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Abstract

We give a p-adic analytic construction of the invariants of CM curves of genus 2,
obtained by the 2-adic AGM lifting algorithm. This construction provides an alternative
to the complex analytic approach for reconstructing the invariants of curves. By reduction
modulo a suitable large prime, the CM invariants of these curves enable the efficient
construction of curves of with known group order suitable for cryptosystems based on the
discrete logarithm problem.

1 Introduction

The traditional approach to CM constructions in genus 1 has been through evaluate of the
j-function on an upper half complex plane at special points corresponding to lattices with
complex multiplication [4] or using special modular functions of higher level as in Yui and
Zagier [17] or Enge and Morain [2]. This construction has been extends to genus 2 curves,
using theta functions on Siegel upper half plane (see, e.g., van Wamelen [14] and Weng [16]).

The p-adic point counting algorithms of Satoh and generalizations such as Mestre’s AGM
method determine the number of points on an elliptic or hyperelliptic curves by constructing
a p-adic canonical lift. Although conceived for the purpose of point counting these algorithms
are in fact p-adic analytic analogues of the complex analytic CM constructions cited above.
Couveignes and Henocq [1] developed the theory of this method when applied to the j-function
in genus 1.

In the present work, we utilise the AGM construction for genus 2 curves to lift invariants
of a hyperelliptic curve over a finite field of characteristic 2 to an extension of Q2, then use
lattice reduction to reconstruct the minimal polynomials of these invariants over Q. The
algorithm uses only the elementary recursive construction of the AGM algorithm, applied
to curves over small finite fields, together with LLL reduction to rationally reconstruct the
invariants.

2 Canonical Lift by the AGM

We recall in this section the principle and the formulas of the AGM algorithm for genus 2
curves. For proofs we refer to Lercier and Lubicz [5], Mestre [6] or Ritzenthaler [12]. Let
q = 2n, set k = Fq, let K = Qq be the unramified extension of Q2 of degree n, and let
Zq be its ring of integers. Then the Galois group Gal(K/Q2) is generated by the Frobenius
automorphism which we denote by σ.

The AGM algorithm applies to any ordinary hyperelliptic curve C̃, which we may represent
in Weierstrass form:

C̃/k : y2 + ṽ(x)y = ũ(x)ṽ(x) (1)
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where ṽ and ũ are degree 3 monic polynomials such that ṽ is square-free. Note that for any
curve

C̃/k : y2 + ṽ(x)y = f(x)

such that (v, f) = w, we can set c = 1/
√

f/w mod (v/w), and set make a change of variables
y 7→ y + c to put C̃ in the form (1).

Such a curve C̃ is a genus 2 curve and is ordinary, i.e the Jacobian J̃ of C̃, has four 2-
torsion points defined over some extension field. We know then that there exists a principally
polarized abelian surface (J, λ)/K which lifts the principally polarized Jacobian (J̃ , λ̃)/k
together with its ring of endomorphisms: EndK(J) ' Endk(J̃).

Using the AGM algorithm, we can construct sequences of 2-adic numbers which converge
2-adicly to ‘invariants’ associated to (J, λ). This is achieved by the following process :

1. Replace k by a finite extension (of degree up to three) such that the roots of ṽ are
defined.

2. Lift C̃ over K: Lift ṽ and ũ to v(x) and u(x) in K[x] and then let

C/K : Y 2 = (2y + v(x))2 = v(x)(v(x) + 4u(x)).

Since ṽ splits in k with distinct roots, we can write in K,

C/K : Y 2 =
3∏

i=1

(x− xi)
3∏

i=1

(x− (xi + 4si)).

3. Initialization of theta characteristics: Denote by

e1 = x1, e3 = x2, e5 = x3,
e2 = x1 + 4s1, e4 = x2 + 4s2, e6 = x3 + 4s3

The Thomae formulas give us 4 initial invariants

A = (e1 − e3)(e3 − e5)(e5 − e1)(e2 − e4)(e4 − e6)(e6 − e2)
B = (e1 − e3)(e3 − e6)(e6 − e1)(e2 − e4)(e4 − e5)(e5 − e2)
C = (e1 − e4)(e4 − e5)(e5 − e1)(e2 − e3)(e3 − e6)(e6 − e2)
D = (e1 − e4)(e4 − e6)(e6 − e1)(e2 − e3)(e3 − e5)(e5 − e2)

We recall that these numbers are 2-adic analogs of the respective complex values :

ϑ[0000](0)4, ϑ[0010](0)4, ϑ[0001](0)4, ϑ[0011](0)4.

