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Abstract. The arithmetic of elliptic curves, namely polynomial addition and
scalar multiplication, can be described in terms of global sections of line bun-
dles on E × E and E, respectively, with respect to a given projective embed-
ding of E in Pr. By means of a study of the finite dimensional vector spaces of
global sections, we reduce the problem of constructing and finding efficiently
computable polynomial maps defining the addition morphism or isogenies to
linear algebra. We demonstrate the effectiveness of the method by improving
the best known complexity for doubling and tripling, by considering families
of elliptic curves admiting a 2-torsion or 3-torsion point.

1. Introduction

The computational complexity of arithmetic on an elliptic curve, determined
by polynomial maps, depends on the choice of projective embedding of the curve.
Explicit counts of multiplications and squarings are expressed in terms of operations
on the coordinate functions determined by this embedding. The perspective of this
work is to reduce the determination of the complexity of evaluating a morphism,
up to additions and multiplication by constants, to a problem of computing a d-
dimensional subspace V of the space of monomials of degree n. This in turn can be
conceptually reduced to the construction of a flag V1 ⊂ V2 ⊂ · · · ⊂ Vd = V. For this
purpose we recall results from Kohel [13] for the linear classification of projectively
normal models. We generalize this further by analysing the conditions under which
a degree n isogeny is determined by polynomials of degree n in terms of the given
projective embeddings. This approach allows us to derive conjecturally optimal or
nearly optimal algorithms for operations of doubling and tripling, which form the
basic building blocks for efficient scalar multiplication.

2. Background

An elliptic curve E is a projective nonsingular genus one curve with a fixed base
point. In order to consider the arithmetic, namely addition and scalar multiplication
defined by polynomial maps, we need to fix the additional structure of a projective
embedding. We call an embedding ι : E → Pr a (projective) model for E. A model
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given by a complete linear system is called projectively normal (see Birkenhake-
Lange [6, Chapter 7, Section 3] or Hartshorne [10, Chapter I, Exercise 3.18 &
Chapter II, Exercise 5.14] for the general definition and its equivalence with this
one for curves). If ι : E → Pr is a projectively normal model, letting {X0, . . . , Xr}
denote the coordinate functions on Pr, we have a surjection of rings:

ι∗ : k[Pr] = k[X0, . . . , Xr] −→ k[E] =
k[X0, . . . , Xr]

IE
,

where IE is the defining ideal for the embedding. In addition, using the property
that ι is given by a complete linear system, there exists T in E(k) such that every
hyperplane intersects E in d = r+1 points {P0, . . . , Pr} ⊂ E(k̄), with multiplicities,
such that P0 + · · ·Pr = T , and we say that the degree of the embedding is d. The
invertible sheaf L attached to the embedding is ι∗OPr (1), where OPr (1) is the
sheaf spanned by {X0, . . . , Xr}. Similarly, the space of global sections of OPr (n)
is generated by the monomials of degree n in the Xi. Let L n denote its image
under ι∗, then the global sections Γ(E,L n) is the finite dimensional k-vector space
spanned by monomials of degree n modulo IE , and hence

k[E] =
∞⊕

n=0

Γ(E,L n),

which is a subspace of k(E)[X0].
Now letD be the divisor on E cut out byX0 = 0, then we can identify Γ(E,L n)

with the Riemann–Roch space associated to nD:

L(nD) = {f ∈ k(E)∗ | div(f) ≥ −nD} ∪ {0}.

More precisely, we have Γ(E,L n) = L(nD)Xn
0 ⊂ k(E)Xn

0 for each n ≥ 0. While
the dimension of L(nD) is nd, the dimension of the space of all monomials of degree
n is:

dimk

(
Γ(Pr,OPr (n))

)
=
(
n+ r

r

)
=
(
n+ d− 1
d− 1

)
·

The discrepancy is accounted for by relations of a given degree in IE . More precisely,
for the ideal sheaf IE of E on Pr, with Serre twist IE(n) = IE ⊗ OPr (n), the
space of relations of degree n is Γ(Pr,IE(n)), such that the defining ideal of E in
Pr is

IE =
∞⊕

n=1

Γ(Pr,IE(n)) ⊂ k[X0, . . . , Xr].

Consequently, each polynomial in the quotient Γ(E,L n) ⊂ k[E] represents a coset
f + Γ(Pr,IE(n)) of polynomials.

From the following table of dimensions:

d = 3 :
n

(
n+r

r

)
nd

1 3 3
2 6 6
3 10 9

d = 4 :
n

(
n+r

r

)
nd

1 4 4
2 10 8
3 15 12

d = 5 :
n

(
n+r

r

)
nd

1 5 5
2 15 10
3 35 15

d = 6 :
n

(
n+r

r

)
nd

1 6 6
2 21 12
3 56 18

we see the well-known result that a degree-3 curve in P2 is generated by a cubic
relation, and a degree-4 curve in P3 is the intersection of two quadrics. Similarly, a
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quintic model in P4 and a sextic model in P5 are generated by a space of quadrics
of dimensions 5 and 9, respectively.

