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Elliptic Curves over Binary Fields

Standards for elliptic curve Diffie-Hellman or ElGamal require an
ordinary (non-supersingular) elliptic curve over a finite field k.

If k is characteristic 2 then the degree of k over F2 should be odd.

Such an ordinary binary elliptic curve E can be written in the form

y2 + xy + ax2 = x3 + b.

Its j-invariant is b−1 and the parameter a is the quadratic twist,
which can be taken in {0, 1}: the curves

y2 + xy = x3 + b and y2 + xy + x2 = x3 + b,

for a = 0 and a = 1, respectively, become isomorphic (y 7→ y+ωx)
over the quadratic extension k[ω], where ω2 + ω + 1 = 0.
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Elliptic Curves over Binary Fields

The parameter a (= 0 or 1) gives a simple characterization of the
pair of twists (over a binary odd degree field):

y2 + xy = x3 + b and y2 + xy + x2 = x3 + b.

Namely, a = 0 if and only if E(k) has a point of order 4.

Recall that every binary ordinary elliptic curve has even order; the
closest we can get to prime order is |E(k)| = 2n for n prime, and
consequently,

|E(k)| ≡ 2 mod 4 if a = 1,
|E(k)| ≡ 0 mod 4 if a = 0.

Specifically, if a = 0, then then point (c : c2 : 1), where c4 = b, is a
point of order 4.
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Elliptic Curves over Binary Fields

As was noted for Hessian curves, Edwards normal form, and the
µ4-normal form (which we generalize here to twists), the existence
of a small order point results in curves with symmetries, and yields
families with efficient arithmetic and side channel resistance.

Unfortunately, 20th-century standards focused on nearly prime
order |E(k)| = hn, where n is prime and cofactor h as small as
possible, ignorant of the benefits of a point of small order h > 2.

Hence for backwards compatibility, standard (NIST, SEC, etc.)
curves can not be put in Hessian, Edwards, or µ4-normal form,
which have points of order h = 3, 4 (non-binary field), and 4.
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Elliptic Curves over Binary Fields

So Edwards curves are not backward compatible with 20th century
curve standards. Worse, over prime fields, there is a geometric
restriction to having a point of order 4 — if the order |E(k)| is odd
(e.g. prime) then so is the order of its quadratic twist: in short,
twisted Edwards curves can not bridge this gap.

In view of the above dichotomy, the situation for binary curves is
much better — if |E(k)| ≡ 2 mod 4 then it is a twist of a curve
with 4-torsion point, which can be put in µ4-normal form, that is,
E can be put in twisted µ4-normal form.

The objective of this work is to introduce these twists of the
µ4-normal form in order to combine the most efficient arithmetic
with backward compatibility to binary curve standards.



Introduction State of the Art Curve Origins Efficient arithmetic Comparisons and conclusion

Previous State of the Art

Previous models which covered the case of standard curves (a = 1)
include López-Dahab (a = 1) model, and the more recent Lambda
coordinates, for which we compare known complexities (S ∼ 0):

López-Dahab (a = 1):

Advantages: Best known doubling 2M+ 4S+ 2m
Disadvantages: Slow addition 13M+ 3S

Lambda coordinates:
Disadvantages: Slow doubling 3M+ 4S+ 1m

Advantages: Better addition 11M+ 2S

Reference complexities for the µ4-normal form are:
µ4-normal form:

Advantages: Best known doubling∗ 2M+ 5S+ 2m
Best known addition 7M+ 2S

Disadvantages: Not standards compatible.
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Previous State of the Art

In table form we summarize the previous state of the art, and the
results we present here for twisted µ4-normal form.

Curve model Doubling Addition NIST

Lambda coordinates 3M+ 4S+ 1m 11M+ 2S yes
López-Dahab (a = 0) 2M+ 5S+ 1m 14M+ 3S no
López-Dahab (a = 1) 2M+ 4S+ 2m 13M+ 3S yes

µ4-normal form 2M+ 5S+ 2m 7M+ 2S no

Twisted µ4-normal form 2M+ 5S+ 2m 9M+ 2S yes

Remark. Standard curves (NIST, SEC, etc.) have large constants.
For backward compatibility one should equate 1M = 1m, and the
various models have complexity ∼ 4M for doubling, modulo
neglibible cost of squaring S ∼ 0 using normal bases.
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The µ4-normal form: Edwards origins

An elliptic curve E/k ⊂ P3 in twisted Edwards normal form is

X2
0 + dX2

3 = cX2
1 +X2

2 , X0X3 = X1X2, O = (1 : 0 : 1 : 0),

and an elliptic curve C/k ⊂ P3 in µ4-normal form is defined by

X2
0 − rX2

2 = X1X3, X
2
1 −X2

3 = X0X2, O = (1 : 1 : 0 : 1).

For (c, d) = (−1,−16r) — a twist by −1, we have an isomorphism

(X0 : X1 : X2 : X3) 7−→ (X0 : X1 +X2 : 4X3 : −X1 +X2).

Thus, when 2 is invertible, we recognize the µ4-normal form as a
−1-twist of Edwards. Only the latter model is valid over binary
fields (has good reduction at 2).



Introduction State of the Art Curve Origins Efficient arithmetic Comparisons and conclusion

Split µ4-normal form: properties

When r = 1/c4 (always true for binary finite fields), we can rescale
the variables to put C/k in split µ4-normal form, defined by

X2
0 −X2

2 = c2X1X3, X
2
1 −X2

3 = c2X0X2, O = (c : 1 : 0 : 1).

