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Abstract We show that the Weierstrass points of the generic curve of genus g over an algebraically closed

field of characteristic 0 generate a group of maximal rank in the Jacobian.

The Weierstrass points are a set of distinguished points on curves, which are geometrically
intrinsic. In particular, the group these points generate in the Jacobian is a geometric invariant
of the curve. A natural question is to determine the structure of this group. For some
particular curves with large automorphisms groups (for instance, Fermat curves [15]), these
groups have been found to be torsion. The first author provided the first examples where
this group has positive rank ([7], [8]) and obtained a lower bound of 11 on the rank of the
generic genus 3 curve. The motivation of this paper was to bridge the gap between this bound
and the expected bound of 23 – meaning that there are no relations between the Weierstrass
points on the generic genus 3 curve. The result we obtain is valid for generic curves of any
genus. More precisely, let the Weierstrass subgroup of a curve C be the group generated by
the Weierstrass points in the Jacobian of the curve C. We show that

Theorem 1. The Weierstrass subgroup of the generic curve of genus g ≥ 3 is Zg(g2−1)−1.

As a consequence of this theorem, we deduce the following corollaries.

Corollary 2. For any field K of characteristic zero, the group generated by the Weierstrass
points of a curve over K in its Jacobian is Zg(g2−1)−1, outside of a set of curves whose moduli
lie in a thin set in Mg(K).

Corollary 3. For every g ≤ 13 there exist infinitely many curves of genus g defined over
Q, up to isomorphism over Q̄, for which the group generated by the Weierstrass points in its
Jacobian is isomorphic to Zg(g2−1)−1.

We start by recalling some basic definitions and properties of Weierstrass points, then some
results concerning the behaviour of Weierstrass points under specialisation. We then describe
the fundamental tools in our study, which are the natural Galois module structure of the
subgroup of divisors with support on the Weierstrass points and the geometric characterisation
of the Galois group. Using the specialisation of this Galois module in families, we obtain the
main result.
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1 The Weierstrass subgroup of a curve.

We recall in this section the definition and some properties of Weierstrass points (see [10]
exercise A.4.14).

Let C/K be a smooth projective curve of genus g ≥ 2 over a field K of characteristic 0,
and let P be any point on C. We say that P is a Weierstrass point if and only if there exists
a differential form ω ∈ H◦(C,ΩC), such that ordP (ω) ≥ g. Let W be the set of Weierstrass
points on C.

Alternatively we may characterise the Weierstrass points in terms of the dimensions of
Riemann-Roch spaces. For any divisor D on C, let L(D) be the Riemann-Roch space

{f ∈ K(C)∗ : div(f) + D ≥ 0} ∪ {0}

and let `(D) be its dimension.

Proposition 4. A point P is Weierstrass if and only if `(gP ) ≥ 2.

The gap sequence associated to a point P is defined to be the set

G(P ) = {n ∈ N : `(nP ) = `((n − 1)P )}.

We can define the weight of a point to be

w(P ) =
(

∑

n∈G(P )

n
)

− g(g + 1)/2.

Positive weight provides yet another characterisation of Weierstrass points and we have a for-
mula for the number of Weierstrass points, counted with multiplicities equal to their weights.

Proposition 5. A point P is Weierstrass if and only if w(P ) ≥ 1, and
∑

w(P )P belongs to
the complete linear system
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∣

∣
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∣

∣

∣

∣

.

In particular, the sum of the weights of all Weierstrass points is g(g2 − 1).

We define the Weierstrass subgroup W to be the group generated by the differences of
Weierstrass points in the Jacobian of the curve identified with Pic◦(C).

2 Specialisation of Weierstrass points.

In this section, we recall two theorems on the behaviour of Weierstrass points under special-
isation. For a family C → X of smooth projective curves of genus g over an irreducible base
X. We define Wη and Ws to be the group generated by the Weierstrass points in the generic
fibre Cη and a special Cs, respectively.