When considering polynomial maps between curves, this space of relations
Γ(Pr,IE(n)), which evaluate to zero, gives a source of ambiguity but also room for
optimization when evaluating a representative polynomial f in its class.

Addition law relations. A similar analysis applies to the set of addition laws,
from E×E to E. The set polynomials of bidegree (m,n) on E×E are well-defined
modulo relations in

Γ(Pr,IE(m))⊗k Γ(Pr,OPr (n)) + Γ(Pr,OPr (m))⊗k Γ(Pr,IE(n)).

As the kernel of the surjective homomorphism

Γ(Pr,OPr (m))⊗k Γ(Pr,OPr (n)) −→ Γ(E,L m)⊗k Γ(E,L n)),

its dimension is (
m+ r

r

)(
n+ r

r

)
−mnd2.

In particular, this space of relations will be of interest in the case of minimal
bidegree (m,n) = (2, 2) for addition laws, where it becomes:(

d+ 1
2

)2

− 4d2 =
d2(d− 3)(d+ 5)

4
·

For d = 3, this dimension is zero since there are no degree-2 relations, but for d = 4,
5 or 6, the dimensions, 36, 125, and 297, respectively, are significant and provide a
large search space in which to find sparse or efficiently computable forms in a coset.

A category of pairs. The formalization of the above concepts is provided
by the introduction of a category of pairs (X,L ), consisting of a variety X and
very ample invertible sheaf L . For more general varieties X, in order to maintain
the correspondence between the spaces of sections Γ(X,L n) and spaces of homo-
geneous functions of degree n on X, the embedding determined by L should be
projectively normal. The isomorphisms φ : (X1,L1) → (X2,L2) in this category
are isomorphisms X1 → X2 for which φ∗L2

∼= L1. These are the linear isomor-
phisms whose classification, for elliptic curves, is recalled in the next section. In
general the space of tuples of defining polynomials of degree n can be identified
with Hom(φ∗L2,L n

1 ). The exact morphisms, for which φ∗L2
∼= L n

1 for some n,
are the subject of Section 4.

3. Linear classification of models

Hereafter we consider only projectively normal models. A linear change of vari-
ables gives a model with equivalent arithmetic, up to additions and multiplication
by constants, thus it is natural to consider linear isomorphisms between models of
elliptic curves. In this section we recall results from Kohel [13] classifying elliptic
curve morphisms which are linear. This provides the basis for a generalization to
exact morphism in the next section.

Definition 3.1. Suppose that E ⊂ Pr is a projectively normal model of an
elliptic curve. The point T = P0 + · · ·Pr, where H ∩ E = {P0, . . . , Pr} for a
hyperplane H in Pr, is an invariant of the embedding called the embedding class of
the model. The divisor r(O) + (T ) is called the embedding divisor class.
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We recall a classification of elliptic curves models up to projective linear equiv-
alence (cf. Lemmas 2 and 3 of Kohel [13]).

Theorem 3.2. Let E1 and E2 be two projectively normal models of an elliptic
curve E in Pr. There exists a linear transformation of Pr inducing an isomorphism
of E1 to E2 if and only if E1 and E2 have the same embedding divisor class.

Remark. The theorem is false if the isomorphism in the category of elliptic curves
is weakened to an isomorphism of curves. In particular, if Q is a point of E such
that [d](Q) = T2−T1, then the pullback of the embedding divisor class r(O) + (T2)
by the translation morphism τQ is r(O) + (T1), and τQ is given by a projectively
linear transformation (see Theorem 3.5 for this statement for T1 = T2).

Corollary 3.3. Two projectively normal models for an elliptic curve of the
same degree have equivalent arithmetic up to additions and multiplication by fixed
constants if they have the same embedding divisor class.

A natural condition is to assume that [−1] is also linear on E in its embed-
ding, for which we recall the notion of a symmetric model (cf. Lemmas 2 and 4 of
Kohel [13] for the equivalence of the following conditions).

Definition 3.4. A projectively normal elliptic curve model ι : E → Pr is
symmetric if and only if any of the following is true:

(1) [−1] is given by a projective linear transformation,
(2) [−1]∗L ∼= L where L = ι∗OPr (1),
(3) T ∈ E[2], where T is the embedding class.

In view of the classification of the linear isomorphism class, this reduces the
classification of complete symmetric models of a given degree d to the finite set of
points T in E[2] (and more precisely, for models over k, to T in E[2](k)).

To complete the analysis of models up to linear equivalence, we finally recall a
classification of linear translation maps. Although the automorphism group of an
elliptic curve is finite, and in particular Aut(E) = {±1} if j(E) 6= 0, 123, there exist
additional automorphisms as genus-one curves: each point T induces a translation-
by-T morphism τT . Those which act linearly on a given model have the following
simple characterization (see Lemma 5 of Kohel [13]).

Theorem 3.5. Let E be a complete projective degree d model of an elliptic
curve. The translation-by-T morphism τT acts linearly if and only if T is in E[d].

Remark. The statement is geometric, in the sense that it is true for all T in E(k̄),
but if T is not in E(k) then the linear transformation is not k-rational.

