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Elliptic curve models

An elliptic curve E is a projective nonsingular genus one curve with a
fixed base point O. In order to consider the arithmetic, namely addi-
tion and scalar multiplication defined in terms of polynomial maps,
we need to fix the additional structure of a projective embedding
ι : E → Pr , which we call a projective model.

We suppose that the model is given by a complete linear system.
Letting {X0, . . . ,Xr} be the coordinate functions on Pr , we obtain
a ring surjection:

ι∗ : k[Pr ] = k[X0, . . . ,Xr ] −→ k[E ] =
k[X0, . . . ,Xr ]

IE
·

We seek to analyze the role of the projective model in the efficient
arithmetic of the curve.
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The embedding class

The property that ι is given by a complete linear system lets us
reduce to questions of sections of invertible sheaves. Specifically,
let L = ι∗OPr (1) the the sheaf giving the embedding, generated
by coordinate functions {X0, . . . ,Xr}. More generally, the global
sections Γ(E ,L n) is the finite dimensional k-vector space spanned
by monomials of degree n modulo IE , and hence

k[E ] =
∞⊕

n=0

Γ(E ,L n) ⊂ k(E )[X0].

The embedding class of ι is characterized by its degree d = r + 1
and a point T in E (k) such that for any hyperplane H,

E ∩ H = {P0, . . . ,Pr} ⊂ E (k̄),

such that P0 + · · ·Pr = T .
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Riemann–Roch spaces

Let D be the divisor on E cut out by X0 = 0, then we can identify
Γ(E ,L n) with the Riemann–Roch space associated to nD:

L(nD) = {f ∈ k(E )∗ | div(f ) ≥ −nD} ∪ {0},

more precisely, Γ(E ,L n) = L(nD)X n
0 ⊂ k(E )X n

0 .

While the dimension of L(nD) is nd , the dimension of the space of
all monomials of degree n is:

dimk

(
Γ(Pr ,OPr (n))

)
=

(
n + r

r

)
=

(
n + d − 1

d − 1

)
·

The discrepancy is accounted for by relations of a given degree in
IE . Specifically each polynomial in the quotient Γ(E ,L n) ⊂ k[E ]
represents a coset of polynomials of dimension(

n + r

r

)
− nd .
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From the following table of dimensions:

d = 3 : d = 4 : d = 5 : d = 6 :
n
(n+r

r

)
nd

(n+r
r

)
nd

(n+r
r

)
nd

(n+r
r

)
nd

1 3 3 4 4 5 5 6 6
2 6 6 10 8 15 10 21 12
3 10 9 15 12 35 15 56 18

we see the well-known result that a degree-3 curve in P2 is generated
by a cubic relation, and a degree-4 curve in P3 is the intersection of
two quadrics. Similarly, a quintic model in P4 and a sextic model
in P5 are generated by a space of quadrics of dimensions 5 and 9,
respectively.

When considering polynomial maps between curves, this space of
relations is a source of flexibility for evaluating a representative poly-
nomial f in its class.
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Addition law relations

A similar analysis applies to the set of addition laws from E × E to
E . The set polynomials of bidegree (m, n) on E ×E are well-defined
modulo relations of bidegree (m, n).

As the kernel of the surjective homomorphism

Γ(Pr ,OPr (m))⊗k Γ(Pr ,OPr (n)) −→ Γ(E ,L m)⊗k Γ(E ,L n)),

its dimension is (
m + r

r

)(
n + r

r

)
−mnd2.

In particular, this space of relations will be of interest in the case
in the case of minimal bigdegree (m, n) = (2, 2) for addition laws,
where it becomes:(

d + 1

2

)2

− 4d2 =
d2(d − 3)(d + 5)

4
·
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Linear classification of models

Hereafter we consider only projective models. A linear change of
variables gives a model with equivalent arithmetic, up to multiplica-
tion by constants, thus it is natural to consider linear isomorphisms
between models of elliptic curves.

