a more exotic form. 

Example 3.4. Let q be ofthe form 30t+ 7. Then 5X5 +5cX3 +c2 X is a permutation 
polynomial of GF(q) [15, p. 352]. Let F(X) = 5X5 + 5X3 + X and G(Y) = 
5y5 -5y3+y. Then both F(X) and G(Y) are permutation polynomials of GF(q). 
Then the number of points on the curve 

125X15 + 375X13 + 450Xll + 275X9 + 90X7 + 15X5 + X 3 + 
25y10 _ 50y8 + 35y6 - lOy4 + y2 = 1 

can be computed with the help of cyclotomic numbers of order 6. o 

It should be noted that in each of the above examples a specific equation 
was treated. With a minimal amount of additional work, by Theorem 2.2 the com
plete set of cyclotomic numbers (i, j)m,n of mixed order m, n could be determined, 
reducing the formulas for cyclotomic numbers of order e to explicit mixed order 
formulas for all divisors m, n of e. 
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4. Generalization 

The concepts of cyclotomic numbers have natural generalizations to higher dimen
sions, and for many fixed exponents and dimensions it is possible to find explicit 
formulas for these values. This permits a cyclotomic approach to the study of 
general diagonal hypersurfaces 

alX;l + a2X;2 + ... + anX~n = 1 

over GF(q)n. In fact these equations are quotients of the hypersurface 

a1Zl + a2Zi + ... + anZ~ = 1, 

(2) 

(3) 

where ei divides e for each i, by the map (Zl' ... , zn) t------+ (z~/ el , .•. , Z~/ en). There 
exist other quotients, and it is an interesting problem to determine the number of 
points on these general quotients. 

To illustrate how the number of solutions of the general diagonal hypersur
face (2) is determined by cyclotomic numbers, we consider the special case 

xl+xi+x~+xt=l (4) 

over the field GF(q), where q == 1 mod 4. 
We denote the number of points on X2+y4 = a by N(a). Then N(O) = 2q-1, 

and otherwise, when a E Ck4 ) , it follows from the computation in Example 3.3 that 
N(a) is given by 

k q == 1 mod 8 q == 5 mod 8 
0 q -1 + 2u q-1- 2u 
1 q -1- 4v q -1 +4v 
2 q -1- 2u q -1 + 2u 
3 q -1 +4v q -1- 4v 

where q = u2 + 4v2 • Let h = (q - 1)/2 mod 4 so that Ch4 ) is the cyclotomic class 
of -1. Then the number N of points on the hypersurface (4) is given by 

N = L N(a)N(1 - a) 
aEGF(q) 

3 3 

2N(O)N(1) + L L IC;4) n (1 - C;4»)IN(ci)N(aj ) 

i=O j=O 

3 3 

2N(O)N(1) + L L Ici~h n (C;4) -1)IN(ai )N(al) 
i=O j=O 

3 3 

2N(O)N(1) + LL(i + h,j)4N(ai )N(aj ). 

i=O j=O 

From this formula, we find that when q == 1 mod 8 we have 

N = q3 - q(4u + 1) - 2(u3 + u2 + 4uv2 + 4v2), 
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for the number of points on the hypersurface (4). For example, when q = 17, we 
have N = 4760. When q == 5 mod 8, we derive a similar formula. D 

The approach given in Berndt et al. [1] requires the computation of general
ized Jacobi sums Jr (X~l , X~2 , X~3 , X~4). This example shows, for small exponents e, 
how the approach through cyclotomic numbers suffices to compute points on gen
eral diagonal hypersurfaces. 

5. Concluding Remarks 

The classical approach to the study of point counting on curves over finite fields 
is to express the number of points in terms of character sums. The number of 
points on the curve (1) and more generally the diagonal hypersurface (2), can be 
expressed in terms of Jacobi or Gaussian sums (see [15, Section 6.3] and [1]). In 
1934 Davenport and Hasse [4] gave theoretical characterizations of these sums, 
which is the foundation for most of the present-day explicit formulas for cyclo
tomic numbers. Via a more computationally sophisticated algorithm, Buhler and 
Koblitz [2] recently showed, at least for prime exponents e, that it is possible to 
apply this characterization directly to compute the number of points on certain 
hyperelliptic curves of the form (1) in polynomial time. In contrast, the present 
approach makes use of elementary formulas with simple implementation, to treat 
the same hyperelliptic curves. 

The use of elliptic curves has become central to public-key cryptography in 
the last years, and considerable attention has been given to the subject of hyper
elliptic curves in cryptography. Beyond the examples of elliptic and hyperelliptic 
curves for which the present method can be applied, the general class of diagonal 
curves may be of future interest for cryptosystems because of their rich structure 
and amenability to rapid point counting algorithms. In addition, curves of the 
form (1) with relative small exponents may be useful in constructing error correct
ing codes and sequences. Detailed information about curves and their applications 
in coding theory, sequences and cryptography can be found in [24, 25]. 

Acknowledgments: The authors thank the reviewer for helpful comments that im
proved the presentation of this paper. 
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