4. Exact morphisms and isogenies

In order to minimize the number of arithmetic operations, it is important to
control the degree of the defining polynomials for an isogeny. For an isomorphism,
we gave conditions for the isomorphism to be linear. In general we want to charac-
terize those morphisms of degree n given by polynomials of degree n.

A morphism φ is defined to be complete if there exists a tuple (f0, . . . , fr) of
polynomials defining φ as a rational map, such that the exceptional set

{P ∈ E1(k̄) | f0(P ) = · · · = fr(P ) = 0}
is empty. In this case a single tuple defines φ as a morphism. The following theorem
characterizes the existence and uniqueness of such a tuple.
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Theorem 4.1. Let φ : C1 → C2 be a morphism of curves, embedded as projec-
tively normal models by invertible sheaves, L1 and L2, respectively. The morphism
φ is given by by a complete tuple s = (f0, . . . , fr) of defining polynomials of degree n
if and only if φ∗L2

∼= L n
1 . If it exists, s is unique in k[C1]d up to a scalar multiple.

Proof. Under the hypotheses that the Ci are complete models, we identify
the spaces of polynomials of degree n with global sections of L n

1 . A tuple of
polynomials of degree n defining φ corresponds to an element of

Hom(φ∗L2,L
n
1 ) ∼= Γ(C1, φ

∗L −1
2 ⊗L n

1 ).

Being complete implies that s is a generator for all such tuples of degree n defining
polynomials for φ, as a k = Γ(C1,OC1) vector space. Explicitly, let (g0, . . . , gr)
be another tuple, and set c = g0/f0 = · · · = gr/fr ∈ k(C1). Since the fj have no
common zero, c has no poles and thus lies in k. Consequently

k = Γ(C1, φ
∗L −1

2 ⊗L n
1 ), and hence φ∗L2

∼= L n
1 .

Conversely, if the latter isomorphism holds, Hom(φ∗L2,L n
1 ) ∼= k, and a generator

s for Hom(φ∗L2,L n
1 ) is also a generator of the spaces of defining polynomials of

all degrees:
Hom(φ∗L2,L

n+m
1 ) = ks⊗k Γ(C1,L

m
1 ).

Since φ is a morphism, s has no base point, hence is complete. �

We say that a morphism between projectively normal models of curves is exact
if it satisfies the condition φ∗L2

∼= L n
1 for some n. If φ is exact, then n is uniquely

determined by

deg(φ) deg(L2) = deg(φ∗L2) = deg(L n
1 ) = ndeg(L1),

and, in particular n = deg(φ) if C1 and C2 are models of the same degree.

Corollary 4.2. Let E1 and E2 be projecively normal models of elliptic curves
of the same degree d with embedding classes T1 and T2. An isogeny φ : E1 → E2 of
degree n and kernel G is exact if and only if

n(T1 − S1) = d
∑
Q∈G

Q where S1 ∈ φ−1(T2).

Proof. This statement expresses the sheaf isomorphism L n
1
∼= φ∗L2 in terms

of equivalence of divisors:

n((d− 1)(O1) + (T1)) = nD1 ∼ φ∗D2 = φ∗((d− 1)(O2) + (T2)).

This equivalence holds if and only if the evaluation of the divisors on the curve are
equal, from which the result follows. �

Corollary 4.3. The multiplication-by-n map on any symmetric projectively
normal model is exact.

Proof. In the case of a symmetric model we take E = E1 = E2 in the previous
corollary. The embedding divisor class T = T1 = T2 is in E[2], and S ∈ [n]−1(T )
satisfies nS = T , so

deg([n])(T − S) = n2(T − S) = n(nT − T ) = n(n− 1)T = O.

On the other hand, the sum over the points of E[n] is O, hence the result. �
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This contrasts with the curious fact that 2-isogenies are not well-suited to
elliptic curves in Weierstrass form.

Corollary 4.4. There does not exist an exact cyclic isogeny of even degree n
between curves in Weierstrass form.

Proof. For a cyclic subgroup G of even order, the sum over its points is a
nontrivial 2-torsion point Q. For Weierstrass models we have T1 = O1 and T2 = O2,
and may choose S1 = O1, so that (for d = 3) n(T1 − S1) = O 6= 3Q = Q, so we
never have equality. �

Example. Let E : Y 2Z = X(X2 + aXZ + bZ2) be an elliptic curve with rational
2-torsion point (0 : 0 : 1). The quotient by G = 〈(0 : 0 : 1)〉, to the curve
Y 2Z = X((X − aZ)2 − 4bZ2), is given by a 3-dimensional space of polynomial
maps of degree 3:

(X : Y : Z) 7−→

 (Y 2Z : (X2 − bZ2)Y : X2Z)
((X + aZ)Y 2 : (Y 2 − 2bXZ − abZ2)Y : X2(X + aZ))
((X2 + aXZ + bZ2)Y : XY 2 − b(X2 + aXZ + bZ2)Z : XY Z)

but not by any system of polynomials of degree 2.