Definition

Suppose that E ⊂ Pr is an elliptic curve model given by a
complete linear system. Then any hyperplane H meets E in
r + 1 points {P0, . . . ,Pr}, counting multiplicities. The point
T = P0 + · · ·Pr is an invariant of the model called the embed-
ding class.

Next we recall a result regarding the classification of elliptic curves
models up to projective linear equivalence, in terms of its degree and
embedding class.
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Linear classification of models

Theorem

Let E1 and E2 be two models in Pr , of degree d = r + 1, for an
elliptic curve E , given by complete linear systems. There exists a
linear transformation of Pr inducing an isomorphism of E1 to E2 if
and only if E1 and E2 have the same embedding class.

Remark. The theorem is false if the isomorphism in the category
of elliptic curves is weakened to an isomorphism of curves.

Corollary

Two projective models for an elliptic curve, given by complete lin-
ear systems of the same degree, have equivalent arithmetic up to
multiplication by scalars if they have the same embedding divisor
class.
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Linear action of [−1]

A natural condition is to assume that [−1] is also linear on E in its
embedding, for which we recall the notion of a symmetric model.

Definition

An elliptic curve model ι : E → Pr given by a complete linear
system is symmetric if and only if any of the following is true:

1 [−1] is given by a projective linear transformation,

2 [−1]∗L ∼= L where L = ι∗OPr (1),

3 T ∈ E [2], where T is the embedding class.

In view of the classification of the linear isomorphism class, this
reduces the classification of symmetric models of a given degree d
to the finite set of points T in E [2] (and more precisely, for models
over k , to T in E [2](k)).
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Linear action of torsion

To complete the analysis of models up to linear equivalence, we
finally recall a classification of linear translation maps.

Theorem

Let E be a projective degree d model of an elliptic curve, deter-
mined by a complete linear system. Then the translation-by-T
morphism τT acts linearly if and only if T is in E [d ].

The statement is geometric — it is sufficient that T in E (k̄), but T
and τT have common fields of definition. This gives an argument for
studying elliptic curve models in Pr , for r = d − 1, together with a
rational d-torsion structure. Of particular interest are cubic models
with a 3-torsion structure e.g. X 3 + Y 3 + Z 3 = cXYZ , or a quartic
model with 4-level structure.
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Notions of complexity

We first recall some notation for the complexity, which we use to
estimate the cost of arithmetic on elliptic curves: M and S will
denote the cost of a field multiplication and squaring, respectively,
and m denotes the cost of multiplication by a fixed constant.

For a finite field of q elements, typical algorithms for multiplication
take time in O(log(q)ω) for some 1 + ε ≤ ω ≤ 2, with a possi-
bly better constant for squaring. A naive implementation gives the
upper bound, Karatsuba gives an ω = log2(3) algorithm, and fast
Fourier transform provides an asymptotic complexity of 1 + ε.

We ignore additions, which lie in the class O(log(q)), and distinguish
multiplication by a constant, which, for fixed small size or sparse
values, can reduce to O(log(q)).
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Evaluating isogenies

In order to minimize the number of arithmetic operations, it is im-
portant to control the degree of the defining polynomials for an
isogeny.

Theorem

An isogeny φ : E1 → E2 of degree n, between models given by
complete linear systems of degree d, is given by polynomials of
degree n if and only if

φ∗L2
∼= L n

1 , where Li are the embedding sheaves,

φ∗(H2 ∩ E2) ∼ n · H1 ∩ E1 for any hyperplanes H2 and H1,

the embedding classes T1 and T2 satisfy

n(T1 − S1) = d
∑
Q∈G

Q where S1 ∈ φ−1(T2) and G = ker(φ).

If it exists, a tuple (f0, . . . , fr ) of polynomials of degree n defining
φ is unique in k[E1]d up to a scalar multiple.
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Evaluating isogenies

As a consequence, the full multiplication-by-n maps behave well.

Corollary

The multiplication-by-n map on any symmetric projective model is
uniquely determined by polynomials of degree n2.

This contrasts with the curious fact that 2-isogenies are not well-
suited to elliptic curves in Weierstrass form.

