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Abstract. In the paper an upper bound is established for certain expo-
nential sums, analogous to Gaussian sums, defined on the points of an
elliptic curve over a prime finite field. The bound is applied to prove the
existence of group generators for the set of points on an elliptic curve
over Fq among certain sets of bounded size. We apply this estimate to
obtain a deterministic O(q1/2+ε) algorithm for finding generators of the
group in echelon form, and in particular to determine its group structure.

1 Introduction and Notations

Let q = pk be a prime power and let E be an elliptic curve over a finite field Fq
of q elements given by a Weierstrass equation

y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6. (1)

The set E(Fq) of points over Fq, together with the point O at infinity as identity,
forms an abelian group. The cardinality of E(Fq) is N , where

|N − q − 1| ≤ 2q1/2.

Moreover, as a group, E(Fq) is isomorphic to Z/M ×Z/L for unique integers M
and L with L |M and N = ML. The number M is called the exponent of E(Fq).
Points P and Q in E(Fq) are said to be echelonized generators if the order of P
is M , the order of Q is L, and any point in E(Fq) can be written in the form
mP + `Q with 1 ≤ m ≤M and 1 ≤ ` ≤ L.

Although there exists a deterministic polynomial time algorithm to find the
number of Fq-rational points N due to R. Schoof [11] (see also [4, 5, 16] for
references to further theoretical and practical improvements of this algorithm),
finding the group structure, or equivalently the exponent M , appears to be a
much harder problem.



Once the group order N and the factorization of r = gcd(q − 1, N) are known,
there exists a probabilistic algorithm to compute the group structure in expected
polynomial time (see [9, 10]). We note that the existence of the Weil pairing
(see [18]) implies that L divides r. Thus, using the factorization of r and the
nondegeneracy of the Weil pairing, the algorithm finds the value of L. The best
possible bound on r is q1/2 + 1, but for a random curve the value of r tends to
be small, in which case the algorithm is efficient.

We now describe the exponential sums which are the subject of study in this
work. Let P and Q be echelonized generators for E(Fq). For a real number z or
element of Z/nZ, we define

en(z) = exp(2πiz/n).

The group Ω = Hom(E(Fq),C∗) of characters on E(Fq) can be described by the
set:

Ω = {ω |ω(mP + `Q) = eM (am) eL (b`) for 0 ≤ a < M, 0 ≤ b < L}.

Similarly the group Ψ = Hom(Fq,C∗) of additive characters on Fq can be de-
scribed by the set:

Ψ = {ψ |ψ(z) = ep (Tr(αz)) for α ∈ Fq},

where Tr(x) is the trace of x ∈ Fq to Fp (see Chapter 2 of [8]). The identity
elements of the groups Ω and Ψ are called trivial characters.

Let Fq(E) be the function field of the curve E . It is generated by the functions
x and y, satisfying the Weierstrass equation (1) of the curve, and such that
P = (x(P ), y(P )) for each P ∈ E(Fq)− {O}.
For characters ω ∈ Ω and ψ ∈ Ψ , and a function f ∈ Fq(E), we define the sum

S(ω, ψ, f) =
∑

P∈E(Fq)
f(P ) 6=∞

ω(P )ψ(f(P )).

In this work we estimate the exponential sums S(ω, ψ, f). In particular we will
be interested in the sums for f = x or f = y. The bounds obtained generalize
and improve previous bounds from [13, 14]. We apply this bound to design a
deterministic algorithm to compute the group structure of E(Fq) and to find
echelonized generators in time O(q1/2+ε).

In the next section we recall some classical results on L-functions of curves, and
relate these to S(ω, ψ, f).

Throughout the paper log z denotes the natural logarithm of z.

2 L-functions of Curves

Let C be an irreducible projective curve over Fq of genus g. The divisor group
is the free abelian group of formal sums of prime places P of Fq(C). For a fixed



algebraic closure Fq of Fq we can identify a prime place P with a Galois orbit
{P1, . . . , Pd} of points in C(Fq), and define d = deg(P) to be its degree.

A character χ of the divisor group of Fq(C) is a map to C, with image in a finite
set {0} ∪ en(Z) and which is a homomorphism to C∗ on divisors with support
outside of a finite set of prime places. Associated to χ is a cyclic Galois cover
π : X → C and a divisor f(χ) called the conductor , such that π is unramified
outside of the support of f(χ).

We define the following character sums

σm(χ) =
∑

degP≤m

deg(P)χ(P), m = 1, 2, . . . ,

taken over all prime places P of Fq(C) of degree degP ≤ m. We define an L-
function

L(C, t, χ) = exp

( ∞∑
m=1

σm(χ)tm/m

)
,

where exp : tC[[t]] −→ C[[t]] is given by

exp(h(t)) =
∞∑
n=0

h(t)n

n!
.