We initialize (A0, B0, C0, D0) := (1,
√

B/A,
√

C/A,
√

D/A), where the square root of
an element of the form 1+8Zq is taken as the unique element of Zq of the form 1+4Zq.

4. Lifting process: We use the duplication formula to obtain a 4-tuple of invariants

(An, Bn, Cn, Dn)

as elements of Zq :

An+1 =
An + Bn + Cn + Dn

4
Cn+1 =

√
AnCn +

√
BnDn

2

Bn+1 =
√

AnBn +
√

CnDn

2
Dn+1 =

√
AnDn +

√
BnCn

2
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These invariants do not converge but if we denote the invariants associated to J by
(A∞, B∞, C∞, D∞), we have

(An, Bn, Cn, Dn) ≡ (A∞, B∞, C∞, D∞)σn
mod 2n,

where σ is the Frobenius automorphism of Zq/. In particular, each of the sequences of
invariants

(Akr+i, Bkr+i, Ckr+i, Dkr+i),

for fixed i in 1 ≤ i ≤ r, does converge as k goes to infinity. But since we may consider
any of the Galois conjugates of Igusa invariants, we terminate the algorithm at any step
n to obtain a precision of n bits.

Finally, we note that the algorithmic improvements of Lercier and Lubicz [5] to obtain
quadratic convergence is applicable here.

3 Computation of the p-adic invariants

The seqeunce of values An, Bn, Cn, Dn of the preceding section describe a cycle of Galois
conjugate invariants of the canonical lift (J, λ) to K of our original Jacobian (J̃ , λ̃) over k. In
genus 2 the canonical lift is itself the Jacobian of a genus 2 curve C over K. We now describe
how to determine the invariants of the curve C/K, from a set of invariants An, Bn, Cn, and
Dn.

We proceed in two steps as described by van Wamelen [14]. Recall that over C, if C is
given by the Rosenhain normal form

C : y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3)

then the λi are given by the following expressions :

λ1 = −ϑ2
1ϑ

2
3

ϑ2
6ϑ

2
4

, λ2 = −ϑ2
2ϑ

2
3

ϑ2
6ϑ

2
5

, λ3 = −ϑ2
2ϑ

2
1

ϑ2
4ϑ

2
5

where
ϑ1 = ϑ[0010](0), ϑ2 = ϑ[0011](0), ϑ3 = ϑ[0110](0),

ϑ4 = ϑ[1000](0), ϑ5 = ϑ[1001](0), ϑ6 = ϑ[1100](0).

We then use 2-adic analogues that we can compute by means of the general duplication
formulas (see Mumford [10], and [11]), namely we set

ϑ2
1 = Bn, ϑ2

2 = Dn,

ϑ2
3 =

√
An−1Bn−1 −

√
Cn−1Dn−1

2
, ϑ2

4 =
An−1 −Bn−1 + Cn−1 −Dn−1

4
,

ϑ2
5 =

√
An−1Cn−1 −

√
Bn−1Dn−1

2
, ϑ2

6 =
An−1 −Bn−1 − Cn−1 + Dn−1

2
.

Given λi we can then compute the Igusa invariants I2, I4, I6, and I10 (for details we refer to
van Wamelen [14]) and define the absolute invariants

i1 = I5
2/I10, i2 = I3

2I4/I10, i3 = I2
2I6/I10.
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4 Rational reconstruction of the invariants

From the p-adic invariants it remains to determine a set of defining relations over Z. For this
purpose it is desirable to predetermine the degree of relations among the absolute invariants.
This degree can be explicitly determined, from the data of a CM type for K. However, in the
case that K/Q defines a cyclic or non-normal quartic extension, that the totally real subfield
L of K has class number one, and the only roots of unity in K are {±1}, we have the following
theorem of Weng [15, Theorem 3.1].

