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Abstract. Let f be a newform of weight 2 on Γ0(N), and let Af be the
corresponding optimal abelian variety quotient of J0(N). We describe an
algorithm to compute the order of the component group of Af at primes p
that exactly divide N . We give a table of orders of component groups for
all f of level N ≤ 127 and five examples in which the component group
is very large, as predicted by the Birch and Swinnerton-Dyer conjecture.

1 Introduction

Let X0(N) be the Riemann surface obtained by compactifying the quo-
tient of the upper half-plane by the action of Γ0(N). Then X0(N) has
a canonical structure of algebraic curve over Q; denote its Jacobian
by J0(N). It is equipped with an action of a commutative ring T =
Z[. . . Tn . . .] of Hecke operators. For more details on modular curves,
Hecke operators, and modular forms see, e.g., [8].

Now suppose that f =
∑∞

n=1 anq
n is a modular newform of weight 2

for the congruence subgroup Γ0(N). The Hecke operators also act on f
by Tn(f) = anf . The eigenvalues an generate an order Rf = Z[. . . an . . .]
in a number field Kf . The kernel If of the map T→ Rf sending Tn to an

is a prime ideal. Following Shimura [15], we associate to f the quotient
Af = J0(N)/IfJ0(N) of J0(N). Then Af is an abelian variety over Q of
dimension [Kf : Q], with bad reduction exactly at the primes dividing N .

One-dimensional quotients of J0(N) have been intensely studied in
recent years, both computationally and theoretically. The original con-
jectures of Birch and Swinnerton-Dyer [1, 2], for elliptic curves over Q,
were greatly influenced by computations. The scale of these computations
was extended and systematized by Cremona in [6].

In another direction, Wiles [20] and Taylor-Wiles [18] proved a special
case of the conjecture of Shimura-Taniyama, which asserts that every
elliptic curve over Q is a quotient of some J0(N); this allowed them to



establish Fermat’s Last Theorem. The full Shimura-Taniyama conjecture
was later proved by Breuil, Conrad, Diamond, and Taylor in [4]. This
illustrates the central role played by quotients of J0(N).

2 Component Groups of Af

The Néron modelA/Z of an abelian variety A/Q is by definition a smooth
commutative group scheme over Z with generic fiber A such that for any
smooth scheme S over Z, the restriction map

HomZ(S,A)→ HomQ(SQ, A)

is a bijection. For more details, including a proof of existence, see, e.g., [5].
Suppose that Af is a quotient of J0(N) corresponding to a newform f

on Γ0(N), and let Af be the Néron model of Af . For any prime divisor p
of N , the closed fiber Af /Fp

is a group scheme over Fp, which need not
be connected. Denote the connected component of the identity by A◦f /Fp

.
There is an exact sequence

0→ A◦f /Fp
→ Af /Fp

→ ΦAf ,p → 0

with ΦAf ,p a finite étale group scheme over Fp called the component group
of Af at p.

The category of finite étale group schemes over Fp is equivalent to
the category of finite groups equipped with an action of Gal(Fp/Fp) (see,
e.g., [19, §6.4]). The order of an étale group scheme G/Fp is defined to
be the order of the group G(Fp). In this paper we describe an algorithm
for computing the order of ΦAf ,p, when p exactly divides N .

3 The Algorithm

Let J = J0(N), fix a newform f of weight-two for Γ0(N), and let Af be
the corresponding quotient of J . Because J is the Jacobian of a curve, it
is canonically isomorphic to its dual, so the projection J → Af induces a
polarization A∨f → Af , where A∨f denotes the abelian variety dual of Af .
We define the modular degree δAf

of Af to be the positive square root
of the degree of this polarization. This agrees with the usual notion of
modular degree when Af is an elliptic curve.

A torus T over a field k is a group scheme whose base extension to the
separable closure ks of k is a finite product of copies of Gm. Every commu-
tative algebraic group over k admits a unique maximal subtorus, defined



over k, whose formation commutes with base extension (see IX §2.1 of [9]).
The character group of a torus T is the group X = Homks(T,Gm) which
is a free abelian group of finite rank together with an action of Gal(ks/k)
(see, e.g., [19, §7.3]).