Corollary 4.5. Let φ : E1 → E2 be an isogeny of even degree n of symmet-
ric models of elliptic curves of the same even degree d, and let T1 and T2 be the
respective embedding classes. Then φ is exact if and only if T2 ∈ φ(E1[n]).

Proof. This is a consequence of Corollary 4.2. Since n is even and E1 sym-
metric, nT1 = O1, and since d is even,

d
∑
Q∈G

Q = O1.

This conclusion follows since nS1 = φ̂φ(S1) = φ̂(T2), which equals O1 if and only
T2 is in φ(E1[n]). �

5. Other models for elliptic curves

Alternative models have been proposed for efficient arithmetic on elliptic curves.
Since the classification of models up to isomorphism is more natural for projective
embeddings, providing a reduction to linear algebra, we describe how to interpret
other models in terms of a standard projective embedding.
Affine models. An affine plane model in A2 provides a convenient means of
specififying (an open neighborhood of) an elliptic curve. A direct description of
arithmetic in terms of the affine model requires inversions, interpolation of points,
and special conventions for representations of points at infinity, which we seek to
avoid.

Affine models of degree 3 extend naturally to an embedding in the projective
closure P2 of A2. When the degree of the model is greater than three, the standard
projective closure is singular. However, in general there exists a well-defined divisor
at infinity of degree d (= r+ 1), which uniquely determines a Riemann–Roch space
and associated embedding in Pr, up to linear isomorphism.
Product space P1×P1. Elliptic curves models in P1×P1 arise naturally by equip-
ping an elliptic curve E with two independent maps to P1. The product projective
space P1 × P1 embeds via the Segre embedding as the hypersurface X0X3 = X1X2
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in P3. This construction is particularly natural when the maps to P1 are given by
inequivalent divisors D1 and D2 of degree two (such that the coordinate function
are identified with the Riemann–Roch basis), in which case the Segre embedding of
P1×P1 in P3 induces an embedding by the Riemann–Roch space of D = D1 +D2.
In order for both D1 and D2 to be symmetric (so that [−1] stabilizes each of the
projections to P1), each must be of the form Di = (O) + (Ti) for points Ti ∈ E[2].
Moreover, for the Di to be independent, T1 6= T2, which implies that D is not
equivalent to 4(O).
Weighted projective spaces. Various embeddings of elliptic curves in weighted
projective spaces appear in the computational and cryptographic literature for op-
timization of arithmetic on elliptic curves (particularly of isogenies). We detail a
few of the standard models below, and their transformation to projective models
of degree 3 or 4.
• P2

2,3,1. An elliptic curve in this weighted projective space is referred to as being
in Jacobian coordinates [7], taking the Weierstrass form

Y (Y + a1XZ + a3Z
3) = X3 + a2X

2Z2 + a2XZ
4 + a6Z

6.

The space encodes the order of the polar divisor of the functions x and y of a Weier-
strass model. An elliptic curve in this coordinate system embeds as a Weierstrass
model in the ordinary projective plane P2 by the map by (X : Y : Z) 7→ (XZ :
Y : Z3) with birational inverse (X : Y : Z) 7→ (XZ : Y Z2 : Z) defined outside of
(0 : 1 : 0) (whose image is (1 : 1 : 0)).

This weighted projective space gives interesting algorithmic efficiencies, since
an isogeny can be expressed in the form

P 7−→ (φ(P ) : ω(P ) : ψ(P )) =
(
φ(P )
ψ(P )2

:
ω(P )
ψ(P )3

: 1
)
·

Unfortunately, addition doesn’t preserve the poles, so mixing isogenies (e.g. dou-
blings and triplings) with addition, one loses the advantages of the special form.
• P2

1,2,1. An elliptic curve in this weighted projective space is referred to as being
in López–Dahab coordinates [7]. This provides an artifice for deflating a model in
P3 to the surface P2

1,2,1. It embeds as the surface X0X2 = X2
1 in P3 by

(X : Y : Z) 7→ (X2 : XZ : Z2 : Y ),

with inverse

(X0 : X1 : X2 : X3) 7−→
{

(X1 : X2X3 : X2),
(X0 : X0X3 : X1).

• P3
1,2,1,2. An elliptic curve in this weighted projective space is commonly referred

to as being in extended López–Dahab coordinates. Denoting the coordinates (X :
Y : Z : W ), an elliptic curve is usually embedded in the surface S : W = Z2

(variants have W = XZ or extend further to include XZ and Z2). As above, the
space S is birationally equivalent to P3:

(X : Y : Z : W ) 7→ (X2 : XZ : Z2 : Y ) = (X2 : XZ : W : Y ).