Properties:

1 The point T = (1 : c : 1 : 0) is 4-torsion.

2 The translation–by–T morphism is given by:
τT (X0 : X1 : X2 : X3) = (X3 : X0 : X1 : X2).

3 The inverse morphism is defined by:
[−1](X0 : X1 : X2 : X3) = (X0 : X3 : X2 : X1).

Consequently the µ4-normal form has order divisible by 4.
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The twisted µ4-normal form

Twists of an elliptic curve in characteristic 2 (or of a family in any
characteristic, respecting good reduction at 2) should be with
respect to a quadratic field extension k[ω] = k[x]/(x2 − x− a).
The discriminant of this extension is D = 1 + 4a, and the
quadratic twist of C/k by the extension k[ω] is

X2
0 −DrX2

2 = X1X3 − a(X1 −X3)
2, X2

1 −X2
3 = X0X2.

In characteristic 2, we have D = 1, and this gives the binary
twisted µ4-normal form

X2
0 + r X2

2 = X1X3 + a(X1 +X3)
2, X2

1 +X2
3 = X0X2,

with identity (1 : 1 : 0 : 1).
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Addition laws on µ4-normal form

Recall: the µ4-normal form yields an efficient addition algorithm.

Theorem (K. Indocrypt 2012)

Let C/k be an elliptic curve in split µ4-normal form over a binary
field. Setting Uij = XiYj , the following is a basis for bidegree
(2, 2)-addition laws:

( (U13 + U31)
2, c(U02U31 + U20U13),

(U02 + U20)
2, c(U02U13 + U20U31) ),

and
( c(U03U10 + U21U32), (U10 + U32)

2,
c(U03U32 + U10U21), (U03 + U21)

2 ),

and their rotations (substitutions Uij 7→ Ui−1,j+1).
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Addition laws on twisted µ4-normal form

Theorem (K. Eurocrypt 2017)

Let Ct/k be an elliptic curve in twisted split µ4-normal form over
a binary field. Setting Uij = XiYj , the following is a complete
system of two addition laws:

((U13 + U31)
2, c(U02U31 + U20U13 + aF ),

(U02 + U20)
2, c(U02U13 + U20U31 + aF ) ),

and (by substituting Uij 7→ Ui−1,j+1)

((U00 + U22)
2, c(U00U11 + U22U33 + aG),

(U11 + U33)
2, c(U00U33 + U11U22 + aG) ),

where F = V13(U02 + U20) and G = V13(U00 + U22), for

V13 = (X1 +X3)(Y1 + Y3).
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Complexity results for µ4-normal forms

Corollary (K. Indocrypt 2012)

Addition of generic points on an elliptic curve in µ4-normal form
can be computed with 7M+ 2S+ 2m.

The extra cost of computing one of the the forms

F = V13(U02 + U20) or G = V13(U00 + U22),

where V13 = (X1+X3)(Y1+Y3) and where the respective cofactor
U02 + U20 or U00 + U22 is known, adds two multiplications:

Corollary (K. Eurocrypt 2017)

Addition of generic points on an elliptic curve in twisted µ4-normal
form can be computed with 9M+ 2S+ 2m.
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Efficient doubling

As a consequence of the addition laws we find doubling formulas.

Corollary (K. Eurocrypt 2017)

Doubling on an elliptic curve C in twisted split µ4-normal form
sends (X0 : X1 : X2 : X3) to

(X4
0 +X4

2 : c(X2
0X

2
1 +X2

2X
2
3 ) : X

4
1 +X4

3 : c(X2
0X

2
3 +X2

1X
2
2 ) ),

if a = 0, and to

(X4
0 +X4

2 : c(X2
0X

2
3 +X2

1X
2
2 ) : X

4
1 +X4

3 : c(X2
0X

2
1 +X2

2X
2
3 ) ).

if a = 1.

And the complexity of doubling remains the same (twisted or not):

Corollary (K. Eurocrypt 2017)

Doubling on an elliptic curve in twisted split µ4-normal form with
a ∈ {0, 1} can be computed with 2M+ 5S+ 2m.
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Tabular comparison with known results

We recall the tabular summary of best known complexities for
arithmetic:

Curve model Doubling Addition NIST

Lambda coordinates 3M+ 4S+ 1m 11M+ 2S yes
López-Dahab (a = 0) 2M+ 5S+ 1m 14M+ 3S no
López-Dahab (a = 1) 2M+ 4S+ 2m 13M+ 3S yes

µ4-normal form 2M+ 5S+ 2m 7M+ 2S no

Twisted µ4-normal form 2M+ 5S+ 2m 9M+ 2S yes

Remark. Lambda coordinates can be viewed as a singular version
of the twisted µ4-normal form, projected to P2. By carrying
around four variables (in P3) rather than three (in P2), one obtains
faster algorithms.
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Conclusions

The faster complexity of µ4-normal form should be used when one
can choose the binary curve and its parameters:

The µ4-normal form, when a 4-torsion point exists (a = 0),
previously reduced the complexity of addition on López-Dahab
from 14M+ 3S to 7M+ 2S.

The twisted µ4-normal form defined here reduces the
complexity of addition, 13M+3S for López-Dahab (a = 1) or
11M+2S for Lambda coordinates, to 9M+2S, coupled with
doubling essentially as efficient as López-Dahab (up to 1S).

When backwards compatibility with binary NIST and SEC standard
curves is required, twisted µ4-normal form should be used.

Thanks for your attention!
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