We apply this construction to our setting as follows. The closed fiber
of the Néron model of J at p is a group scheme over Fp, whose maximal
torus we denote by TJ,p. We define XJ,p to be the character group of
TJ,p. Then XJ,p is a free abelian group equipped with an action of both
Gal(Fp/Fp) and the Hecke algebra T (see, e.g., [14]). Moreover, there
exists a bilinear pairing

〈 , 〉 : XJ,p ×XJ,p → Z

called the monodromy pairing such that

ΦJ,p
∼= coker(XJ,p → Hom(XJ,p,Z)).

Let XJ,p[If ] be the intersection of all kernels ker(t) for t in If , and let

αf : XJ,p → Hom(XJ,p[If ],Z)

be the map induced by the monodromy pairing. The following theorem of
the second author [16], provides the basis for the computation of orders
of component groups.

Theorem 1. With the notation as above, we have the equality

#ΦAf ,p =
#coker(αf ) · δAf

#(αf (XJ,p)/αf (XJ,p[If ]))
.

3.1 Computing the modular degree δA,f

Using modular symbols (see, e.g., [6]), we first compute the homology
group H1(X0(N),Q; cusps). Using lattice reduction, we compute the Z-
submodule H1(X0(N),Z; cusps) generated by all Manin symbols (c, d).
Then H1(X0(N),Z) is the integer kernel of the boundary map.

The Hecke ring T acts on H1(X0(N),Z) and also on the linear dual
Hom(H1(X0(N),Z),Z), where t ∈ T acts on ϕ ∈ Hom(H1(X0(N),Z),Z)
by (t.ϕ)(x) = ϕ(tx). We have a natural restriction map

rf : Hom(H1(X0(N),Z),Z)[If ]→ Hom(H1(X0(N),Z)[If ],Z).

Proposition 1. The cokernel of rf is isomorphic to the kernel of the
polarization A∨f → Af induced by the map J0(N)→ Af .



Thus the order of the cokernel of rf is the square of the modular
degree δf . We pause to note that the degree of any polarization is a
square; see, e.g., [13, Thm. 13.3].

Proof. Let S = S2(Γ0(N),C) be the complex vector space of weight-two
modular forms of level N , and set H = H1(X0(N), Z). The integration
pairing S ×H → C induces a natural map

Φf : H → Hom(S[If ],C).

Using the classical Abel-Jacobi theorem, we deduce the following commu-
tative diagram, which has exact columns, but whose rows are not exact.

0

��

0

��

0

��
H[If ]

��

// H

��

// Φf (H)

��
Hom(S,C)[If ]

��

// Hom(S,C)

��

// Hom(S[If ],C)

��
A∨f (C)

��

//
>>

J0(N)(C)

��

// Af (C)

��
0 0 0

By the snake lemma, the kernel of A∨f (C)→ Af (C) is isomorphic to the
cokernel of the map H[If ]→ Φf (H). Since

Hom(H/ ker(Φf ),Z) ∼= Hom(H,Z)[If ],

the Hom(−,Z) dual of the map H[If ]→ Φf (H) = H/ ker(Φf ) is rf , which
proves the proposition.

3.2 Computing the character group XJ,p

Let N = Mp, where M and p are coprime. If M is small, then the algo-
rithm of Mestre and Oesterlé [12] can be used to compute XJ,p. This algo-
rithm constructs the graph of isogenies between Fp-isomorphism classes
of pairs consisting of a supersingular elliptic curve and a cyclic M -torsion
subgroup. In particular, the method is elementary to apply when X0(M)
has genus 0.

In general, the above category of “enhanced” supersingular elliptic
curves can be replaced by one of left (or right) ideals of a quaternion or-
der O of level M in the quaternion algebra over Q ramified at p. This gives



an equivalent category, in which the computation of homomorphisms is
efficient. The character group XJ,p is known by Deligne-Rapoport [7] to
be canonically isomorphic to the degree zero subgroup X (O) of the free
abelian “divisor group” on the isomorphism classes of enhanced supersin-
gular elliptic curves and of quaternion ideals. Moreover, this isomorphism
is compatible with the operation of Hecke operators, which are effectively
computable in X (O) in terms of ideal homomorphisms.

The inner product of two classes in this setting is defined to be the
number of isomorphisms between any two representatives. The linear ex-
tension to X (O) gives an inner product which agrees, under the isomor-
phism, with the monodromy pairing on XJ,p. This gives, in particular,
an isomorphism ΦJ,p

∼= coker(X (O) → Hom(X (O),Z)), and an effective
means of computing #coker(αf ) and #(αf (XJ,p)/αf (XJ,p[If ])).

