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This talk concerns nonsingular, nonhyperelliptic genus 3 curves and the plane quartics Q(X, Y, Z)

in K[X, Y, Z] which determine them. We cover:

1. Classical invariant theory of quartics.

2. Geometric characterizations of special strata in M3.

3. Arithmetic classification by explicit Galois cohomology.

In what follows we assume that K is a field of characteristic 0; we describe the invariant theory

in terms of K = C.

The implicit computational side can be carried out over any ring in which 6 is invertible.

A careful analysis at these exceptional characteristics should yield integral invariants as Igusa

carried out for genus 2.



Classification of Curves and Forms

Invariant theory concerns the classification of forms in K̄[X1, . . . , Xn]r up to GLn(K̄)-equivalence,

from which we derive PGLn(K̄)-invariance of an associated projective variety.



Classification of Curves and Forms

Invariant theory concerns the classification of forms in K̄[X1, . . . , Xn]r up to GLn(K̄)-equivalence,

from which we derive PGLn(K̄)-invariance of an associated projective variety.

Standard curve models Invariants Dimension of moduli

Genus 0 0

Lines, Conics ∆



Classification of Curves and Forms

Invariant theory concerns the classification of forms in K̄[X1, . . . , Xn]r up to GLn(K̄)-equivalence,

from which we derive PGLn(K̄)-invariance of an associated projective variety.

Standard curve models Invariants Dimension of moduli

Genus 0 0

Lines, Conics ∆

Genus 1 1

Elliptic curves: Y 2 = C(X,Z) c4, c6,∆,

Y 2 = Binary quartic where

Ternary cubics c34 − c26 = 123∆



Classification of Curves and Forms

Invariant theory concerns the classification of forms in K̄[X1, . . . , Xn]r up to GLn(K̄)-equivalence,

from which we derive PGLn(K̄)-invariance of an associated projective variety.

Standard curve models Invariants Dimension of moduli

Genus 0 0

Lines, Conics ∆

Genus 1 1

Elliptic curves: Y 2 = C(X,Z) c4, c6,∆,

Y 2 = Binary quartic where

Ternary cubics c34 − c26 = 123∆

Genus 2 3

Y 2 = Binary sextic I2, I4, I6, I8,∆, where

I2I6 − I2
4 = 4I8



Classification of Curves and Forms

Invariant theory concerns the classification of forms in K̄[X1, . . . , Xn]r up to GLn(K̄)-equivalence,

from which we derive PGLn(K̄)-invariance of an associated projective variety.

Standard curve models Invariants Dimension of moduli

Genus 0 0

Lines, Conics ∆

Genus 1 1

Elliptic curves: Y 2 = C(X,Z) c4, c6,∆,

Y 2 = Binary quartic where

Ternary cubics c34 − c26 = 123∆

Genus 2 3

Y 2 = Binary sextic I2, I4, I6, I8,∆, where

I2I6 − I2
4 = 4I8

Genus 3 6

Ternary quartics Dixmier (1987)

Ohno, Brumer (unpublished)



Classification of Curves and Forms

Invariant theory concerns the classification of forms in K̄[X1, . . . , Xn]r up to GLn(K̄)-equivalence,

from which we derive PGLn(K̄)-invariance of an associated projective variety.

Standard curve models Invariants Dimension of moduli

Genus 0 0

Lines, Conics ∆

Genus 1 1

Elliptic curves: Y 2 = C(X,Z) c4, c6,∆,

Y 2 = Binary quartic where

Ternary cubics c34 − c26 = 123∆

Genus 2 3

Y 2 = Binary sextic I2, I4, I6, I8,∆, where

I2I6 − I2
4 = 4I8

Genus 3 6

Ternary quartics Dixmier (1987)

Ohno, Brumer (unpublished)

Hyperelliptic locus: 5

Y 2 = Binary octavic Shioda (1967)
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such that

1. ψ is an SLn(C)-module homomorphism, i.e. ψ(F γ) = ψ(F )γ,

2. the coefficients of ψ(F ) depend polynomially on the coefficients of xi11 · · ·xinn , and

3. ψ(λF ) = λrψ(F ) for all λ ∈ C.

The last two conditions imply that ψ is homogeneous of degree r in the coefficients of a form F .
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An invariant is a covariant (or contravariant) of order 0.
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Similarly define a C-linear pairing
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defined by the identification xi = ∂/∂ui.

These differential operations extend the pairing V × V ∗ → C.

We denote these operators by Dϕ for fixed first term ϕ.

Lemma 1. Let ϕ be a covariant and ψ be a contravariant, then Dϕ(ψ) is a contravariant
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Co/contravariant Degree Order
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Dψ(ϕ) ord(ϕ)− ord(ψ) deg(ϕ) + deg(ψ)
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Lemma 2. For ϕ and ψ as above, Jij(ϕ, ψ) is an invariant of degree i deg(ϕ) + j deg(ψ).

