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§1. Introduction.

Let R be a ring whose underlying set we call the alphabet. A linear code
C over R is a free R-module V of rank k, an embedding ι : V −→ U in a
free module U of rank n, and a choice of basis B = {ei} for U . The code is
said to have block length n and dimension k. We will also assume that the
cokernel W of ι is free over R. We will be slightly sloppy and identify the
image of V in U with the code C. We define || · || : U −→ N by

||x|| = |{i : xi 6= 0}|, where x =
∑

i

xiei ∈ U.

We call ||x|| the weight of x, and define a distance function d( , ) : U×U −→
N by setting d(x, y) = ||x − y||. The minimum distance d of the code C is
the minimum of d(x, y) for x and y in C. By the linearity of C, we have
that d is the minimum weight of a nonzero codeword. We call a linear code
C with parameters n, k and d a linear [n, k, d]-code.

Consider the exact sequence of R-modules

0 - V
ι
- U

π
- W - 0

By means of choices of bases for V and W we can represent ι and π by
matrices G and H, the generator matrix and the parity check matrix, re-
spectively.

The main problems of study in coding theory are:

1. Good encoding and decoding algorithms for families of codes.

2. Proving the existence, or nonexistence, of linear [n, k, d]-codes over R
of given parameters.

3. Construction of families of codes which are asymptotically “good” as
n goes to infinity.

4. Computing the weight enumerator polynomials

w(z) = wC(z) =
∑

i

Aiz
i =

∑
x∈C

q||x||,
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for C lying in a family of codes. (In some families of algebraic-
geometric codes, the codewords of a given weight are points on an
algebraic variety and can be effectively computed.)

§2. Equivalence of codes.

Let C = (ι : U → V,B) and C ′ = (ι′ : U ′ → V ′,B′) be codes. An
isomorphism of codes is an isomorphism ϕ : U −→ U ′ of R-modules which
preserves weights and such that ϕ(ι(V )) = ι′(V ′). Note that ϕ(B) need not
equal B′; the weight preserving condition only requires that the linear sub-
spaces {R∗ei} are permuted. An automorphism of codes is an isomorphism
of a code with itself. The automorphism group of C is a subgroup of the
semidirect product of the permutation group Sn and (R∗)n.

§3. Projective systems.

Let M be a free R-module of dimension k and let S be a subset of n
points (which need not be distinct) such that S lies in no hyperplane of V .
We call the pair (M,S) a linear system over R, and set

n = |S|, k = rank(M), d = n−max
H
|S ∩H| ≥ 1,

where H runs over all hyperplanes of M . We define an isomorphism of linear
systems (M,S) and (M ′,S ′) to be an R-module isomorphism M −→ M ′

taking S onto S ′.

Theorem 0.1 The isomorphism classes of linear [n, k, d]-codes are in bijec-
tive correspondence with the isomorphism classes of (M,S) with parameters
n, k and d.

Before proving the theorem, we define a projective system by letting

P = P(M) =

(
M −

⋃
a⊂R

aM

)
/R∗,

and P be the image of S in P. We call (P,P) a projective system, and define

n = |P|, k = dim(P) + 1, d = n−max
H
|P ∩H|.

We say that a code is nondegenerate if C is not contained in Ui for any of
the n canonical hyperplanes Ui of U generated by {e1, . . . , êi, . . . , en} ⊆ B.
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Theorem 0.2 The set of isomorphism classes of nondegenerate R-linear
[n, k, d]-codes are in bijective correspondence with projective systems over R
with parameters n, k, and d.

Proof of Theorem 0.1. Let V = M∗ and define V −→ U = Rn by

ϕ 7−→ (ϕ(P1), ϕ(P2), . . . , ϕ(Pn)).

Conversely, given a code (ι : U → V,B), the basis B = {ei} determines a
dual basis {e∗i } of U∗ which restricts to elements of M = V ∗.