For isogenies (e.g. doubling and tripling), by replacing a final squaring with an
inital squaring, one can revert to P2

1,2,1.
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6. Efficient arithmetic

We first recall some notions of complexity, which we use to describe the cost
of evaluating the arithmetic on elliptic curves. The notation M and S denote
the cost of a field multiplication and squaring, respectively. For a finite field of
q elements, typical algorithms for multiplication take time cM log(q)ω for some
1 + ε ≤ ω ≤ 2, with a possibly better constant for squaring (or in characteristic 2
where squarings can reduce to the class O(log(q))). The upper bound of 2 arises by a
naive implementation, while a standard Karatsuba algorithm gives ω = log2(3), and
fast Fourier transform gives an asymptotic complexity of 1+ε. We ignore additions,
which lie in the class O(log(q)), and distiguish multiplication by a constant (of fixed
small size or sparse), using the notation m for its complexity.

The principle focus for efficient arithmetic is the operation of scalar multiplica-
tion by k. Using a windowing computation, we write k =

∑t
i=0 ain

i in base n = `k

(the window), and precompute [ai](P ) for ai in a set of coset representatives for
Z/nZ. A sliding window lets us restrict representatives for ai to (Z/nZ)∗. We may
then compute [k](P ), using at most t additions for kt scalings by [`].

In order to break down the problem further, we suppose the existence of an
isogeny decomposition [`] = φ̂φ, for which we need a rational cyclic subgroup G ⊂
E[n] (where in practice n = ` = 3 or n = `2 = 4 — the window may be a
higher power of `). For this purpose we study families of elliptic curves with G-
level structure. In view of the analysis of torsion action and degrees of defining
polynomials, we give preference to degree-d models where n divides d, and G will
be either Z/nZ or µµn as a group scheme.

We now describe the strategy for efficient isogeny computation. Given E1 and
E2 in Pr with isogeny φ : E1 → E2 given by defining polynomials (f0, . . . , fr) of
degree n = deg(φ), we set V0 = Γ(Pr,IE(n)) = ker

(
Γ(Pr,O(n)) → Γ(E1,L n)

)
,

and successively construct a flag

V0 ⊂ V1 ⊂ · · · ⊂ Vd = V0 + 〈f0, . . . , fr〉

such that each space Vi+1 is constructed by adjoining to Vi a new form gi in Vd\Vi,
whose evaluation minimizes the number of M and S. Subsequently the forms
f0, . . . , fr can be expressed in terms of the generators g0, . . . , gr with complexity
O(m).

In Sections 6.1 and 6.3 we analyze the arithmetic of tripling and doubling, on
a family of degree 3 with a rational 3-torsion point and a family of degree 4 with
rational 2-torsion point, respectively, such that the translation maps are linear. Let
G be the subgroup generated by this point. Using the G-module structure, and an
associated norm map, we construct explicit generators gi for the flag decomposi-
tions. In Sections 6.2 and 6.4 we compare the resulting algorithms of Sections 6.1
and 6.3 to previous work.

6.1. Arithmetic on cubic models. For optimization of arithmetic on a cu-
bic family we consider a univeral curve with µµ3 level structure, the twisted Hessian
normal form:

H : aX3 + Y 3 + Z3 = XY Z, O = (0 : 1 : −1),

obtained by descent of the Hessian model X3 + Y 3 + Z3 = cXY Z to a = c3, by
coordinate scaling (see [4]). Addition on this model is reasonably efficient at a cost
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of 12M. In order to optimize the tripling morphism [3], we consider the quotient
by µµ3 = 〈(0 : ω : −1)〉.

By means of the isogeny (X : Y : Z) 7→ (aX3 : Y 3 : Z3), with kernel µµ3, we
obtain the quotient elliptic curve

E : XY Z = a(X + Y + Z)3, O = (0 : 1 : −1).

This yields an isogeny φ of cubic models by construction, at a cost of three cubings:
3M + 3S.

In the previous construction, by using the µµn structure, with respect to which
the coordinate functions are diagonalized, we were able to construct the quotient
isogeny

(X0 : · · · : Xr) 7→ (Xn
0 : · · · : Xn

r )
without much effort. It remains to construct the dual.

In the case of the twisted Hessian, the dual isogeny ψ = φ̂ is given by (X : Y :
Z) 7→ (f0 : f1 : f2), where

f0 = X3 + Y 3 + Z3 − 3XY Z,
f1 = X2Y + Y 2Z +XZ2 − 3XY Z,
f2 = XY 2 + Y Z2 +X2Z − 3XY Z

as we can compute by pushing [3] through φ.
The quotient curve E : XY Z = a(X +Y +Z)3, admits a Z/3Z-level structure,

acting by cyclic coordinate permutation. The isogeny ψ : E → H is the quotient of
this group G = ker(ψ) must be defined by polynomials in

Γ(E,L 3
E)G =

〈
X3 + Y 3 + Z3, X2Y + Y 2Z +XZ2, XY 2 + Y Z2 +X2Z

〉
modulo the relation XY Z = a(X + Y + Z)3. We note, however, that the map
ψ∗ : Γ(H,LH)→ Γ(E,L 3

E)G must be surjective since both have dimension 3.
Using the group action, we construct the norm map

NG : Γ(E,L )→ Γ(E,L 3
E)G,

by NG(f) = f(X,Y, Z)f(Y, Z,X)f(Z,X, Y ). It is nonlinear but sufficient to pro-
vide a set of generators using 2M each, and by fixing a generator of the fixed
subspace of G, we construct a distinguished generator g0 requiring 1M + 1S for
cubing.