Theorem 6. The group of Weierstrass points form an algebraic family such that Wη surjects
on Ws and is injective on torsion.

Proof: For the first part, see Hubbard [11] or Laksov-Thorup [13], the second part is classic
(see [10] Theorem C.1.4).

We furthermore need the following theorem of Néron which provides constraints on the
set of rational points for which the generic rank can decrease under specialisation.
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Theorem 7 (Néron [14], see Serre [17], p.152). Let π : A → X be a family of abelian
varieties over a field K. Then the group A(K(X)) is finitely generated, and the set

{P ∈ X(K) | A(K(X)) → A(K(P )) is not injective}

is a thin set.

N.B This form of the theorem appears in Serre [17] with X any open subvariety of Pn, but
the proof holds more generally. However, for X of dimension 1 or of general type, the full set
X(K) of rational points may be thin for any field K.

3 The generic Galois group.

Let Mg be the moduli space of curves of genus g, let Cg → Mg be the universal curve over
Mg (i.e. the moduli space of pointed curves), let and π : Wg → Mg the restriction to the
locus of Weierstrass points. Eisenbud and Harris [5] study the geometric monodromy group
of this cover, which can be identified (see Harris [9]) with the geometric Galois group of π,
i.e. the group of automorphisms of the normal closure of C(Wg)/C(Mg). They prove that
the monodromy group is as large as possible.

Theorem 8 (Eisenbud-Harris [5]). The monodromy group of π equals the full symmetric
group Sg(g2−1) acting on the g(g2 − 1) generic Weierstrass points.

Since Mg can be defined over Q, and the geometric Galois group is maximal, we conclude
that the Galois group of the normal closure of Q(Wg)/Q(Mg) must also be the full symmetric
group. We apply this theorem to the Weierstrass subgroup of the Jacobian, as a Galois
module, in order to prove Theorem 1.

4 Galois module structure.

Let C/K be a curve of genus g, and let W be its set of Weierstrass points in C(K̄). Then the
absolute Galois group G = Gal(K̄/K) acts on the set W. Thus the Weierstrass divisor group,

V =
⊕

P∈P

Z.P.

is equipped with a natural Z[G]-module structure, which acts through Z[G], where G is the
image of G in Aut(W) = Sg(g2−1) acting as permutations of W.

Theorem 9. The Weierstrass subgroup of the Jacobian Jac(Cg) of the generic curve Cg is
either a free group of rank g(g2 − 1) − 1 or a torsion subgroup.

Proof: Both the “degree zero” submodule V ◦ of V , generated by differences of Weierstrass
points, and its submodule P of principal divisors with support in W are Z[G]-submodules.
From Theorem 8, we know that W consists of one orbit of G, which acts through the full
symmetric group Sn, where n = g(g2 − 1) = |W|. Thus PQ = P ⊗Z Q is a Q[Sn]-submodule
of V ◦

Q = V ◦ ⊗ZQ. Since V ◦
Q is simple as a Q[Sn]-module, it follows that PQ is either trivial or

equal to V ◦
Q , and the theorem follows.
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5 Weierstrass subgroups of cyclic covers of P1.

In this section, we find curves of any genus g such that the subgroup generated by the difference
of two Weierstrass points P and Q has odd order. Comparing this with the Weierstrass
subgroup of a hyperelliptic curve, we establish that the generic Weierstrass subgroup can not
be a torsion subgroup. First, we state the classical result for the Weierstrass subgroup of a
hyperelliptic curve.

Proposition 10. The Weierstrass points of an hyperelliptic curve of genus g generate the
2-torsion subgroup of its Jacobian.

In any genus, there exists cyclic trigonal covers of the projective line. Such covers can be
described (see [3] and [12]) by the plane model

C : y3 =

s
∏

i=1

(x − αi)

t
∏

j=1

(x − βj)
2

where αi and βj are distinct complex numbers and s and t satisfy s+2t ≡ 0 mod 3 and t < s.
The genus of C is then equal to g = s + t − 2.

