Coding theory: algebraic geometry of linear algebra

David R. Kohel

§1. Introduction.

Let R be a ring whose underlying set we call the alphabet. A *linear code* C over R is a free R-module V of rank k, an embedding $\iota : V \longrightarrow U$ in a free module U of rank n, and a choice of basis $\mathfrak{B} = \{e_i\}$ for U. The code is said to have *block length* n and *dimension* k. We will also assume that the cokernel W of ι is free over R. We will be slightly sloppy and identify the image of V in U with the code C. We define $|| \cdot || : U \longrightarrow \mathbb{N}$ by

$$||x|| = |\{i : x_i \neq 0\}|, \text{ where } x = \sum_i x_i e_i \in U.$$

We call ||x|| the weight of x, and define a distance function $d(,): U \times U \longrightarrow \mathbb{N}$ by setting d(x, y) = ||x - y||. The minimum distance d of the code C is the minimum of d(x, y) for x and y in C. By the linearity of C, we have that d is the minimum weight of a nonzero codeword. We call a linear code C with parameters n, k and d a linear [n, k, d]-code.

Consider the exact sequence of R-modules

$$0 \longrightarrow V \xrightarrow{\iota} U \xrightarrow{\pi} W \longrightarrow 0$$

By means of choices of bases for V and W we can represent ι and π by matrices G and H, the generator matrix and the parity check matrix, respectively.

The main problems of study in coding theory are:

- 1. Good encoding and decoding algorithms for families of codes.
- 2. Proving the existence, or nonexistence, of linear [n, k, d]-codes over R of given parameters.
- 3. Construction of families of codes which are asymptotically "good" as n goes to infinity.
- 4. Computing the weight enumerator polynomials

$$w(z) = w_C(z) = \sum_i A_i z^i = \sum_{x \in C} q^{||x||},$$

for C lying in a family of codes. (In some families of algebraicgeometric codes, the codewords of a given weight are points on an algebraic variety and can be effectively computed.)

§2. Equivalence of codes.

Let $C = (\iota : U \to V, \mathfrak{B})$ and $C' = (\iota' : U' \to V', \mathfrak{B}')$ be codes. An isomorphism of codes is an isomorphism $\varphi : U \longrightarrow U'$ of *R*-modules which preserves weights and such that $\varphi(\iota(V)) = \iota'(V')$. Note that $\varphi(\mathfrak{B})$ need not equal \mathfrak{B}' ; the weight preserving condition only requires that the linear subspaces $\{R^*e_i\}$ are permuted. An automorphism of codes is an isomorphism of a code with itself. The automorphism group of *C* is a subgroup of the semidirect product of the permutation group S_n and $(R^*)^n$.

§3. Projective systems.

Let M be a free R-module of dimension k and let S be a subset of n points (which need not be distinct) such that S lies in no hyperplane of V. We call the pair (M, S) a linear system over R, and set

$$n = |\mathcal{S}|, \quad k = rank(M), \quad d = n - \max_{H} |\mathcal{S} \cap H| \ge 1,$$

where H runs over all hyperplanes of M. We define an isomorphism of linear systems (M, \mathcal{S}) and (M', \mathcal{S}') to be an R-module isomorphism $M \longrightarrow M'$ taking \mathcal{S} onto \mathcal{S}' .

Theorem 0.1 The isomorphism classes of linear [n, k, d]-codes are in bijective correspondence with the isomorphism classes of (M, S) with parameters n, k and d.

Before proving the theorem, we define a *projective system* by letting

$$\mathbb{P} = \mathbb{P}(M) = \left(M - \bigcup_{\mathfrak{a} \subset R} \mathfrak{a}M\right) / R^*,$$

and \mathcal{P} be the image of \mathcal{S} in \mathbb{P} . We call $(\mathbb{P}, \mathcal{P})$ a projective system, and define

$$n = |\mathcal{P}|, \quad k = \dim(\mathbb{P}) + 1, \quad d = n - \max_{H} |\mathcal{P} \cap H|.$$

We say that a code is *nondegenerate* if C is not contained in U_i for any of the n canonical hyperplanes U_i of U generated by $\{e_1, \ldots, \hat{e_i}, \ldots, e_n\} \subseteq \mathfrak{B}$.

Theorem 0.2 The set of isomorphism classes of nondegenerate R-linear [n, k, d]-codes are in bijective correspondence with projective systems over R with parameters n, k, and d.

Proof of Theorem 0.1. Let $V = M^*$ and define $V \longrightarrow U = R^n$ by

$$\varphi \longmapsto (\varphi(P_1), \varphi(P_2), \dots, \varphi(P_n)).$$

Conversely, given a code $(\iota : U \to V, \mathfrak{B})$, the basis $\mathfrak{B} = \{e_i\}$ determines a dual basis $\{e_i^*\}$ of U^* which restricts to elements of $M = V^*$.

The second theorem follows easily. Note that the degeneracy of a code corresponding to (M, S) is just the multiplicity of $(0, 0, \ldots, 0)$ in S. **Exercise.** Set $||H|| = n - |H \cap \mathcal{P}|$ and verify that

$$w(z) = 1 + (q-1)\sum_{H} z^{||H||},$$

where q is the size of the alphabet.

Example. Let $R = \mathbb{F}_4$ and let *E* be the elliptic curve given by

$$Y^2Z + YZ^2 = X^3$$

in \mathbb{P}^2 . Then

$$E(\mathbb{F}_4) = \left\{ \begin{array}{ll} (0:1:0), & (0:0:1), & (0:1,1), \\ (1:\alpha:1), & (\alpha:\alpha:1), & (\alpha^2:\alpha:1), \\ (1:\alpha^2:1), & (\alpha:\alpha^2:1), & (\alpha^2:\alpha^2:1) \end{array} \right\},$$

where α is a generator for \mathbb{F}_4^* .

