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§1. Introduction.

Let R be a ring whose underlying set we call the alphabet. A linear code
C over R is a free R-module V of rank k, an embedding ¢ : V — U in a
free module U of rank n, and a choice of basis B = {e;} for U. The code is
said to have block length n and dimension k. We will also assume that the
cokernel W of ¢+ is free over R. We will be slightly sloppy and identify the
image of V' in U with the code C. We define || - || : U — N by

||z|| = {7 : x; # 0}], where x = inei e U.

We call ||z|| the weight of x, and define a distance functiond(, ): UxU —
N by setting d(z,y) = ||z — y||. The minimum distance d of the code C' is
the minimum of d(x,y) for z and y in C. By the linearity of C, we have
that d is the minimum weight of a nonzero codeword. We call a linear code
C' with parameters n, k and d a linear [n, k, d]-code.

Consider the exact sequence of R-modules

L 7r
00—V —-U—W—20

By means of choices of bases for V' and W we can represent ¢ and 7 by
matrices G and H, the generator matriz and the parity check matrix, re-
spectively.

The main problems of study in coding theory are:

1. Good encoding and decoding algorithms for families of codes.

2. Proving the existence, or nonexistence, of linear [n, k, d]-codes over R
of given parameters.

3. Construction of families of codes which are asymptotically “good” as
n goes to infinity.

4. Computing the weight enumerator polynomials

w(z) = we(z) = ZAizi =5 gl

zeC



for C lying in a family of codes. (In some families of algebraic-
geometric codes, the codewords of a given weight are points on an
algebraic variety and can be effectively computed.)

§2. Equivalence of codes.

Let C = (0 :U = V,B)and C¢' = (// : U — V',®B’) be codes. An
isomorphism of codes is an isomorphism ¢ : U — U’ of R-modules which
preserves weights and such that ¢(¢(V)) = /(V'). Note that ¢(B) need not
equal B'; the weight preserving condition only requires that the linear sub-
spaces { R*e;} are permuted. An automorphism of codes is an isomorphism
of a code with itself. The automorphism group of C' is a subgroup of the
semidirect product of the permutation group S,, and (R*)".

§3. Projective systems.

Let M be a free R-module of dimension k and let S be a subset of n
points (which need not be distinct) such that S lies in no hyperplane of V.
We call the pair (M,S) a linear system over R, and set

n=1S|, k=rank(M), d:n—m§X|SﬂH]21,

where H runs over all hyperplanes of M. We define an isomorphism of linear
systems (M,S) and (M’,S’) to be an R-module isomorphism M — M’
taking S onto §'.

Theorem 0.1 The isomorphism classes of linear [n, k, d]|-codes are in bijec-
tive correspondence with the isomorphism classes of (M,S) with parameters
n, k and d.

Before proving the theorem, we define a projective system by letting

P=P(M) = <M— U aM) /R*,

aCR

and P be the image of S in P. We call (P, P) a projective system, and define

We say that a code is nondegenerate if C' is not contained in U; for any of
the n canonical hyperplanes U; of U generated by {e1,...,é;,...,e,} C B.



Theorem 0.2 The set of isomorphism classes of nondegenerate R-linear
[n, k,d]-codes are in bijective correspondence with projective systems over R
with parameters n, k, and d.

Proof of Theorem 0.1. Let V = M* and define V — U = R" by

o (p(P1), p(P2), -, p(Pn))-

Conversely, given a code (¢ : U — V,B), the basis B = {e;} determines a
dual basis {e}} of U* which restricts to elements of M = V*.