The arithmetic of quaternions has been implemented in Magma [11]
by the first author. Additional details and the application to Shimura
curves, generalizing X0(N), can be found in Kohel [10].

3.3 The Galois action on ΦAf ,p

To determine the Galois action on ΦAf ,p, we need only know the action of
the Frobenius automorphism Frobp. However, Frobp acts on ΦAf ,p in the
same way as −Wp, where Wp is the pth Atkin-Lehner involution, which
can be computed using modular symbols. Since f is an eigenform, the
involution Wp acts as either +1 or −1 on ΦAf ,p. Moreover, the operator
Wp is determined by an involution on the set of quaternion ideals, so it
can be determined explicitly on the character group.

4 Tables

The main computational results of this work are presented below in two
tables. The relevant algorithms have been implemented in Magma and
will be made part of a future release. They can also be obtained from the
second author.

4.1 Component groups at low level

The first table gives the component groups of the quotients Af of J0(N)
for N ≤ 127. The column labeled d contains the dimensions of the Af , and
the column labeled #ΦAf ,p contains a list of the orders of the component
groups of Af , one for each divisor p of N , ordered by increasing p. An



entry of “?” indicates that p2 | N , so our algorithm does not apply. A
component group order is starred if the Gal(Fp/Fp)-action is nontrivial.
More data along these lines can be obtained from the second author.

4.2 Examples of large component groups

Let ΩAf
be the real period of Af , as defined by J. Tate in [17]. The

second author computed the rational numbers L(Af , 1)/ΩAf
for every

newform f of level N ≤ 1500. The five largest prime divisors occur in
the ratios given in the second table. The Birch and Swinnerton-Dyer
conjecture predicts that the large prime divisor of the numerator of each
special value must divide the order either of some component group ΦAf ,p

or of the Shafarevich-Tate group of Af . In each instance ΦAf ,2 is divisible
by the large prime divisor, as predicted.

5 Further directions

Further considerations are needed to compute the group structure of
ΦAf ,p. However, since the action of Frobenius is known, computing the
group structure of ΦAf ,p suffices to determine its structure as a group
scheme.

Our methods say nothing about the component group at primes whose
square divides the level. The free abelian group on classes of nonmaxi-
mal orders of index p at a ramified prime gives a well-defined divisor
group. Do the resulting Hecke modules determine the component groups
for quotients of level p2M?

Is it possible to define quantities as in Theorem 1 even when the weight
of f is greater than 2? If so, how are the resulting quantities related to
the Bloch-Kato Tamagawa numbers (see [3]) of the higher weight motive
attached to f?



Component groups at low level

N d #ΦAf ,p

11 1 5
14 1 6∗, 3
15 1 4∗, 4
17 1 4
19 1 3
20 1 ?, 2∗

21 1 4, 2∗

23 2 11
24 1 ?, 2∗

26 1 3∗, 3
1 7, 1∗

27 1 ?
29 2 7
30 1 4∗, 3, 1∗

31 2 5
32 1 ?
33 1 6∗, 2
34 1 6, 1∗

35 1 3∗, 3
2 8, 4∗

36 1 ?, ?
37 1 1∗

1 3
38 1 9∗, 3

1 5, 1∗

39 1 2∗, 2
2 14, 2∗

40 1 ?, 2
41 3 10
42 1 8, 2∗, 1∗

43 1 1∗

2 7
44 1 ?, 1∗

45 1 ?, 1∗

46 1 10∗, 1
47 4 23
48 1 ?, 2
49 1 ?
50 1 1∗, ?

1 5, ?
51 1 3, 1∗

2 16∗, 4
52 1 ?, 2∗

53 1 1∗

N d #ΦAf ,p

3 13
54 1 3∗, ?

1 3, ?
55 1 2, 2∗

2 14∗, 2
56 1 ?, 1

1 ?, 1∗

57 1 2∗, 1∗

1 2, 2∗

1 10, 1∗

58 1 2∗, 1∗

1 10, 1∗

59 5 29
61 1 1∗

3 5
62 1 4, 1∗

2 66∗, 3
63 1 ?, 1∗

2 ?, 3
64 1 ?
65 1 1∗, 1∗

2 3∗, 3
2 7, 1∗

66 1 2∗, 3, 1∗

1 4, 1∗, 1∗

1 10, 5, 1
67 1 1

2 1∗

2 11
68 2 ?, 2∗

69 1 2, 1∗

2 22∗, 2
70 1 4, 2∗, 1∗

71 3 5
3 7

72 1 ?, ?
73 1 2

2 1∗

2 3
74 2 9∗, 3

2 95, 1∗

75 1 1∗, ?
1 1, ?
1 5, ?