To turn this into a linear code, we make some ugly choices... We lift these points back to $M = \mathbb{F}_4^3$ and set $U = \mathbb{F}_4^9$. Then with the basis $\{x, y, z\}$ for $V = M^*$, we have $V \longrightarrow U$ given by the generator matrix

$$G = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & \alpha & \alpha & \alpha^2 & \alpha^2 \\ 1 & 0 & 1 & \alpha & \alpha^2 & \alpha & \alpha^2 & \alpha & \alpha^2 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

We now determine directly that the weight enumerator polynomial for C is $1 + 4z^6 + 3z^8$. In particular, the minimum distance is 6. Thus we have constructed a linear [9, 3, 6] code.

$\S4$. Duals of codes.

The dual of a linear code C is defined to be the linear subspace

$$C^{\perp} = \{ x \in U : x \cdot y = 0 \text{ for all } y \in C \}$$

The block length of the dual code is still n, and the dimension of the code is n-k. The MacWilliams identity relates the weight enumerator polynomials of C and C^{\perp} . We have

$$w_{C^{\perp}}(z) = q^{-k} w_C \left(\frac{1-z}{1-(q-1)z}\right)$$

The weight enumerator polynomial of C^{\perp} in the example above is then

$$w_{C^{\perp}}(z) = 1 + 5z^3 + 11z^4 + 24z^5 + 8z^6 + 11z^7 + 4z^8,$$

and C^{\perp} is a linear [9, 6, 3]-code.

Notice that in this example the sum k + d is equal to n. For any linear code we have the following general bound.

Theorem 0.3 (Singleton bound) For any linear [n, k, d]-code $k + d \le n + 1$.

Proof. Consider any k-1 points in $\mathbb{P}(V) = \mathbb{P}^{k-1}$. Necessarily they lie in a hyperplane. Thus by definition of a projective system,

$$k-1 \le \max_{H} |\mathcal{P} \cap H| = n-d.$$

§5. Line bundles on X

In order to prove the following theorem, we introduce line bundles on a variety X.

Theorem 0.4 Let X be a curve, let \mathcal{T} be a subset of X(R) of cardinality n, and let \mathcal{L} be a line bundle on X of degree a. Let s_1, \ldots, s_k be a basis for the global sections of \mathcal{L} , and assume that the induced morphism $\varphi : X \longrightarrow \mathbb{P}^{k-1}$ is an embedding. Then the projective system $(\mathbb{P}^{k-1}(R), \mathcal{P})$, where $\mathcal{P} = \varphi(\mathcal{T})$, determines a linear [n, k, d]-code with parameters

$$k \ge a - g + 1$$
 and $d \ge n - a$.

In particular, $k + d \ge n + 1 - g$.

Note 1. Our elliptic curve example was such an example with a = 3, g = 1, and $\mathcal{P} = E(\mathbb{F}_4)$ of cardinality 9.

Note 2. A line bundle \mathcal{L} satisfying the conditions of the theorem is said to be *very ample*.

Let \mathcal{O}_X be the sheaf of functions on X, i.e. for each open subset U of $X, \mathcal{O}_X(U)$ is the ring of rational polynomial maps $U \longrightarrow R$.

A sheaf \mathcal{F} of \mathcal{O}_X -modules is defined to be a sheaf on X such that for each open subset U of X, the group $\mathcal{L}(U)$ is an $\mathcal{O}_X(U)$ module, and for each inclusion of open sets $V \longrightarrow U$ the homomorphism $\mathcal{L}(U) \longrightarrow \mathcal{L}(V)$ is compatible with the ring homomorphism $\mathcal{O}_X(U) \longrightarrow \mathcal{O}_X(V)$, i.e. $\mathcal{L}(U) \longrightarrow \mathcal{L}(V)$ becomes a homomorphism of $\mathcal{O}_X(U)$ -modules.

A line bundle \mathcal{L} (or invertible sheaf) is defined to be a sheaf of \mathcal{O}_X modules on X such that there exists a covering of X by open sets U such
that $\mathcal{L}|_U$ is isomorphic to $\mathcal{O}_X|_U$.

In short, a line bundle is defined by the conditions that

- 1. For each open set U in a covering of X, $\mathcal{L}(U)$ is isomorphic to an $\mathcal{O}_X(U)$ -module.
- 2. The inclusions $\mathcal{L}(U \cap V) \subseteq \mathcal{L}(U)$ and $\mathcal{L}(U \cap V) \subseteq \mathcal{L}(V)$ determine how the modules glue together.

Sketch of proof. The theorem is proved with the following steps.

- 1. The dimension k of $\mathcal{L}(X)$ over R is at least a g + 1 by the Riemann-Roch theorem.
- 2. The global sections s_1, \ldots, s_k of $\mathcal{L}(X)$ determine an embedding as follows. For each set U in a cover of X, fix an isomorphism $\mathcal{L}(U) \cong \mathcal{O}_X(U)$. Then we can define

$$X \xrightarrow{\varphi} \mathbb{P}^{k-1}.$$
$$P \longmapsto (s_1(P) : \dots : s_k(P))$$

Since changing the isomorphism is equivalent to multiplying each s_i by a unit in $\mathcal{O}_X(U)$, this gives a well-defined map to \mathbb{P}^{k-1} .

3. Apply the equivalence of projective systems and codes. The minimum distance of the code is defined to be

$$d = n - \max_{H} |\mathcal{T} \cap H|.$$

Over an algebraically closed field R, by Bezout's theorem the cardinality of $\varphi(X(R)) \cap H$, counted with multiplicity, is equal to a for any hyperplane H. Over general R we may get lucky and a may be smaller, but we have a lower bound $d \ge n - a$.