Corollary

There does not exist a cyclic isogeny of even degree n given by
polynomials of degree n between curves in Weierstrass form.
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Evaluating isogenies

Example. Let E : Y 2Z = X (X 2 + aXZ + bZ 2) be an elliptic
curve with rational 2-torsion point (0 : 0 : 1). The quotient by
G = 〈(0 : 0 : 1)〉, to the curve Y 2Z = X ((X − aZ )2 − 4bZ 2), is
given by a 3-dimensional space of polynomial maps of degree 3:

(X : Y : Z ) 7−→
(Y 2Z : (X 2 − bZ 2)Y : X 2Z )
((X + aZ )Y 2 : (Y 2 − 2bXZ − abZ 2)Y : X 2(X + aZ ))
((X 2 + aXZ + bZ 2)Y : XY 2 − b(X 2 + aXZ + bZ 2)Z : XYZ )

but not by any system of polynomials of degree 2.
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Efficient scalar multiplication

The principle focus for efficient arithmetic is the operation of scalar
multiplication by k . Using a standard windowing technique, we write
k =

∑t
i=0 ain

i in base n = `k (the window), and precompute [ai ](P)
for ai in (Z/nZ)∗. We may then compute [k](P), using t additions
and kt scalings by [`].

In order to break down the problem further, we suppose the existence
of an isogeny decomposition [`] = φ̂φ, for which we need a rational
cyclic subgroup G ⊂ E [n] (where in practise n = ` = 3 or n = `2 = 4
— the window may be a higher power of `). For this purpose we
study families of elliptic curves with G -level structure.

In view of the analysis of torsion action and degrees of defining
polynomials, we give preference to degree d models where n | d ,
and G will be either Z/nZ or µµn (as a group scheme).
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Strategy for efficient isogeny computation

Suppose we are given E1 and E2 in Pr with isogeny φ : E1 → E2

given by defining polynomials (f0, . . . , fr ) of degree n = deg(φ).

The computational strategy is the following: we set

V0 = Γ(Pr ,IE (n)) = ker
(
Γ(Pr ,O(n))→ Γ(E ,L n)

)
,

and successively construct a flag

V0 ⊂ V1 ⊂ · · · ⊂ Vd = V0 + 〈f0, . . . , fd〉

such that each space Vi+1 is constructed by adjoining to Vi a form
gi ∈ (V0 + 〈f0, . . . , fd〉)\Vi , minimizing the number of M and S.

Subsequently the forms f0, . . . , fr can be expressed in terms of the
generators g0, . . . , gr with complexity O(m), with retrospective op-
timization of the constant multiplications.
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Arithmetic on cubic models

For optimization of arithmetic on a cubic family we consider a uni-
veral curve with µµ3 level structure, the twisted Hessian normal form:

H : aX 3 + Y 3 + Z 3 = XYZ , O = (0 : 1 : −1),

obtained by descent of the Hessian model X 3 + Y 3 + Z 3 = cXYZ
to a = c3, by coordinate scaling (cf. Bernstein-K-Lange). Addition
on this model is reasonably efficient at a cost of 12M. In order
to optimize the tripling morphism [3], we consider the quotient by
µµ3 = 〈(0 : ω : −1)〉.
By means of the isogeny (X : Y : Z ) 7→ (aX 3 : Y 3 : Z 3), with
kernel µµ3, we obtain the quotient elliptic curve

E : XYZ = a(X + Y + Z )3, O = (0 : 1 : −1).

This yields an isogeny φ of cubic models by construction, at a cost
of three cubings: 3M + 3S.
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Arithmetic on cubic models

In the previous construction, by using the µµn structure, with respect
to which the coordinate functions are diagonalized, we were able to
construct the quotient isogeny

(X0 : · · · : Xr ) 7→ (X n
0 : · · · : X n

r )

without much effort. In remains to construct the dual.

