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Theory of canonical lifts of abelian varieties

Theory of canonical lifts

Let A/Fq be an ordinary abelian variety over a finite field, and let
R be the Witt ring of Fyq. Up to isomorphism, R is the unique
unramified extension of Z, with [R : Z,] = [Fq : ], and equipped
with a surjection R — Iy.
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Theory of canonical lifts of abelian varieties

Theory of canonical lifts

Let A/Fq be an ordinary abelian variety over a finite field, and let
R be the Witt ring of Fyq. Up to isomorphism, R is the unique
unramified extension of Z, with [R : Z,] = [Fq : ], and equipped
with a surjection R — Fq. A canonical lift of A is an abelian
variety A/R such that

(i) A/R +— A/Fq and (i) Endg(A) = Endy,(A).
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Theory of canonical lifts of abelian varieties

Theory of canonical lifts

Let A/Fq be an ordinary abelian variety over a finite field, and let
R be the Witt ring of Fyq. Up to isomorphism, R is the unique
unramified extension of Z, with [R : Z,] = [Fq : ], and equipped
with a surjection R — Fq. A canonical lift of A is an abelian
variety A/R such that

(i) A/R +— A/Fq and (i) Endg(A) = Endy,(A).

The existence of canonical lifts of ordinary abelian varieties was
proved by Serre and Tate.
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Theory of canonical lifts of abelian varieties

Theory of canonical lifts

Let A/Fq be an ordinary abelian variety over a finite field, and let
R be the Witt ring of Fyq. Up to isomorphism, R is the unique
unramified extension of Z, with [R : Z,] = [Fq : ], and equipped
with a surjection R — Fq. A canonical lift of A is an abelian
variety A/R such that

(i) A/R +— A/Fq and (i) Endg(A) = Endy,(A).

The existence of canonical lifts of ordinary abelian varieties was
proved by Serre and Tate. Here we take a constructive approach to
the theory of canonical lifts.
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Canonical lifts of elliptic curves

Canonical lifts of elliptic curves

First we must have some effective way of representing an abelian
variety.
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Canonical lifts of elliptic curves

Canonical lifts of elliptic curves

First we must have some effective way of representing an abelian
variety. The simplest example of an abelian variety is an elliptic
curve, which may be given by an equation

E: )/2 + (a1x + a3)y = x3 4 é)zx2 + agx + ag.
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Canonical lifts of elliptic curves

Canonical lifts of elliptic curves

First we must have some effective way of representing an abelian
variety. The simplest example of an abelian variety is an elliptic
curve, which may be given by an equation

E: )/2 + (a1x + a3)y = x3 4 é)zx2 + agx + ag.

The projective closure of this curve admits a group law, with a
point at infinity O = (0 : 1: 0) as identity.
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Canonical lifts of elliptic curves

Canonical lifts of elliptic curves

First we must have some effective way of representing an abelian
variety. The simplest example of an abelian variety is an elliptic
curve, which may be given by an equation

E: )/2 + (a1x + a3)y = x3 4 é)zx2 + agx + ag.

The projective closure of this curve admits a group law, with a
point at infinity O = (0 : 1: 0) as identity.

In order to understand canonical lifts, we need also to understand
the endomorphism rings of such curves.
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Canonical lifts of elliptic curves

Canonical lifts of elliptic curves

First we must have some effective way of representing an abelian
variety. The simplest example of an abelian variety is an elliptic
curve, which may be given by an equation

E: )/2 + (a1x + a3)y = x3 4 é)zx2 + agx + ag.

The projective closure of this curve admits a group law, with a
point at infinity O = (0 : 1: 0) as identity.

In order to understand canonical lifts, we need also to understand
the endomorphism rings of such curves. In this one-dimensional
case, the only CM endomorphism rings are orders in an imaginary
quadratic field K.
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Canonical lifts of elliptic curves

Example of a canonical lift

Example. The simplest example of such a curve is
E/F,:y? =x> —x,

where p = 1 mod 4, which has canonical lift £/7, : y> = x3 — x.
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Canonical lifts of elliptic curves

Example of a canonical lift

Example. The simplest example of such a curve is
E/F,:y? =x> —x,

where p = 1 mod 4, which has canonical lift £/7, : y> = x3 — x.

Here the endomorphism ring End(E) = End(E) = Z[v/—1].