The following proposition for L(C, t, χ) appears as Theorem A of [2] or Theorem 6
of Chapter 7 of [20].

Proposition 1. L(C, t, χ) is a polynomial of degree

D = 2g − 2 + degf(χ)

where f(χ) is the conductor of χ. If χ is a product of two characters χ1 and χ2

which are ramified in disjoint sets of divisors then

degf(χ) = degf(χ1) + degf(χ2).

We remark the second statement is applicable in particular if one of characters
is totally unramified.

We next recall the statement of the Riemann Hypothesis for function fields.

Proposition 2. Let ϑ1, . . . , ϑD be zeros of L(C, t, χ) in C. Then

σm(χ) = −(ϑm1 + . . .+ ϑmD),

and each zero satisfies |ϑi| = q1/2.



3 Exponential Sums on Elliptic Curves

We recall the following standard lemma on character groups of abelian groups.

Lemma 1. Let G be an abelian group and let Ĝ = Hom(G,C∗) be its dual group.
Then for any element χ of Ĝ, we have

1
|G|

∑
g∈G

χ(g) =

{
1, if χ = χ0,

0, if χ 6= χ0,

where χ0 ∈ Ĝ is the trivial character.

In particular, we apply the bound to the pairs {Ψ,Fq} and {E(Fq), Ω}. By the
canonical isomorphism of G with the dual of Ĝ, the lemma is symmetrical in G
and Ĝ.

As an immediate application of Lemma 1 we observe that if ψ0 is the trivial
character, then

S(ω, ψ0, f) =
∑

P∈E(Fq)
f(P )6=∞

ω(P ) = −
∑

P∈E(Fq)
f(P )=∞

ω(P ).

Thus we see that the interesting part of the exponential sum comes from the
character ψ ◦f , which defines an Artin-Schreier extension of Fq(E), as studied in
Bombieri [2, Section VI]. We also remark that the exponential sums S(ω0, ψ, f)
with the trivial character ω0 ∈ Ω have been estimated in [2].

Let f be a nonconstant function on E . We write the divisor of poles of f as

(f)∞ =
t∑
i=1

niPi,

where, in particular,

deg(f) =
t∑
i=1

nideg(Pi). (2)

In particular, degf = 2 if f = x, and degf = 3 if f = y. With this notation we
have the following theorem.

Theorem 1. The character ω determines an unramified character, and ψ ◦ f
determines a character of conductor

∑t
i=1miPi, where mi ≤ ni+1 with equality

if and only if (ni, q) = 1. The exponential sum satisfies the bound

|S(ω, ψ, f)| ≤
t∑
i=1

mideg(Pi)q1/2.



Proof. The character ω determines an unramified character mapping through
E(Fq). Specifically, a prime divisor P with associated Galois orbit {P1, . . . , Pd}
contained in E(Fq) maps to the point P =

∑
i Pi in E(Fq), and we define ω(P) =

ω(P ). The character thus defines a Galois character on the unramified cover
defined by the isogeny E → E with kernel E(Fq). In particular the character is
unramified and its conductor is trivial. Applying Proposition 1 we reduce to the
consideration of the conductor of the character defined by ψ ◦ f .

The character ψ ◦ f defines a Galois character associated to an Artin-Schreier
extension of E , as studied in Bombieri [2, Section VI]. In particular the con-
ductor is determined in Theorem 5 of that work. The bound then follows from
Proposition 2. ut

In particular, from Theorem 1 and the identity (2) we see that the bound

|S(ω, ψ, f)| ≤ 2deg(f)q1/2 (3)

holds. If the polar divisor of f has support at a single prime divisor, then we
have the stronger bound

|S(ω, ψ, f)| ≤ (1 + deg(f))q1/2.

For a subgroup H of E(Fq) we define

SH(ω, ψ, f) =
∑
P∈H

f(P ) 6=∞

ω(P )ψ(f(P ))

Corollary 1. Let f be a nonconstant function in Fq(E) and ψ be a nontrivial
character, then the bound

|SH(ω, ψ, f)| ≤ 2deg(f)q1/2

holds.

Proof. Let ΩH ⊆ Ω be the set of characters χ ∈ Ω such that ker(χ) contains H.
Then ΩH is dual to E(Fq)/H, so we may apply Lemma 1. Therefore

SH(ω, ψ, f) =
1
|ΩH|

∑
P∈E(Fq)
f(P )6=∞

∑
χ∈ΩH

χ(P )ω(P )ψ(f(P ))

=
1
|ΩH|

∑
χ∈ΩH

S(χ · ω, ψ, f).