In the case of the twisted Hessian, the dual isogeny ψ = φ̂ is given
by (X : Y : Z ) 7→ (f0 : f1 : f2), where

f0 = X 3 + Y 3 + Z 3 − 3XYZ ,
f1 = X 2Y + Y 2Z + XZ 2 − 3XYZ ,
f2 = XY 2 + YZ 2 + X 2Z − 3XYZ

as we can compute by pushing [3] through φ.
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Arithmetic on cubic models

The quotient curve E : XYZ = a(X + Y + Z )3, admits a Z/3Z-
level structure, acting by cyclic coordinate permutation. The isogeny
ψ : E → H is the quotient of this group G = ker(ψ) must be defined
by polynomials in

Γ(E ,L 3
E )G =

〈
X 3+Y 3+Z 3,X 2Y +Y 2Z +XZ 2,XY 2+YZ 2+X 2Z

〉
modulo the relation XYZ = a(X + Y + Z )3. We note, however,
that the map ψ∗ : Γ(H,LH)→ Γ(E ,L 3

E )G must be surjective since
both have dimension 3.

Using the group action, we construct the norm map

NG : Γ(E ,L )→ Γ(E ,L 3
E )G ,

by NG (f ) = f (X ,Y ,Z )f (Y ,Z ,X )f (Z ,X ,Y ). It is nonlinear but
sufficient to provides a set of generators using 1M + 1S each.
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Arithmetic on cubic models

As a first norm we take g0 = NG (X + Y + Z ) = (X + Y + Z )3, then
note that NG (X ) = NG (Y ) + NG (Z ) = XYZ = ag0. It remains to
complete a basis with, for example,

g1 = NG (Y + Z ) = (Y + Z )(X + Z )(X + Y ),
g2 = NG (Y − Z ) = (Y − Z )(Z − X )(X − Y ),

then to find the linear transformation

f0 = (1− 3a)g0 − 3g1,
f1 = −4ag0 + (g1 − g2)/2,
f2 = −4ag0 + (g1 + g2)/2.

This gives an algorithm for ψ using 5M + 1S, for a total complexity
for tripling ([3] = ψ ◦ φ) of 8M + 4S. Attributing 1m for the
multiplications by a, ignoring additions implicit in the small integers
(after scaling by 2), this gives 8M + 4S + 2m.
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Arithmetic on cubic models

Is this interesting?

Previous algorithms required 8M + 6S + 1m.

A comparison with doubling should scale by log3(2).
Fast doublings exist for

Singular Edwards models in P2, using 3M + 4S.
Extended Edwards models in P3, using 4M + 4S.

This leads to the following complexities of [`] and addition ⊕:

Cost of 1S
[`] 1.00M 0.80M 0.67M ⊕

4M + 4S 8.00M 7.20M 6.67M 9M
(8M + 4S) log3(2) 7.57M 7.07M 6.73M 12M log3(2) = 7.57M
3M + 4S 7.0M 6.20M 5.67M 11M

This analysis brings tripling in line with with doubling (on optimal
models for each) for use in scalar multiplication in cryptography.
The method of analysis reduces the discovery of efficient arithmetic
to hand computation. THE END

David Kohel Institut de Mathématiques de Luminy The geometry of efficient arithmetic 21 / 21



Arithmetic on cubic models

Is this interesting?

Previous algorithms required 8M + 6S + 1m.

A comparison with doubling should scale by log3(2).
Fast doublings exist for

Singular Edwards models in P2, using 3M + 4S.
Extended Edwards models in P3, using 4M + 4S.

This leads to the following complexities of [`] and addition ⊕:

Cost of 1S
[`] 1.00M 0.80M 0.67M ⊕

4M + 4S 8.00M 7.20M 6.67M 9M
(8M + 4S) log3(2) 7.57M 7.07M 6.73M 12M log3(2) = 7.57M
3M + 4S 7.0M 6.20M 5.67M 11M

This analysis brings tripling in line with with doubling (on optimal
models for each) for use in scalar multiplication in cryptography.
The method of analysis reduces the discovery of efficient arithmetic
to hand computation. THE END
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