David R. Kohel Construction of CM moduli by p-adic lifting



Canonical lifts of elliptic curves

Example of a canonical lift

Example. The simplest example of such a curve is
E/F,:y? =x> —x,
where p = 1 mod 4, which has canonical lift £/7, : y> = x3 — x.
Here the endomorphism ring End(E) = End(E) = Z[v—1].
The objective of our investigation, however, is to recover the

invariants or moduli of E, which in the elliptic curve case is the
J-invariant.
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Canonical lifts of elliptic curves

Example of a canonical lift

Example. The simplest example of such a curve is
E/F,:y? =x> —x,
where p = 1 mod 4, which has canonical lift £/7, : y> = x3 — x.
Here the endomorphism ring End(E) = End(E) = Z[v—1].
The objective of our investigation, however, is to recover the

invariants or moduli of E, which in the elliptic curve case is the
J-invariant. For p = 17 we compute j(E) = 18 € Fy,
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Canonical lifts of elliptic curves

Example of a canonical lift

Example. The simplest example of such a curve is

E/F,:y? =x> —x,
where p = 1 mod 4, which has canonical lift £/7, : y> = x3 — x.
Here the endomorphism ring End(E) = End(E) = Z[v—1].
The objective of our investigation, however, is to recover the
invariants or moduli of E, which in the elliptic curve case is the

J-invariant. For p =17 we compute j(E) = 18 € F19, however the
canonical lift has invariant j(E) = 123 € 7Z.
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Canonical lifts of elliptic curves

Example of a canonical lift

N.B. The j-invariant of the canonical lift of E/Fp lies in Zp, but is
algebraic over Z,
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Canonical lifts of elliptic curves

Example of a canonical lift

N.B. The j-invariant of the canonical lift of E/Fp lies in Zp, but is
algebraic over Z, and moreover generates the Hilbert class field
over K = End(E) ® Q.
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Canonical lifts of elliptic curves

Example of a canonical lift

N.B. The j-invariant of the canonical lift of E/Fp lies in Zp, but is
algebraic over Z, and moreover generates the Hilbert class field

over K = End(E) ® Q. For instance
E/Fio:y?>=x34+x+8

has j-invariant 5,
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Canonical lifts of elliptic curves

Example of a canonical lift

N.B. The j-invariant of the canonical lift of E/Fp lies in Zp, but is
algebraic over Z, and moreover generates the Hilbert class field
over K = End(E) ® Q. For instance

E/Fio:y?>=x34+x+8
has j-invariant 5, but its canonical lift in Zig is

5+9-19+8-1924+3-193+3-194+7-19°4+7-194+15.19" +. ..
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Canonical lifts of elliptic curves

Example of a canonical lift

N.B. The j-invariant of the canonical lift of E/Fp lies in Zp, but is
algebraic over Z, and moreover generates the Hilbert class field
over K = End(E) ® Q. For instance

E/Fio:y?>=x34+x+8
has j-invariant 5, but its canonical lift in Zig is

5+9-19+8-1924+3-193+3-194+7-19°4+7-194+15.19" +. ..

By lifting to sufficient precision we verify that j = j(E) satisfies the
quadratic relation:

j% + 191025/ — 121287375.
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Canonical lifting algorithm

Canonical lifting algorithm

A p-adic algorithm for constructive CM must
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Canonical lifting algorithm

Canonical lifting algorithm

A p-adic algorithm for constructive CM must

» construct the lifted invariant (to some finite precision), and
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Canonical lifting algorithm

Canonical lifting algorithm

A p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and

> recognize an algebraic number from its approximation.
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Canonical lifting algorithm

Canonical lifting algorithm

A p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and
> recognize an algebraic number from its approximation.

The first step replaces the p-adic numbers with complex numbers
in analogous analytic constructions.

David R. Kohel Construction of CM moduli by p-adic lifting



Canonical lifting algorithm

Canonical lifting algorithm

A p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and
> recognize an algebraic number from its approximation.