The second theorem follows easily. Note that the degeneracy of a code
corresponding to (M, S) is just the multiplicity of (0,0,...,0) in S.
Exercise. Set ||H|| =n — |H NP| and verify that

w(z) =1+ (¢ — 1)22”H”,
H

where ¢ is the size of the alphabet.
Example. Let R =F4 and let E be the elliptic curve given by

YV:Z4+YZ?=X?

in P2. Then
(0:1:0), (0:0:1), (0:1,1),
EFy) =< 1:a:1), (a:a:1),(@®:a:1),},
(1:a%:1),(a:a?:1),(a?:a?:1)
where « is a generator for Fy.
To turn this into a linear code, we make some ugly choices... We lift

these points back to M = F} and set U = F}. Then with the basis {x,y, z}
for V.= M*, we have V. — U given by the generator matrix

2

0001 1 o a o «o
G=|101 a o2 a o2 a o?
o011 1 1 1 1 1 1

We now determine directly that the weight enumerator polynomial for C'
is 1 4 42% + 328, In particular, the minimum distance is 6. Thus we have
constructed a linear [9, 3, 6] code.

§4. Duals of codes.



The dual of a linear code C' is defined to be the linear subspace
Ct={zeU:z-y=0foralyeC}.

The block length of the dual code is still n, and the dimension of the code is
n—k. The MacWilliams identity relates the weight enumerator polynomials
of C and C*. We have

we (2) = ¢ Fwe (1—1@_—1))

The weight enumerator polynomial of C* in the example above is then
wer (2) = 14523 + 1120 2425 + 820 + 1127 4 428,

and C* is a linear [9, 6, 3]-code.
Notice that in this example the sum k + d is equal to n. For any linear
code we have the following general bound.

Theorem 0.3 (Singleton bound) For any linear [n, k,d]|-code k+d < n+1.

Proof. Consider any k — 1 points in P(V') = P*~1. Necessarily they lie in a
hyperplane. Thus by definition of a projective system,

k—lgm}a}xwrﬁH!:n—d.

§5. Line bundles on X

In order to prove the following theorem, we introduce line bundles on a
variety X.

Theorem 0.4 Let X be a curve, let T be a subset of X(R) of cardinality n,
and let L be a line bundle on X of degree a. Let s1,...,s; be a basis for the
global sections of L, and assume that the induced morphism ¢ : X — PE—1
is an embedding. Then the projective system (P*~1(R), P), where P = o(T),
determines a linear [n, k, d]-code with parameters

k>a—g+1 and d>n-—a.

In particular, k+d>n+1—g.



Note 1. Our elliptic curve example was such an example with a =3, g = 1,
and P = E(F4) of cardinality 9.

Note 2. A line bundle £ satisfying the conditions of the theorem is said to
be very ample.

Let Ox be the sheaf of functions on X, i.e. for each open subset U of
X, Ox(U) is the ring of rational polynomial maps U — R.

A sheaf F of Ox-modules is defined to be a sheaf on X such that for
each open subset U of X, the group £(U) is an Ox(U) module, and for
each inclusion of open sets V' — U the homomorphism L(U) — L(V) is
compatible with the ring homomorphism Ox (U) — Ox(V), i.e. L(U) —
L(V) becomes a homomorphism of Ox (U)-modules.

A line bundle L (or invertible sheaf) is defined to be a sheaf of Ox-
modules on X such that there exists a covering of X by open sets U such
that £|y is isomorphic to Ox|y.

In short, a line bundle is defined by the conditions that

1. For each open set U in a covering of X, £(U) is isomorphic to an
Ox (U)-module.

2. The inclusions L(UNV) C L(U) and L(UNV) C L(V) determine
how the modules glue together.

Sketch of proof. The theorem is proved with the following steps.

1. The dimension k of £(X) over R is at least a — g+ 1 by the Riemann-
Roch theorem.

2. The global sections si,...,s; of £(X) determine an embedding as

follows. For each set U in a cover of X, fix an isomorphism £(U) =
Ox(U). Then we can define

X 14 ph-1,

Pr—— (s1(P):---: 51(P)).

Since changing the isomorphism is equivalent to multiplying each s;
by a unit in Ox (U), this gives a well-defined map to P*~1.

3. Apply the equivalence of projective systems and codes. The minimum
distance of the code is defined to be

d=mn—max|7T NH|.
H



Over an algebraically closed field R, by Bezout’s theorem the cardi-
nality of p(X(R)) N H, counted with multiplicity, is equal to a for
any hyperplane H. Over general R we may get lucky and a may be
smaller, but we have a lower bound d > n — a.