For the first norm we set g0 = NG(X + Y + Z) = (X + Y + Z)3, noting that
NG(X) = NG(Y ) +NG(Z) = XY Z = ag0. We complete a basis with forms g1 and
g2 given by

g1 = NG(Y + Z) = (Y + Z)(X + Z)(X + Y ),
g2 = NG(Y − Z) = (Y − Z)(Z −X)(X − Y ),

then solve for the linear transformation to the basis {f0, f1, f2}:
f0 = (1− 3a)g0 − 3g1,
f1 = −4ag0 + (g1 − g2)/2,
f2 = −4ag0 + (g1 + g2)/2.

This gives an algorithm for ψ using 5M + 1S, for a total tripling complexity of
8M+4S using the decomposition [3] = ψ◦φ. Attributing 1m for the multiplications
by a, ignoring additions implicit in the small integers (after scaling by 2), this gives
8M + 4S + 2m.
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6.2. Comparison with previous work. A naive analysis, and the previ-
ously best known algorithmm for tripling, required 8M + 6S + 1m. To compare
with scalar multiplication using doubling and a binary chain, one scales by log3(2)
to account for the reduced length of the addition chain.

For comparison, the best known doublings algorithms on ordinary projective
models (in characteristic other than 2) are:

• Extended Edwards models in P3, using 4M + 4S. (Hisil et al. [11])
• Singular Edwards models in P2, using 3M + 4S (Berstein et al. [2])
• Jacobi quartic models in P3, using 2M + 5S. (Hisil et al. [11])

We note that the Jacobi quartic models are embeddings in P3 of the affine curve
y2 = x4 +2ax2 +1 extended to a projective curve in the (1, 2, 1)-weighted projective
plane. The embedding (x, y) 7→ (x2 : y : 1 : x) = (X0 : X1 : X2 : X3) gives

X2
1 = X2

0 + 2aX0X2 +X2
2 , X0X2 = X2

3 ,

in ordinary projective space P3. There also exist models in weighted projective space
with complexity 2M + 5S on the 2-isogeny oriented curves [8] with improvements
of Bernstein and Lange [1], and a tripling algorithm with complexity of 6M + 6S
for 3-isogeny oriented curves [8]. Each of these comes with a significantly higher
cost for addition (see [8], the EFD [3], and the table below for more details).

The relative comparison of complexities of [`] and addition ⊕ on twisted Hes-
sians ([`] = [3]) and on twisted Edwards models and Jacobi quartics ([`] = [2])
yields the following:

Cost of 1S
[`] 1.00M 0.80M 0.66M ⊕

4M + 4S 8.00M 7.20M 6.66M 9M
(8M + 4S)log3(2) 7.57M 7.07M 6.73M 12M log3(2) = 7.57M
(6M + 6S)log3(2) 7.57M 6.81M 6.28M (11M + 6S) log3(2)
3M + 4S 7.00M 6.20M 5.66M 10M + 1S
2M + 5S 7.00M 6.00M 5.33M 7M + 3S

This analysis brings tripling on a standard projective model, coupled with an effi-
cient addition algorithm, in line with with doubling (on optimal models for each).
In the section which follows we improve the 2M + 5S result for doubling.

6.3. Arithmetic on level-2 quartic models. The arithmetic of quartic
models provides the greatest advantages in terms of existence exact 2-isogeny de-
compositions and symmetric action of 4-torsion subgroups. A study of standard
models with a level-4 structure, which provide the best complexity for addition to
complement doubling complexities, will be detailed elsewhere. The best doubling
algorithms, however, are obtained for embedding divisor class 4(O), as in the Jacobi
quartic, rather than 3(O) + (T ), for a 2-torsion point T , as is the case for the Ed-
wards model (see [9] and [1]) or its twists, the Z/4Z-normal form or the µµ4-normal
form in characteristic 0.

In what follows we seek the best possible complexity for doubling in a family of
elliptic curves. In order to exploit an isogeny decomposition for doubling and linear
action of torsion, we construct a universal family with 2-torsion point and embed
the family in P3 by the divisor 4(O). We note that any of the recent profusion of
models with rational 2-torsion point can be transformed to this model, hence the
complexity results obtained apply to any such family.
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A universal level-2 curve. Over a field of characteristic different from 2, a gen-
eral Weierstrass model with 2-torsion point has the form y2 = x3 + a1x

2 + b1x.
The quotient by the subgroup 〈(0, 0)〉 of order 2 gives y2 = x3 + a2x

2 + b2x, where
a2 = −2a1 and b2 = a2

1 − 4b1, by formulas of Vélu [18]. In order to have a fam-
ily with good reduction at 2, we may express (a1, b1) by the change of variables
a1 = 4u+ 1 and b1 = −16v, after which y2 = x3 + a1x

2 + b1x is isomorphic to the
curve

E1 : y2 + xy = x3 + ux2 − vx
with isogenous curve E2 : y2 + xy = x3 + ux2 + 4vx+ (4u+ 1)v. A quartic model
in P3 for each of these curves is given by the embedding