The first step replaces the p-adic numbers with complex numbers
in analogous analytic constructions. Rather than a period lattice,
the input is a suitable curve which we lift p-adically.
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Canonical lifting algorithm

Canonical lifting algorithm

The j-invariant of an elliptic curve is a point on the modular curve
X(1).
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Canonical lifting algorithm

Canonical lifting algorithm

The j-invariant of an elliptic curve is a point on the modular curve
X(1). Its canonical lift is determined by means of a correspondence

Xo(p) — X(1) x X(1),

describing j-invariants of p-isogenous elliptic curves,
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Canonical lifting algorithm

Canonical lifting algorithm

The j-invariant of an elliptic curve is a point on the modular curve
X(1). Its canonical lift is determined by means of a correspondence

Xo(p) — X(1) x X(1),

describing j-invariants of p-isogenous elliptic curves, together with
the Galois theoretic properties of this lift.
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Canonical lifting algorithm

Canonical lifting algorithm

The j-invariant of an elliptic curve is a point on the modular curve
X(1). Its canonical lift is determined by means of a correspondence

Xo(p) — X(1) x X(1),

describing j-invariants of p-isogenous elliptic curves, together with
the Galois theoretic properties of this lift. An explicit algorithm for
this construction was described by Couveignes and Henocgq.
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Canonical lifting algorithm

Canonical lifting algorithm

The j-invariant of an elliptic curve is a point on the modular curve
X(1). Its canonical lift is determined by means of a correspondence

Xo(p) — X(1) x X(1),

describing j-invariants of p-isogenous elliptic curves, together with
the Galois theoretic properties of this lift. An explicit algorithm for
this construction was described by Couveignes and Henocgq.

A prior algorithm for constructing canonical lifts for point counting
was developed by Satoh. Efficient versions were introduced by
Mestre, which generalise to higher dimension.
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Canonical lifts of abelian surfaces

Canonical lifts of abelian surfaces

In higher dimension, we first need explicit models for abelian
varieties, secondly, and explicit descriptions of their invariants or
moduli.
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Canonical lifts of abelian surfaces

Canonical lifts of abelian surfaces

In higher dimension, we first need explicit models for abelian
varieties, secondly, and explicit descriptions of their invariants or
moduli. For genus 2 curves “most” abelian surfaces are Jacobians
of genus 2 curves,
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Canonical lifts of abelian surfaces

Canonical lifts of abelian surfaces

In higher dimension, we first need explicit models for abelian
varieties, secondly, and explicit descriptions of their invariants or
moduli. For genus 2 curves “most” abelian surfaces are Jacobians
of genus 2 curves, and we have an explicit algebraic description of
their invariants by Igusa (following analytic invariants of Clebsch in
the 19th century).
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Canonical lifts of abelian surfaces

Canonical lifts of abelian surfaces

In higher dimension, we first need explicit models for abelian
varieties, secondly, and explicit descriptions of their invariants or
moduli. For genus 2 curves “most” abelian surfaces are Jacobians
of genus 2 curves, and we have an explicit algebraic description of
their invariants by Igusa (following analytic invariants of Clebsch in
the 19th century). In the above construction we replace j with a
triple of lgusa invariants (j1,2,/3) on Ma, and find suitable
correspondences relating the invariants of (p, p)-isogenous abelian
varieties.
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Constructive CM algorithms for genus 2

Constructive CM algorithms for genus 2

Currently several constructive CM algorithms for genus 2 CM
moduli exist:
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Constructive CM algorithms for genus 2

Constructive CM algorithms for genus 2

Currently several constructive CM algorithms for genus 2 CM
moduli exist:
» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).
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Constructive CM algorithms for genus 2

Constructive CM algorithms for genus 2

Currently several constructive CM algorithms for genus 2 CM
moduli exist:
» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).
» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),
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Constructive CM algorithms for genus 2

Constructive CM algorithms for genus 2

Currently several constructive CM algorithms for genus 2 CM
moduli exist:
» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).
» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),
» p-adic lifting of (¢, £)-isogenies (K., adapting above to p # £).
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Constructive CM algorithms for genus 2

Constructive CM algorithms for genus 2

Currently several constructive CM algorithms for genus 2 CM
moduli exist:

» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,

Ritzenthaler, Weng).

» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),

» p-adic lifting of (¢, £)-isogenies (K., adapting above to p # £).
The first uses Richelot isogenies between Jacobians of curves in
Rosenhain form:

% = x(x = 1)(x = Ar)(x = A2)(x = As),

and the 3-adic algorithm makes use of correspondence equations of
algebraic theta functions.
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Constructive CM algorithms for genus 2

Example of genus 2 CM construction

Example. Let C be defined over [Fo with model
2+ 0E+ 1)y =x(x3+1).
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Constructive CM algorithms for genus 2

Example of genus 2 CM construction

Example. Let C be defined over [Fo with model
2+ 0E+ 1)y =x(x3+1).