The second theorem follows easily. Note that the degeneracy of a code
corresponding to (M,S) is just the multiplicity of (0, 0, . . . , 0) in S.
Exercise. Set ||H|| = n− |H ∩ P| and verify that

w(z) = 1 + (q − 1)
∑
H

z||H||,

where q is the size of the alphabet.
Example. Let R = F4 and let E be the elliptic curve given by

Y 2Z + Y Z2 = X3

in P2. Then

E(F4) =


(0 : 1 : 0), (0 : 0 : 1), (0 : 1, 1),

(1 : α : 1), (α : α : 1), (α2 : α : 1),

(1 : α2 : 1),(α : α2 : 1),(α2 : α2 : 1)

 ,

where α is a generator for F∗4.
To turn this into a linear code, we make some ugly choices... We lift

these points back to M = F3
4 and set U = F9

4. Then with the basis {x, y, z}
for V = M∗, we have V −→ U given by the generator matrix

G =

 0 0 0 1 1 α α α2 α2

1 0 1 α α2 α α2 α α2

0 1 1 1 1 1 1 1 1

 .
We now determine directly that the weight enumerator polynomial for C
is 1 + 4z6 + 3z8. In particular, the minimum distance is 6. Thus we have
constructed a linear [9, 3, 6] code.

§4. Duals of codes.
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The dual of a linear code C is defined to be the linear subspace

C⊥ = {x ∈ U : x · y = 0 for all y ∈ C}.

The block length of the dual code is still n, and the dimension of the code is
n−k. The MacWilliams identity relates the weight enumerator polynomials
of C and C⊥. We have

wC⊥(z) = q−kwC

(
1− z

1− (q − 1)z

)
The weight enumerator polynomial of C⊥ in the example above is then

wC⊥(z) = 1 + 5z3 + 11z4 + 24z5 + 8z6 + 11z7 + 4z8,

and C⊥ is a linear [9, 6, 3]-code.
Notice that in this example the sum k + d is equal to n. For any linear

code we have the following general bound.

Theorem 0.3 (Singleton bound) For any linear [n, k, d]-code k+d ≤ n+1.

Proof. Consider any k− 1 points in P(V ) = Pk−1. Necessarily they lie in a
hyperplane. Thus by definition of a projective system,

k − 1 ≤ max
H
|P ∩H| = n− d.

§5. Line bundles on X

In order to prove the following theorem, we introduce line bundles on a
variety X.

Theorem 0.4 Let X be a curve, let T be a subset of X(R) of cardinality n,
and let L be a line bundle on X of degree a. Let s1, . . . , sk be a basis for the
global sections of L, and assume that the induced morphism ϕ : X −→ Pk−1

is an embedding. Then the projective system (Pk−1(R),P), where P = ϕ(T ),
determines a linear [n, k, d]-code with parameters

k ≥ a− g + 1 and d ≥ n− a.

In particular, k + d ≥ n+ 1− g.
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Note 1. Our elliptic curve example was such an example with a = 3, g = 1,
and P = E(F4) of cardinality 9.
Note 2. A line bundle L satisfying the conditions of the theorem is said to
be very ample.

Let OX be the sheaf of functions on X, i.e. for each open subset U of
X, OX(U) is the ring of rational polynomial maps U −→ R.

A sheaf F of OX -modules is defined to be a sheaf on X such that for
each open subset U of X, the group L(U) is an OX(U) module, and for
each inclusion of open sets V −→ U the homomorphism L(U) −→ L(V ) is
compatible with the ring homomorphism OX(U) −→ OX(V ), i.e. L(U) −→
L(V ) becomes a homomorphism of OX(U)-modules.

A line bundle L (or invertible sheaf) is defined to be a sheaf of OX -
modules on X such that there exists a covering of X by open sets U such
that L|U is isomorphic to OX |U .

In short, a line bundle is defined by the conditions that

1. For each open set U in a covering of X, L(U) is isomorphic to an
OX(U)-module.

2. The inclusions L(U ∩ V ) ⊆ L(U) and L(U ∩ V ) ⊆ L(V ) determine
how the modules glue together.

Sketch of proof. The theorem is proved with the following steps.

1. The dimension k of L(X) over R is at least a− g+ 1 by the Riemann-
Roch theorem.

2. The global sections s1, . . . , sk of L(X) determine an embedding as
follows. For each set U in a cover of X, fix an isomorphism L(U) ∼=
OX(U). Then we can define

X
ϕ

- Pk−1.

P - (s1(P ) : · · · : sk(P )).

Since changing the isomorphism is equivalent to multiplying each si

by a unit in OX(U), this gives a well-defined map to Pk−1.

3. Apply the equivalence of projective systems and codes. The minimum
distance of the code is defined to be

d = n−max
H
|T ∩H|.
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Over an algebraically closed field R, by Bezout’s theorem the cardi-
nality of ϕ(X(R)) ∩ H, counted with multiplicity, is equal to a for
any hyperplane H. Over general R we may get lucky and a may be
smaller, but we have a lower bound d ≥ n− a.
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