These constructions give almost all of the tools needed to define and compute invariants of plane

quartics.
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τ (ψ)

With these definitions, we can state:

Theorem 1 (Dixmier, 1987). Let I3, I6, I9, I12, I15, I18, I27 be defined by

I3 = 144−1Dσ(F ), I9 = J11(τ, ρ), I15 = J30(τ ),

I6 = 4608−1(Dψ(H)− 8I2
3 ), I12 = J03(ρ), I18 = J22(τ, ρ),

with I27 the discriminant of the plane quartic. Then I3, . . . I27 are algebraically independent,

and generate a subring of index 50 in the ring of invariants of ternary quartics.



Plane Quartic Invariants [continued]

Theorem/Conjecture 2 (Ohno). Let J9, J12, J15, J18, I21, J21 be defined by

J9 = J11(ξ, ρ), J15 = J30(ξ), I21 = J03(η),

J12 = J11(τ, η), J18 = J22(ξ, ρ), J21 = J11(ν, η).

The above invariants generate the ring of ternary quartic invariants as an integral extension

of C[I3, I6, I9, I12, I15, I18, I27].



Plane Quartic Invariants [continued]

Theorem/Conjecture 2 (Ohno). Let J9, J12, J15, J18, I21, J21 be defined by

J9 = J11(ξ, ρ), J15 = J30(ξ), I21 = J03(η),

J12 = J11(τ, η), J18 = J22(ξ, ρ), J21 = J11(ν, η).

The above invariants generate the ring of ternary quartic invariants as an integral extension

of C[I3, I6, I9, I12, I15, I18, I27].

N.B. Brumer identified a similar or identical set of invariants as candidates for generating the

graded ring.



Plane Quartic Invariants [continued]

Theorem/Conjecture 2 (Ohno). Let J9, J12, J15, J18, I21, J21 be defined by

J9 = J11(ξ, ρ), J15 = J30(ξ), I21 = J03(η),

J12 = J11(τ, η), J18 = J22(ξ, ρ), J21 = J11(ν, η).

The above invariants generate the ring of ternary quartic invariants as an integral extension

of C[I3, I6, I9, I12, I15, I18, I27].

N.B. Brumer identified a similar or identical set of invariants as candidates for generating the

graded ring. We note that the Hilbert (or Poincaré) series for the graded ring of invariants was

determined by Shioda (1967). This work provided the index result in the theorem of Dixmier,
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3 is the open affine

of

Proj(C[{Ik, Jl}]),
on which the discriminant I27 is invertible.

One natural basis for determining special strata of the moduli spaces of curves is in terms of

automorphism groups. A more subtle classification is in terms of configurations of the finitely

many Weierstrass points. For genus 3 curves this work was carried out by Vermeulen in his thesis

(1983). Similar work was carried out in the thesis of Lugert (1981).

We recall that the set of Weierstrass points of a plane quartic C are intrinsic points of a curve.

In genus 3 there are 24 such points, counted with multiplicities (either 1 or 2). The Weierstrass

points of multiplicity 2 are called hyperflexes.

As a special case, we note that C34 curves (of genus 3), once–upon–a–time proposed for cryptog-

raphy, determine the codimension one stratum of M◦
3 classifying curves with one hyperflex.

Here we focus on those strata of dimension one or zero. These arise as irreducible components of

the closed subvarieties of M◦
3 with 5, 6, 7, 8, 9, or 12 hyperflexes.



Special Strata

Vermeulen gave precise geometric characterizations of all possible configurations of Weierstrass

points (and their intersections with the stratification by automorphism groups).



Special Strata

Vermeulen gave precise geometric characterizations of all possible configurations of Weierstrass

points (and their intersections with the stratification by automorphism groups). For instance, we

give in the table below the number of hyperflexes and the inclusion relations, for the one and zero

dimensional families determined by Vermeulen.



Special Strata

Vermeulen gave precise geometric characterizations of all possible configurations of Weierstrass

points (and their intersections with the stratification by automorphism groups). For instance, we

give in the table below the number of hyperflexes and the inclusion relations, for the one and zero

dimensional families determined by Vermeulen.

X #Hyperflexes Substrata

Z6 5 Θ,Πi,Ωi,Φ

Z7 5 Πi,Σ,Ωi,Ψ

Z8 5 Θ,Πi,Σ,Ψ

Z2 6 Πi,Ωi,Φ,Ψ

Z3 6 Θ,Πi,Ωi,Ψ

Z5 6 Σ,Φ,Ψ

Z9 6 Ωi,Φ,Ψ

Z4 7 Ωi,Ψ

Z1 8 Φ,Ψ

Dimension one strata

X #Hyperflexes

Θ 7

Πi 7

Σ 8

Ω 9

Φ 12

Ψ 12

Dimension zero strata



Special Strata

Vermeulen gave precise geometric characterizations of all possible configurations of Weierstrass

points (and their intersections with the stratification by automorphism groups). For instance, we

give in the table below the number of hyperflexes and the inclusion relations, for the one and zero

dimensional families determined by Vermeulen.