Theorem 1. The number of classes of Igusa invariants of a CM type for the maximal order
of K equals the class number hK of K if K is cyclic and 2hK if K is a non-normal quartic
extension.

From these absolute invariants, we use LLL on the space of p-adic relations among the
powers 1, ik, i

2
k . . . , ink of degree n to solve for

H1(i1) = H2(i2) = H3(i3) = 0. (2)

Such relations appear as short vectors in the space of all relations over Zp to some precision pN .
In addition, we reconstruct additional relations

L1(i1, i2, i3) = L2(i1, i2, i3) = 0, (3)

in order to record the dependencies among the diffferent invariants. This removes the problem
of combinatorial matching of up to n3 possible combinations of roots over some finite field Fp.

We note that the polynomials H1, H2, and H3 are not in general monic. The possible prime
divisors of the leading coefficient are characterised by Goren and Lauter [9]. Although the
exact powers of these leading coefficients are not known, it is possible to clear denominators
in the absolute invariants and reconstruct first the leading coefficients using a much smaller
precision.

A more critical issue is the identification of a representative curve whose Jacobian has
maximal endomorphism ring. It is necessary to have a mechanism to distinguish and discard
curves associated to the nonmaximal orders. The following theorem provides such as test.

Theorem 2. Let χ be the minimal polynomial of the Frobenius endomorphism Frobq on the
Jacobian J of a genus 2 curve C/Fq. Let π be any root of this polynomial and set K = Q(π)
and π̄ = q/π. If the set {

f1(π)
m1

, . . . ,
ft(π)
mt

}
for (mi, q) = 1 generates the maximal order OK over Z[π, π̄], then End(J) = OK if and only
if fi(Frobq) is the zero map on J [mi] for all i.

N.B In practice it suffices to check only for each maximal prime power pei
i dividing each mi.

5 Algorithm and Examples

Strategy:

1. For a given field k = F2n , choose curve defined by u, v in k[x], hence with field of moduli
equal to k, then determine theta constants over some extension.
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2. Determine the index of Z[π, π̄] in the maximal order OK , and the group structure of
quotient A = OK/Z[π, π̄].

3. Let f1(π)/m1, . . . , ft(π)/mt generate OK over Z[π, π̄]. For each mi determine the action
of π on J [mi] and reject the curve if the restriction of fi(π) to J [mi] is nonzero.

4. Lift the theta constants and reconstruct by LLL the defining relations for the CM igusa
invariants defining those curves whose Jacobian J has OK embedded in End(J).

Note that by choosing a curve over its field of moduli, rather than the extension field over
which the Weierstrass points are defined, we select a curve whose Jacobian is more likely to
be in the class of the maximal endomorphism ring. Such a curve minimizes both the degree
and the size of coefficients in the relations for the Igusa invariants.

Examples. Here we provide a few examples of canonical lifts of the Igusa invariants of
hyperelliptic curves of the form

C : y2 + v(x)y = v(x)u(x)/F2n ,

and their application to explicit constructions of Jacobians suitable for cryptography.

1. For the curve C/F2 with v = x3 + 1 and u = x2, we find relations for the canonical lifts fo
the Igusa invariants:

i21 − 531441i1 + 55788550416,
i22 − 426465i2 − 68874753600,
i23 − 216513i3 − 221011431552,
140i1 − 243i2 + 135i3,
69i1 − 119i2 + 66i3 − 104976.

The minimal polynomial of Frobenius in End(J) is equal to

x4 + 2x3 + 3x2 + 4x + 4,

defining an imaginary quadratic extension of the real quadratic field Q(
√

2).