Its Jacobian is an abelian surface with complex multiplication by
the maximal order of the number field

K=Qx]/(x*+10x* +17) = Q (i\/5 + 2ﬁ> :
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Constructive CM algorithms for genus 2

Example of genus 2 CM construction

Example. Let C be defined over [Fo with model
2+ 0E+ 1)y =x(x3+1).

Its Jacobian is an abelian surface with complex multiplication by
the maximal order of the number field

K=Qx]/(x*+10x* +17) = Q (i\/5 + 2ﬁ> :

Then canonically lifted Igusa invariants (1,2, 3) satisfy:

j2 — 531441j; + 55788550416,  34j, — 36864j3 -+ 10206,
83 — 4374j, — 9565938,  jy + 176/, — 73728j3 — 27483.
8192j2 — 86673 — 6561,
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Effective Class Field Theory

Effective Class Field Theory

Finding suitable modular equations describing moduli of abelian
varieties and their isogenies is a one-time effort.
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Effective Class Field Theory

Effective Class Field Theory

Finding suitable modular equations describing moduli of abelian
varieties and their isogenies is a one-time effort. Subsequently, the
runtime of the algorithm is dominated by the time to compute the
ideal of relations between the Igusa invariants.
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Effective Class Field Theory

Effective Class Field Theory

Finding suitable modular equations describing moduli of abelian
varieties and their isogenies is a one-time effort. Subsequently, the
runtime of the algorithm is dominated by the time to compute the
ideal of relations between the lgusa invariants. The main difficulty
is the large height of the algebraic numbers (Ji, o, j3) for which we
have p-adic approximations.
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Effective Class Field Theory

Effective Class Field Theory

Finding suitable modular equations describing moduli of abelian
varieties and their isogenies is a one-time effort. Subsequently, the
runtime of the algorithm is dominated by the time to compute the
ideal of relations between the lgusa invariants. The main difficulty
is the large height of the algebraic numbers (Ji, o, j3) for which we
have p-adic approximations. It is known, however, that the lgusa
invariants lie in the Hilbert class field H of the reflex field K" of K.
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Effective Class Field Theory

Effective Class Field Theory

Finding suitable modular equations describing moduli of abelian
varieties and their isogenies is a one-time effort. Subsequently, the
runtime of the algorithm is dominated by the time to compute the
ideal of relations between the lgusa invariants. The main difficulty
is the large height of the algebraic numbers (Ji, o, j3) for which we
have p-adic approximations. It is known, however, that the lgusa
invariants lie in the Hilbert class field H of the reflex field K" of K.

We want to make use of this knowledge...
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Effective Class Field Theory

Effective Class Field Theory

Returning to the previous example, we find that the reflex field is

K =Q[x]/(x*+5x* +2) = Q (i\/(S + \/ﬁ)/z) :
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Effective Class Field Theory

Effective Class Field Theory

Returning to the previous example, we find that the reflex field is

K =Q[x]/(x*+5x* +2) = Q (i\/(S + \/ﬁ)/z) :

Since K" has class number 1 we know that in fact the Igusa
invariants (ji, 2, /3) liein H = K.
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Effective Class Field Theory

Effective Class Field Theory

Returning to the previous example, we find that the reflex field is

K =Q[x]/(x*+5x* +2) = Q (i\/(S + \/ﬁ)/z) :

Since K" has class number 1 we know that in fact the Igusa
invariants (ji,2,/3) lie in H = K’. In fact they generate its real
quadratic subfield Q(+/17).
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Effective Class Field Theory

Effective Class Field Theory

Returning to the previous example, we find that the reflex field is
K =Q[x]/(x*+5x* +2) = Q (i (5 + \/17)/2) :

Since K" has class number 1 we know that in fact the Igusa
invariants (ji,2,/3) lie in H = K’. In fact they generate its real
quadratic subfield @(\/ﬁ) In less trivial examples, the Igusa
invariants generate a nontrivial extension H/K".
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Effective Class Field Theory

Effective Class Field Theory

Returning to the previous example, we find that the reflex field is
K =Q[x]/(x*+5x* +2) = Q (i (5 + \/17)/2) :

Since K" has class number 1 we know that in fact the Igusa
invariants (ji,2,/3) lie in H = K’. In fact they generate its real
quadratic subfield @(\/ﬁ) In less trivial examples, the Igusa
invariants generate a nontrivial extension H/K".