X #Hyperflexes Substrata

Z6 5 Θ,Πi,Ωi,Φ

Z7 5 Πi,Σ,Ωi,Ψ

Z8 5 Θ,Πi,Σ,Ψ

Z2 6 Πi,Ωi,Φ,Ψ

Z3 6 Θ,Πi,Ωi,Ψ

Z5 6 Σ,Φ,Ψ

Z9 6 Ωi,Φ,Ψ

Z4 7 Ωi,Ψ

Z1 8 Φ,Ψ

Dimension one strata

X #Hyperflexes

Θ 7

Πi 7

Σ 8

Ω 9

Φ 12

Ψ 12

Dimension zero strata

Our objective is to determine modular equations defining each of the strata in Vermeulen’s clas-

sification, beginning with the strata of small dimension.
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So the first problem is to descend from the covering space X̃ to X . The second problem is to

address whether C̃ descends to a universal family C → X (with connected fibers of genus 3).

One Dimensional Strata

Among the one-dimensional strata, we found that Z8 is isomorphic to an elliptic curve over Q,

and the remaining Zj are isomorphic to P1/Q. It remains to determine whether there exists

an obstruction to the existence of a universal family C → Zj. However, this question can be

addressed computationally (as we see below).

Zero Dimensional Strata

The stratum Φ has as representative the Fermat quartic, and the stratum Ψ is represented by the

quartic curve

X4 + Y 4 + Z4 + 3(X2Z2 +X2Y 2 + Y 2Z2) = 0.

The strata Ωi is defined over its field of moduli Q(
√

7), which leaves the question open for the

strata Θ, Πi, and Σ.
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CΠi
: 49X4 + (64s2 + 60s− 38)X2Y 2 + (−28s2 + 14)X2Y Z + (−12s2 − 108s + 49)Y 4

+ (24s2 + 216s− 98)Y 3Z + (−26s2 − 150s + 70)Y 2Z2 + (14s2 + 42s− 21)Y Z3,

where s has minimal polynomial x3 + x2 + 4x− 2.



A Curve with Explicit Obstruction

A representative curve for the zero-dimensiona strata Σ exists over Q(
√
−7),

CΣ : X4 + Y 4 + 6
√
−7X2Y 2 − 3(−1 +

√
−7)XY Z2 − (7− 3

√
−7)/8Z4,

while its field of moduli is Q.



A Curve with Explicit Obstruction

A representative curve for the zero-dimensiona strata Σ exists over Q(
√
−7),

CΣ : X4 + Y 4 + 6
√
−7X2Y 2 − 3(−1 +

√
−7)XY Z2 − (7− 3

√
−7)/8Z4,

while its field of moduli is Q. An isomorphism to its Galois conjugate exists only over the extension

to K = Q(
√
−7, i), e.g. by the transformation matrix:

M =

 1 0 0

0 i 0

0 0 (1−
√
−7)(−1+i)

4

 ·



A Curve with Explicit Obstruction

A representative curve for the zero-dimensiona strata Σ exists over Q(
√
−7),

CΣ : X4 + Y 4 + 6
√
−7X2Y 2 − 3(−1 +

√
−7)XY Z2 − (7− 3

√
−7)/8Z4,

while its field of moduli is Q. An isomorphism to its Galois conjugate exists only over the extension

to K = Q(
√
−7, i), e.g. by the transformation matrix:

M =

 1 0 0

0 i 0

0 0 (1−
√
−7)(−1+i)

4

 ·

We verify that this gives a 1-cocycle on 〈σ〉 where

σ : (
√
−7, i) 7−→ (−

√
−7,−i).



A Curve with Explicit Obstruction

A representative curve for the zero-dimensiona strata Σ exists over Q(
√
−7),

CΣ : X4 + Y 4 + 6
√
−7X2Y 2 − 3(−1 +

√
−7)XY Z2 − (7− 3

√
−7)/8Z4,

while its field of moduli is Q. An isomorphism to its Galois conjugate exists only over the extension

to K = Q(
√
−7, i), e.g. by the transformation matrix:

M =

 1 0 0

0 i 0

0 0 (1−
√
−7)(−1+i)

4

 ·

We verify that this gives a 1-cocycle on 〈σ〉 where

σ : (
√
−7, i) 7−→ (−

√
−7,−i).