N d #ΦAf ,p

76 1 ?, 1∗

77 1 2∗, 1∗

1 3∗, 2
1 6, 3∗

2 2, 2∗

78 1 16∗, 5∗, 1
79 1 1∗

5 13
80 1 ?, 2

1 ?, 2∗

81 2 ?
82 1 2∗, 1∗

2 28, 1∗

83 1 1∗

6 41
84 1 ?, 1∗, 2∗

1 ?, 3, 2
85 1 2∗, 1

2 2∗, 1∗

2 6, 1∗

86 2 21∗, 3
2 55, 1∗

87 2 5, 1∗

3 92∗, 4
88 1 ?, 1∗

2 ?, 2∗

89 1 1∗

1 2
5 11

90 1 2∗, ?, 3
1 6, ?, 1∗

1 4, ?, 1
91 1 1∗, 1∗

1 1, 1
2 7, 1∗

3 4∗, 8
92 1 ?, 1∗

1 ?, 1
93 2 4∗, 1∗

3 64, 2∗

94 1 2, 1∗

2 94∗, 1
95 3 10, 2∗

4 54∗, 6

N d #ΦAf ,p

96 1 ?, 2
1 ?, 2∗

97 3 1∗

4 8
98 1 2∗, ?

2 14, ?
99 1 ?, 1∗

1 ?, 1
1 ?, 1∗

1 ?, 1∗

100 1 ?, ?
101 1 1∗

7 25
102 1 2∗, 2∗, 1∗

1 6∗, 6, 1∗

1 8, 4, 1
103 2 1∗

6 17
104 1 ?, 1∗

2 ?, 2
105 1 1, 1, 1

2 10∗, 2∗, 2
106 1 4∗, 1∗

1 5∗, 1
1 24, 1∗

1 3, 1∗

107 2 1∗

7 53
108 1 ?, ?
109 1 1

3 1∗

4 9
110 1 7∗, 1∗, 3

1 3, 1∗, 1∗

1 5, 5, 1
2 16∗, 3, 1∗

111 3 10∗, 2
4 266, 2∗

112 1 ?, 1∗

1 ?, 1
1 ?, 1∗

113 1 2
2 2
3 1∗

N d #ΦAf ,p

3 7
114 1 2∗, 5∗, 1

1 20, 3∗, 1∗

1 6, 3, 1
115 1 5∗, 1

2 4∗, 1∗

4 32, 4∗

116 1 ?, 1∗

1 ?, 2∗

1 ?, 1∗

117 1 ?, 1
2 ?, 3
2 ?, 1∗

118 1 2∗, 1∗

1 19∗, 1
1 10, 1∗

1 1, 1∗

119 4 9, 3∗

5 48∗, 8
120 1 ?, 1, 1∗

1 ?, 2, 1
121 1 ?

1 ?
1 ?
1 ?

122 1 4∗, 1∗

2 39∗, 3
3 248, 1∗

123 1 1∗, 1∗

1 5, 1
2 7, 1∗

3 184∗, 4
124 1 ?, 1∗

1 ?, 1
125 2 ?

2 ?
4 ?

126 1 8∗, ?, 1∗

1 2, ?, 1
127 3 1∗

7 21



Large L(Af , 1)/ΩAf

N dim L(Af , 1)/ΩAf #ΦAf ,p

1154 = 2·577 20 2? ·85495047371/172 2? ·172 ·85495047371, 2?

1238 = 2·619 19 2? ·7553329019/5·31 2? ·5·31·7553329019, 2?

1322 = 2·661 21 2? ·57851840099/331 2? ·331·57851840099, 2?

1382 = 2·691 20 2? ·37·1864449649/173 2? ·37·173·1864449649, 2?

1478 = 2·739 20 2? ·7·29·1183045463/5·37 2? ·5·7·29·37·1183045463, 2?
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7. P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, In
P. Deligne and W. Kuyk, eds., Modular functions of one variable, Vol. II, Lecture
Notes in Math., 349, Springer, Berlin, 1973, 143–316.

8. F. Diamond and J. Im, Modular forms and modular curves, In V. K. Murty, ed., Sem-
inar on Fermat’s Last Theorem, Amer. Math. Soc., Providence, RI, 1995, 39–133.
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