With Claus Fieker, we are combining algorithms for effective class
field theory, to determine H, with the algebraic reconstruction of
(j1,/25J3), to determine them as elements of the known field H.
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Cryptographic applications

Cryptographic applications

Example. Let C be the curve y2 + h(x)y = f(x) over
Fg = Fo[t]/(£3 + t + 1),

with h(x) = x(x + 1) and f(x) = x(x + 1)(x3 + x2 + t2x + t3).
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Cryptographic applications

Cryptographic applications

Example. Let C be the curve y2 + h(x)y = f(x) over
Fg = Fo[t]/(£3 + t + 1),

with h(x) = x(x + 1) and f(x) = x(x + 1)(x3 + x2 + t2x + t3).

The curve is ordinary and has complex multiplication by the

maximal order of K = Q(iv/23 + 4v/5).
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Cryptographic applications

Cryptographic applications

Example. Let C be the curve y2 + h(x)y = f(x) over
Fg = Fo[t]/(£3 + t + 1),

with h(x) = x(x + 1) and f(x) = x(x + 1)(x3 + x2 + t2x + t3).
The curve is ordinary and has complex multiplication by the

maximal order of K = Q(iv/23 + 4v/5).

The field K has class number is 3, and there exist 6 isomorphism
classes of principally polarized abelian varieties.
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Cryptographic applications

Cryptographic applications

We can construct the defining ideal of relations in lgusa invariants
(j1,J2,/3) from the canonical lift of (the Jacobian of) C.
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Cryptographic applications

Cryptographic applications

We can construct the defining ideal of relations in lgusa invariants
(j1,J2,/3) from the canonical lift of (the Jacobian of) C.

For example, the invariant j; satisfies a minimal polynomial:

Hy(X) = 218536724 X6
— 11187730399273689774009740470140169672902905436515808105468750000 X°
+ 501512527690591679504420832767471421512684501403834547644662988263671875000 X*
— 10112409242787391786676284633730575047614543135572025667468221432704263857808262923 X3
+ 118287000250588667564540744739406154398135978447792771928535541240797386992091828213521875 X2
— 213505107111315317011 16319 69938793494948953569198870004032131926868578084899317 X
+3%05152354099179364113°
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Cryptographic applications

Cryptographic applications

Choosing the 120-bit prime
p = 954090659715830612807582649452910809,

and solving a norm equation in the endomorphism ring O,
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Cryptographic applications

Cryptographic applications

Choosing the 120-bit prime
p = 954090659715830612807582649452910809,

and solving a norm equation in the endomorphism ring Ok, we
determine that the Jacobian of some curve over F, with CM by
Ok will have prime order

910288986956988885753118558284481029\
311411128276048027534310525408884449.
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Cryptographic applications

Cryptographic applications

Solving for a solution to the system of equations over IFp, we find a
corresponding curve
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Cryptographic applications

Cryptographic applications

Solving for a solution to the system of equations over IFp, we find a
corresponding curve

C : y? = x5 4 827864728926129278937584622188769650 x*
+102877610579816483342116736180407060 x°
+ 335099510136640078379392471445640199 x>
+ 351831044709132324687022261714141411 x
+ 274535330436225557527308493450553085.
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Cryptographic applications

Cryptographic applications

Solving for a solution to the system of equations over IFp, we find a
corresponding curve

C : y? = x5 4 827864728926129278937584622188769650 x*
+102877610579816483342116736180407060 x°
+ 335099510136640078379392471445640199 x>
+ 351831044709132324687022261714141411 x
+ 274535330436225557527308493450553085.

A test of a random point on the Jacobian verifies the group order.
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Database of CM moduli

Database of CM moduli

A comprehensive database for CM invariants in genera 1 and 2 is
being developed:

http://www.maths.usyd.edu.au/u/kohel/dbs/index.html,
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Database of CM moduli

Database of CM moduli

A comprehensive database for CM invariants in genera 1 and 2 is
being developed:

http://www.maths.usyd.edu.au/u/kohel/dbs/index.html,

providing an interface for the interrelated invariants of CM fields K,
their Hilbert class fields, and CM moduli of abelian varieties.
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