Applying the inequality (3), we obtain the desired estimate. ut



4 Distributions of points in intervals

We also require the following standard lemma, which appears, for instance, as
Problem 11.c in Chapter 3 of [19].

Lemma 2. For any positive integers n, s, and r we have

n−1∑
k=1

∣∣∣∣∣
s+r∑
a=s

en(ak)

∣∣∣∣∣ ≤ n(1 + log n).

We define an interval I in Fq to be a subset of the form B + α[s, . . . , s+ r] for
an additive subgroup B of Fq, an element α ∈ Fq, and nonnegative integers s
and r.

Lemma 3. For any interval I in Fq the bound

∑
ψ∈Ψ

∣∣∣∣∣∣
∑
β∈I

ψ(β)

∣∣∣∣∣∣ ≤ q(1 + log p)

holds.

Proof. For an additive subgroup B ⊆ Fq, we define ΨB = {ψ ∈ Ψ |B ⊆ ker(ψ)},
and note that ΨB is dual to Fq/B.

Now suppose I = B + α[r, . . . , r + s], where B ⊆ Fq is additive subgroup and
α /∈ B. Since

∑
β∈B ψ(β) = 0 for all ψ not in ΨB , we can express the sum as

∑
ψ∈Ψ

∣∣∣∣∣∣
∑
β∈I

ψ(β)

∣∣∣∣∣∣ =
∑
ψ∈Ψ

∣∣∣∣∣∣
∑
β∈B

ψ(β)
r+s∑
k=r

ψ(kα)

∣∣∣∣∣∣ = |B|
∑
ψ∈ΨB

∣∣∣∣∣
r+s∑
k=r

ψ(kα)

∣∣∣∣∣ .
We set C = B + αFp, and note that ψ(kα) = 1 for all ψ in ΨC . Therefore

∑
ψ∈Ψ

∣∣∣∣∣∣
∑
β∈I

ψ(β)

∣∣∣∣∣∣ = |B||ΨC |
∑

ψ∈ΨB/ΨC

∣∣∣∣∣
r+s∑
k=r

ψ(kα)

∣∣∣∣∣ .
Since C/B ∼= αFp is cyclic of order p and with dual group ΨB/ΨC , we can apply
Lemma 2 together with |B||ΨC | = q/p to obtain the stated bound. ut

For a character ω ∈ Ω, a function f ∈ Fq(E), and a subset S ⊆ Fq we define the

T (S, f, ω) = {P ∈ E(Fq) | f(P ) ∈ S and ω(P ) 6= 1}.

and denote its cardinality by T (S, f, ω).



Theorem 2. Let E be an elliptic curve over a finite field Fq, and let f be a
function with poles only at O. Then for any interval I ⊂ Fq and character ω of
order m, the bound∣∣∣∣T (I, f, ω)−N (m− 1)

m

|I|
q

∣∣∣∣ ≤ 2(1 + deg(f))(1 + log p)q1/2

holds.

Proof. Set H to be the kernel of ω. Applying Lemma 1 we obtain the expression

T (I, f, ω) =
1
q

∑
β∈I

∑
P∈E(Fq)
P /∈H

(∑
ψ∈Ψ

ψ(f(P )− β)
)

=
1
q

∑
ψ∈Ψ

∑
P∈E(Fq)
P /∈H

ψ(f(P ))
∑
β∈I

ψ(β)−1

=
1
q

∑
ψ∈Ψ

(
S(ω0, ψ, f)− SH(ω0, ψ, f)

)∑
β∈I

ψ(β)−1,

where ω0 ∈ Ω is the trivial character. Separating out the term corresponding to
the trivial character ψ0 ∈ Ψ , we obtain the expression:

T (I, f, ω)−N (m− 1)
m

|I|
q

=
1
q

∑
ψ∈Ψ
ψ 6=ψ0

(
S(ω0, ψ, f)− SH(ω0, ψ, f)

)∑
β∈I

ψ(β)−1.

Applying Theorem 1 and Lemma 3 we obtain the desired result. ut

Corollary 2. Let E be an elliptic curve over a finite field Fq of characteristic p,
and take either f = x if p 6= 2 or f = y if p 6= 3 in Fq(E). Then for any interval
I ⊂ Fq of cardinality greater than 5(1 + deg(f))(1 + log p)q1/2, the set

T (I, f) = {P ∈ E(Fq) | f(P ) ∈ I}

generates E(Fq).