2. For the curve C/F2 with v = x3 +x2 +1 and u = x2 +1 we find relations for the canonical
lifts fo the Igusa invariants:

4i21 + 8218017i1 + 146211169851,
i22 + 1008855i2 − 342014432400,
i23 + 1368387i3 − 240090131376,
4480i1 + 7499i2 − 12255i3,
716i1 + 1212i2 − 1971i3 − 1666737

The minimal polynomial of Frobenius in End(J) is equal to

x4 + x3 + x2 + 2x + 4,

defining an imaginary quadratic extension of the real quadratic field Q(
√

13).
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3. For the curve C/F2 with v = x3 + x2 + 1 and u = x2 we find relations for the canonical
lifts fo the Igusa invariants:

4i21 + 115322697i1 − 10896201253125,
i22 + 9073863i2 − 2152336050000,
i23 + 14410143i3 − 1214874126000,
896i1 + 369i2 − 2025i3,
300i1 + 122i2 − 677i3 + 273375

The minimal polynomial of Frobenius in End(J) is equal to

x4 + x3 + 3x2 + 2x + 4,

defining an imaginary quadratic extension of the real quadratic field Q(
√

5).

6 Conclusion

The AGM provides a relatively elementary and effective alternative to the complex analytic
construction of complex multiplication for genus 2 curves. We note that not all CM orders
arise in this way, but those curves that do have good reduction at 2 and small class number
appear among the curves over small fields Fn

2 . The approach through p-adic lifting also
permits us to treat curves whose Jacobians are not absolutely simple. In order to capture
additional orders, corresponding to Jacobians with bad reduction at 2, it would be desirable
to extend the algorithmic theory of canonical lifts to curves of genus 2 in odd characteristic.
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Example Finale. Let C : y2 + v(x)y = u(x)v(x) be the hyperelliptic curve over F23 = F2[w]
where w3 + w + 1 = 0 where u and v are given by

u = (w2 + w + 1)x2 + w2x + w2,
v = x3 + (w2 + w + 1)x2 + x + w + 1.

The minimal polynomial of Frobenius on the Jacobian of C is

x4 − 3x3 + 3x2 − 24x + 64,

defining an imaginary quadratic extension of the real quadratic field Q(
√

61). The defining
relations of canonical lifts of the Igusa invariants are given below.

26342i61 − 2344912105503116116288576047953057125392i51
−112639584390304238456172276845130150039402556586283156i41
−2177415103395854060041246748534717663224784831560700934285483051075i31
−1593641994054440870937630653070363836936366222692321471303808012543988702i21
−772328827101733729625315065485404327361936033911609442197748801803777975572191i1
+32299720850335379144290409627740329840675572467939277123595091705537581712591977043,
318i62 + 30345890982308051019805350i52
−288136191649832893917062077388710908375i42
+753110832515821367749096990899427029369367852656375i32
−649127309475920539312400482687597914255658885551562830000i22
+512065244591992233358858681228726038539915018527646447680800000i2
−242729201551569096286616270971131120449527443900342023922233408000000,
324i63 + 27437461181384763694011881346i53
−352040806049318452655962733807057489240331i43
+1178922153334081066484173968480725700444739639422966003i33
+509928790982645514856427558535377505816658890920020722687216i23
+22813028282617457487855156583191936594982551082177632973015943424i3
−194627707132727224036285973133204401034007902817343828521298858611945472,
633895738920000i31 + 8517595035131037i21i2 − 2422318926838275i21i3
+528887012556497760i21 − 2671415018933342i1i

2
2 + 10103099744994882i1i2i3

+498068270516667479i1i2 − 31685827189272975i1i3 + 1849868709635303060i1
+11002415784338674i32 − 16195247750833904i22i3 + 800164846490774071i22
+228622640238253145i2i3,
52586040050922240i31 + 348046133200631478i21i2 + 19788972081057810i21i3
+26236309645913329728i21 − 1611043809046282405i1i2i3 − 3753782789770657910i1i2
+1519575925397564523i1i

2
3 + 2446649956939951033i1i3 − 1746640058954627936i1

+1153484491100961901i2i
2
3 − 6729087358177501571i2i3 − 3413986566072687702i2

−1585090558318459827i33 − 10377834109186130040i23 − 12385238120639343570i3,
14283163413570062i1i

2
2 − 21965217242026530i1i2i3 − 91100503911673906i1i2

+8753819554156320i1i
2
3 + 7414107877502670i1i3 − 85097670432239360i1

+3160028075123540i32 − 19415412647408141i22i3 − 11227855503503951i22
+28513098102060099i2i

2
3 − 101049976189868573i2i3 − 10890112918608090i33

+42818455041104040i23
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