Proposition 11. There exists a curve of genus g with two Weierstrass points whose difference
is a point of order 3 in the Jacobian.

Proof: We take C a trigonal curve as defined above, of genus g > 2, with t in {0, 1, 2} such
that t ≡ −g +1 (mod 3), and with s = g− t+2 ≥ 2. Then there exist two nonsingular points
P1 = (α1, 0) and P2 = (α2, 0). The functions f = (x − α1)/(x − α2) and 1/f are respectively
in L(3P2) and in L(3P1), and thus the points P1, P2 are Weierstrass points. Moreover, since
div(f) = 3(P1 − P2) it follows that P1 − P2 is a 3-torsion point in the Weierstrass subgroup
of the Jacobian of C.

6 Proof of the main theorem.

We are now in a position to prove:

Theorem 1. The Weierstrass subgroup of the generic curve of genus g ≥ 3 is Zg(g2−1)−1.

Proof: By Corollary 9, the generic Weierstrass subgroup is either a free group or is purely
torsion. In the latter case, Theorem 6 implies that the generic Weierstrass subgroup is iso-
morphic with the Weierstrass subgroup of every special curve. We first consider the moduli

space T = M
(m)
g with m-level structure. For m ≥ 3, the space T is a fine moduli space, with

universal cover Dg → T such that each fibre Ct is a curve of genus g whose isomorphism
class determines the moduli point π(t) on Mg (see e.g. [6]). On the other hand, the finite
covers Dg → Cg and T → Mg determine a birational morphism of Dg to the fibre product
Cg ×Mg

T , by which we may identify the generic Weierstrass subgroup Wη with the generic
Weierstrass subgroup over T (since then Dg/Q(T ) is isomorphic to Cg/Q(T )). By specialising
to a hyperelliptic curve Ct, Proposition 10 implies that, if torsion, the generic Weierstrass
subgroup must equal the 2-torsion subgroup. This contradicts the result of Proposition 11
which implies that it must surject on a subgroup of order 3. We conclude that Wη contains
a point of infinite order, and thus is free of maximal rank.
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Using Néron’s specialisation Theorem 7, we obtain the following corollary (this requires a
statement of Néron’s theorem for arbitrary base).

Corollary 2. For any field K of characteristic zero, the group generated by the Weierstrass
points of a curve over K in its Jacobian is Zg(g2−1)−1, outside of a set of curves whose moduli
lie in a thin set in Mg(K).

For g ≤ 6 the moduli space Mg is rational, and the complement of a thin set in Mg(Q)
provides a dense set in Mg consisting of moduli of curves whose Weierstrass subgroup has
maximal rank. More generally, this latter property holds in Mg(Q) for all g up to 13.

Corollary 3. For each g ≤ 13, the curves of genus g over Q for which the group generated by
the Weierstrass points in its Jacobian is isomorphic to Zg(g2−1)−1, determine a Zariski dense
set of moduli in Mg.

Proof: For each g ≤ 13 the moduli space Mg is unirational [1, 2, 16], i.e. Mg is covered
by a dominant map π : PN → Mg for some N . We base extend by π to form the family

Cg ×π PN → PN , with generic Weierstrass group isomorphic to Zg(g2−1). Applying Theorem 7
of Néron, the Weierstrass group remains free of rank g(g2 − 1) outside of a thin set Z in
PN (Q). Then the set π(PN (Q) − Z) is a dense set in Mg consisting of moduli of curves for
which the Weierstrass subgroup attains the maximal rank.

We note that for g ≥ 24, the variety Mg is known to be of general type, thus Lang’s
Conjecture would imply that the set Mg(K) of rational points over any number field K
is contained in a proper closed subvariety. An analogous result to Theorem 8 for the Galois
group of Weierstrass points of plane curves of degree d would be desirable in order to establish
the maximality of the rank of the Weierstrass subgroup for plane curves.

Acknowledgement. The authors thank Marc Hindry and René Schoof for interest and
comments on an earlier draft of this work.
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