Proof. Since deg(x) = 2 and deg(y) = 3, we observe that the lower bound on I
implies that |I| > |Fq| for q < 100. But for all q > 100, we note that the bound

q

N
≤ q

q − 2q1/2 + 1
< 1.25

holds. Applying the bound of the previous theorem, we find that the subset
T (I, f, ω) of T (I, f), is nonempty for any nontrivial character ω. Therefore
T (I, f) is contained in no proper subgroup of E(Fq). ut



5 The Algorithm

Theorem 3. Given any ε > 0, there exists an algorithm which, given an elliptic
curve E over Fq, constructs echelonized generators for E(Fq) in time O(q1/2+ε).

Proof. For q large, the algorithm works by the following steps, and for small q
we may solve the problem by any method we choose.

1. Find the group order N of E(Fq), and factor it to find the set
of all divisors.

2. Construct the set T (I, f) of points P ∈ E(Fq) with f(P ) ∈ I,
for an appropriate choice of function f and interval I, such
that T (I, f) contains generators for E(Fq).

3. Reduce the generator set to a pair of echelon generators.

The group order can be computed in polynomial time using the method of
Schoof [11], with practical improvements by Atkin and Elkies [5]. The order
can be factored by trial division in time O(q1/2+ε), but faster algorithms are
also available [1, 4], so this phase does not present the limiting complexity.

By Corollary 2, if we set f equal to x for p 6= 2 or y if p = 2, then the set
T (I, f) contains generators for E(Fq) for an interval I of size O(q1/2+δ), where
0 < δ < ε. For each x0 ∈ I (or y0 ∈ I), the points (x0, y0) in E(Fq), if such exist,
can be found by solving a quadratic (or cubic) equation. Knowing a quadratic (or
cubic) nonresidue, one can extract roots in polynomial time (see [1, 4, 16]). The
nonresidue can be computed, for instance, by the O(q1/4+δ)-algorithm of [15],
which finds a primitive root for Fq. This one time computation has no impact
on the complexity of the algorithm. Therefore the complexity of this stage of the
algorithm is

O(|T (I, f)|(log q)O(1)) = O(q1/2+ε),

which defines the complexity of the algorithm.

Using the factorization of the order N , and a set of generators, we can find the
exponent M of the group in polynomial time. If P is a point of order m and Q
is a point of order n, where gcd(n,m) = 1, then P + Q has order nm. Thus it
suffices to produce echelon generators for each subgroup Z/rµZ×Z/rλZ, where
r is prime and rµ and rλ are the largest powers of r dividing M and L = N/M ,
respectively. Finding an element P of order rµ involves only polynomial time
group operations on elements of the set T (I, f). Likewise a set of generators
for the rλ-torsion group can be produced in polynomial time, by multiplying
points in T (I, f) by an appropriate factor. Setting P1 = rµ−λP , we take the
Weil pairing of P1 with each element Q of order rλ to identify an independent
generator (see Menezes [10]). The complexity of this step is again

O
(
|T (I, f)|(log q)O(1)

)
= O

(
q1/2+ε

)
,

so the complexity is as asserted. ut



6 Remarks

We note that the methods of this paper can be improved or extended in several
ways. From the proof of Corollary 2, it is clear that the constant 5 in the bound
can be improved to 4 + o(1). A more significantly improvement, however, is
achieved using standard techniques (see Chalk [3]) to remove the log p from
the bound. In another direction, combining the method of this paper with a
simple sieve method, it is possible to prove results on the distribution of points
whose order equals the group exponent. In particular, for curves with cyclic
point group E(Fq), one obtains results on the distribution of cyclic generators in
intervals. Since none of these results have consequence to the final complexity of
the algorithm of this paper, we have left these results to comments.

With minimal modification, the results of this paper carry over to a general
result on Jacobians of a hyperelliptic curves over Fq given by an equation of
the form y2 + a(x)y = b(x), where a(x) and b(x) are polynomials over Fq. More
precisely, it is possible to prove bounds on the size of sets of points on the curve
which generate the group of rational points on the Jacobian. For elliptic curves,
the Weil pairing is used to prove the independence of generators for the group
of rational points [9, 10]. Lacking an effective analogue of the Weil pairing, this
approach seems to be the only available deterministic method for producing a
provable set of elements generating the group.

For finite fields of bounded characteristic there exist deterministic polynomial
time algorithms for constructing a polynomial size set of elements containing
a primitive element (see [12, 13], and also Chapter 2 of [16]). It remains open
whether similar improved bounds hold for the group of rational points on elliptic
curves over finite fields of small characteristic.

The exponential sums of this work also have implications for pseudo-random
number generators. The bound of Corollary 1 has been used in [17] to show that
the elliptic curve of the Naor–Reingold pseudo-random function is uniformly
distributed. Our results can also be used to prove that the elliptic curve analogues
of the congruencial generator of pseudo-random numbers (see [6, 7]) produce
uniformly distributed sequences.
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