(x, y) 7−→ (X0, X1, X2, X3) = (x2, x, 1, y),

with respect to the embedding divisor 4(O). This gives the quartic curve in P2

given by
Q1 : X2

3 +X1X3 = (X0 + uX1 − vX2)X1, X
2
1 = X0X2,

with isogenous curve

Q2 : X2
3 +X1X3 = (X0 + 4vX2)(X1 + uX2) + vX2

2 , X
2
1 = X0X2

each having (1 : 0 : 0 : 0) as identity. The Weierstrass model has discriminant
∆ = v2((4u + 1)2 − 64v), hence the Ei and Qi are elliptic curves provided that ∆
is nonzero.

Translating the Vélu 2-isogeny through to these models we find the following
expressions for the isogeny decomposition of doubling.

Lemma 6.1. The 2-isogeny ψ : Q1 → Q2 with kernel 〈(0 : 0 : 1 : 0)〉 sends
(X0, X1, X2, X3) to(

(X0 − vX2)2, (X0 − vX2)X1, X
2
1 , vX1X2 + (X0 + vX2)X3

)
and the dual isogeny φ sends (X0, X1, X2, X3) to(

(X0 + 4vX2)2, (X1 + 2X3)2, (4X1 + (4u+ 1)X2)2, f3
)
,

where f3 = uX2
1 − 8vX1X2 − (4u+ 1)vX2

2 + 2X0X3 + 4uX1X3 − 8vX2X3 −X2
3 ).

Efficient isogeny evaluation. For each of the tuples (f0, f1, f2, f3), we next de-
termine quadratic forms g0, g1, g2, g3, each a square or product, spanning the same
space and such that the basis transformation involves only coefficients which are
polynomials in the parameters u and v. In order to determine a projective isomor-
phism, it is necessary and sufficient that the determinant of the transformation be
invertible, but it is not necessary to compute its inverse. As previously noted, the
evaluation of equality among quadratic polynomials on the domain curve Qi is in
k[Qi], i.e. modulo the 2-dimension space of relations for Qi.

Lemma 6.2. If k is a field of characteristic different from 2, the quadratic
defining polynomials for ψ are spanned by the following forms

(g0, g1, g2, g3) =
(

(X0− vX2)2, (X0− vX2 +X1)2, X2
1 , (X0 +X1 + vX2 + 2X3)2

)
.

Proof. By scaling the defining polynomials (f0, f1, f2, f3) by 4, the projective
transformation from (g0, g1, g2, g3) is given by (4f0, 4f2) = (4g0, 4g2),

4f1 = −2(f0 − f1 + f2) and 4f3 = 2f0 − 3f1 + 2(1− 2(u+ v)) + f3.

Since the transformation has determinant 32, it defines an isomorphism over any
field of characteristic different from 2. �
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Lemma 6.3. If k is a field of characteristic 2, the quadratic defining polynomials
for ψ are spanned by the following forms

(g0, g1, g2, g3) =
(

(X0 + vX2)2, (X1 +X3)X3, X
2
1 , (X0 + v(X1 +X3))(X2 +X3)

)
.

Proof. The transformation from (g0, g1, g2, g3) to the tuple (f0, f1, f2, f3) of
defining polynomials is given by (g0, g2) = (f0, f2),

(g1, g3) = (f1 + uf2, vf1 + f2 + f3).

The transformation has determinant 1 hence is an isomorphism. �

Corollary 6.4. The isogeny ψ can be evaluated with 4S in characteristic
different from 2 and 2M + 2S in characteristic 2.

Lemma 6.5. Over any field k, the quadratic defining polynomials for φ are
spanned by the square forms (g0, g1, g2, g3):(

(X0+4vX2)2, (X1+2X3)2, (4X1+(4u+1)X2)2, (X0+(2u+1)X1−4vX2+X3)2
)
.

Proof. The forms (g0, g1, g2) equal (f0, f1, f2), and it suffices to verify the
equality f3 = −g0 − (u+ 1)g1 + vg2 + g3, a transformation of determinant 1. �

Lemma 6.6. If k is a field of characteristic 2, the quadratic defining polynomials
for φ are spanned by (X2

0 , X
2
1 , X

2
2 , X

2
3 ).

Proof. It is verified by inspection that the isogeny φ is defined by a linear com-
bination of the squares of (X0, X1, X2, X3) or by specializing the previous lemma
to characteristic 2. �

Corollary 6.7. The isogeny φ can be evaluated with 4S over any field.

Corollary 6.8. Doubling on Q1 or Q2 can be carried out with 8S over a field
of characteristic different from 2, or 2M + 6S over a field of characteristic 2.