That is, setting M(σ) = M , we have

M(σ)σM(σ) = I. (1)



A Curve with Explicit Obstruction

A representative curve for the zero-dimensiona strata Σ exists over Q(
√
−7),

CΣ : X4 + Y 4 + 6
√
−7X2Y 2 − 3(−1 +

√
−7)XY Z2 − (7− 3

√
−7)/8Z4,

while its field of moduli is Q. An isomorphism to its Galois conjugate exists only over the extension

to K = Q(
√
−7, i), e.g. by the transformation matrix:

M =

 1 0 0

0 i 0

0 0 (1−
√
−7)(−1+i)

4

 ·

We verify that this gives a 1-cocycle on 〈σ〉 where

σ : (
√
−7, i) 7−→ (−

√
−7,−i).

That is, setting M(σ) = M , we have

M(σ)σM(σ) = I. (1)

An effective version of Hilbert Theorem 90 (on diagonal entries) gives

(Aσ)−1A = M(σ).



A Curve with Explicit Obstruction

A representative curve for the zero-dimensiona strata Σ exists over Q(
√
−7),

CΣ : X4 + Y 4 + 6
√
−7X2Y 2 − 3(−1 +

√
−7)XY Z2 − (7− 3

√
−7)/8Z4,

while its field of moduli is Q. An isomorphism to its Galois conjugate exists only over the extension

to K = Q(
√
−7, i), e.g. by the transformation matrix:

M =

 1 0 0

0 i 0

0 0 (1−
√
−7)(−1+i)

4

 ·

We verify that this gives a 1-cocycle on 〈σ〉 where

σ : (
√
−7, i) 7−→ (−

√
−7,−i).

That is, setting M(σ) = M , we have

M(σ)σM(σ) = I. (1)

An effective version of Hilbert Theorem 90 (on diagonal entries) gives

(Aσ)−1A = M(σ).

Conjugating by A we find the twisted curve over Q(
√

7) = K〈σ〉:

C ′Σ : X4 − 1/4Y 4 − 3
√

7X2Y 2 + (−6
√

7− 18)XY Z2 + (−8
√

7− 21)Z4.



A Curve with Explicit Obstruction

A representative curve for the zero-dimensiona strata Σ exists over Q(
√
−7),

CΣ : X4 + Y 4 + 6
√
−7X2Y 2 − 3(−1 +

√
−7)XY Z2 − (7− 3

√
−7)/8Z4,

while its field of moduli is Q. An isomorphism to its Galois conjugate exists only over the extension

to K = Q(
√
−7, i), e.g. by the transformation matrix:

M =

 1 0 0

0 i 0

0 0 (1−
√
−7)(−1+i)

4

 ·

We verify that this gives a 1-cocycle on 〈σ〉 where

σ : (
√
−7, i) 7−→ (−

√
−7,−i).

That is, setting M(σ) = M , we have

M(σ)σM(σ) = I. (1)

An effective version of Hilbert Theorem 90 (on diagonal entries) gives

(Aσ)−1A = M(σ).

Conjugating by A we find the twisted curve over Q(
√

7) = K〈σ〉:

C ′Σ : X4 − 1/4Y 4 − 3
√

7X2Y 2 + (−6
√

7− 18)XY Z2 + (−8
√

7− 21)Z4.

With respect to the automorphism (
√
−7, i) 7→ (−

√
−7, i) the 1-cocycle condition (1) is twisted

by an automorphism of Aut(CΣ) ∼= D4, and we find an explicit obstruction to the descent to Q.



A Curve with Explicit Obstruction

A representative curve for the zero-dimensiona strata Σ exists over Q(
√
−7),

CΣ : X4 + Y 4 + 6
√
−7X2Y 2 − 3(−1 +

√
−7)XY Z2 − (7− 3

√
−7)/8Z4,

while its field of moduli is Q. An isomorphism to its Galois conjugate exists only over the extension

to K = Q(
√
−7, i), e.g. by the transformation matrix:

M =

 1 0 0

0 i 0

0 0 (1−
√
−7)(−1+i)

4

 ·

We verify that this gives a 1-cocycle on 〈σ〉 where

σ : (
√
−7, i) 7−→ (−

√
−7,−i).

That is, setting M(σ) = M , we have

M(σ)σM(σ) = I. (1)

An effective version of Hilbert Theorem 90 (on diagonal entries) gives

(Aσ)−1A = M(σ).

Conjugating by A we find the twisted curve over Q(
√

7) = K〈σ〉:

C ′Σ : X4 − 1/4Y 4 − 3
√

7X2Y 2 + (−6
√

7− 18)XY Z2 + (−8
√

7− 21)Z4.

With respect to the automorphism (
√
−7, i) 7→ (−

√
−7, i) the 1-cocycle condition (1) is twisted

by an automorphism of Aut(CΣ) ∼= D4, and we find an explicit obstruction to the descent to Q.

THE END