Factorization through singular quotients. With the given strategy of computing
the isogenies of complete models ψ : Q1 → Q2 then φ : Q2 → Q1, this result
is optimal or nearly so — to span the spaces of forms of dimension 4, in each
direction, one needs at least four operations. We thus focus on replacing Q1 by a
singular quartic curve D1 in P2 such that the morphisms induced by the isogenies
between Q2 and Q1 remain well-defined but for which we can save one operation
in the construction of the coordinate functions of the singular curves. We treat
characteristic different from 2 and the derivation of a doubling algorithm improving
on 2M + 5S; an analogous construction in characteristic 2 appears in Kohel [14].

Let T = (0 : 0 : 1 : 0) be the 2-torsion point on Q1, which acts by translation
as:

τT (X0 : X1 : X2 : X3) = (vX2 : −X1 : v−1X0 : X1 +X3)
Similarly, the inverse morphism is:

[−1](X0 : X1 : X2 : X3) = (X0 : X1 : X2 : −(X1 +X3))

Over a field of characteristic different from 2, the morphism from Q1 to P2

(X0 : X1 : X2 : X3) 7−→ (X : Y : Z) = (X0 : X1 + 2X3 : X2)

has image curve:

D1 : (Y 2 − (4u+ 1)XZ)2 = 16XZ(X − vZ)2,
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on which and τT and [−1] induce linear transformations, since the subspace gener-
ated by {X0, X1 + 2X3, X2} is stabilized by pullbacks of both [−1] and [τT ]. The
singular subscheme of D1 is X = vZ, Y 2 = (4u + 1)vZ2, which has no rational
points if (4u+ 1)v is not a square, and in this case, the projection to D1 induces an
isomorphism of the set of nonsingular points. Since τT acts linearly, the morphism
ψ : Q1 → Q2 maps through D1, as given by the next lemma.

Lemma 6.9. The 2-isogeny ψ : Q1 → Q2 induces a morphism D1 → Q2 sending
(X,Y, Z) to(

8(X − vZ)2, 2(Y 2 − (4u+ 1)XZ), 8XZ, 4Y (X + vZ)− (Y 2 − (4u+ 1)XZ
)
.

This defining polynomials are spanned by

(g0, g1, g2) =
(

(X − vZ)2, Y 2, (X + vZ)2, (X + Y + vZ)2
)
.

In particular the morphism can be evaluated with 4S.

Lemma 6.10. The 2-isogeny φ : Q2 → Q1 induces a morphism φ : Q2 → D1

sending (X0, X1, X2, X3) to(
(X0 + 4vX2)2, (X1 + 2X3)(2X0 + (4u+ 1)X1 − 8vX2), (4X1 + (4u+ 1)X2)2

)
,

which can be evaluated with 1M + 2S. If 4u+ 1 = −(2s+ 1)2, then the forms(
(X0 + 4vX2)2, (X0 − 4vX2 − (2s+ 1)(sX1 −X3))2, (4X1 + (4u+ 1)X2)2

)
,

span the defining polynomials for φ : Q2 → D1, and can be evaluated with 3S.

Proof. The form of the defining polynomals (f0, f1, f2) for the map φ : Q2 →
D1 follows from composing the 2-isogeny φ : Q2 → Q2 with the projection to D1.
The latter statement holds since, the square forms (g0, g1, g2) of Lemma 6.10 satisfy
f0 = g0, f2 = g2, and (2s+ 1)f1 = −2(g0 − g1 − vg2). �

Composing the morphism Q2 → D1 with D1 → Q2 gives the following com-
plexity result.

Theorem 6.11. The doubling map on Q2 over a field of characteristic different
from 2 can be evaluated with 1M + 6S, and if 4u+ 1 = −(2s+ 1)2, with 7S.

Remark. The condition a1 = 4u + 1 = −(2s + 1)2 is equivalent to the condition
u = −(s2 + s + 1/2). This implies that the curves in the family are isomorphic to
one of the form y2 = x3−x2 +b1x, where b1 = −16v/(4u+1)2, fixing the quadratic
twist but not changing the level structure. In light of this normalization in the
subfamily, we may as well fix s = 0 and 4u+ 1 = −1 to achieve a simplification of
the formulas in terms of the constants.

6.4. Comparison with previous doubling algorithms. We recall that the
previously best known algorithms for doubling require 2M+5S, obtained for Jacobi
quartic models in P3 (see Hisil et al. [11]) or specialized models in weighted projec-
tive space [8]. We compare this base complexity to the above complexities which
apply to any elliptic curve with a rational 2-torsion point. We include the naive
8M algorithm of Corollary 6.8, and improvements of Theorem 6.11 to 1M + 6S
generically, and 7S for an optimal choice of twist. The relative costs of the various
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doubling algorithms, summarized below, show that the proposed doubling algo-
rithms determined here give a non-neglible improvement on previous algorithms.

Cost of 1S
[2] 1.00M 0.80M 0.66M
8S 8.0M 6.40M 5.33M

2M + 5S 7.0M 6.00M 5.33M
1M + 6S 7.0M 5.80M 5.00M

7S 7.0M 5.60M 4.66M

The improvements for doubling require only a 2-torsion point, but imposing ad-
ditional 2-torsion or 4-torsion structure would allow us to carry this doubling al-
gorithm over to a normal form with symmetries admitting more efficient addition
laws.
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