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Elliptic curve cryptography

In 1985, Miller and Koblitz introduced the use of elliptic curves in
cryptography. This replaced F∗p = Gm(Fp) (in the protocols of
Diffie and Hellman or ElGamal) with the group E (Fp) of rational
points on an elliptic curve E/Fp.

This was made possible by the introduction of a polynomial-time
algorithm of Schoof for computing the cardinality |E (Fp)| in the
same year.

The default model for computing in E (Fp) involved embedding E
as a Weierstrass model Y 2Z = X 3 + aXZ 2 + bZ 3 in P2, with
identity O = (0 : 1 : 0). We focus on the role of the choice of
model on the algorithms for elliptic curve arithmetic.



ELLIPTIC CURVES AND CRYPTOGRAPHY ELLIPTIC CURVE MODELS EXPLICIT CURVE ARITHMETIC

Addition morphism

On a Weierstrass model E , the addition morphism is defined by the
rule “three points on a line L sum to O”. This interprets the
relation

L.E = (P) + (Q) + (R) ∼ 3(O) = L∞.E ,

where L∞ = V (Z ) is the line at infinity, in the Picard group of E .
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Rational addition law on Weierstrass model

This rule determines the addition morphism µ : E × E → E on all
affine points

P1 = (x1, y1) = (x1 : y1 : 1) and P2 = (x2, y2) = (x2 : y2 : 1)

with x1 6= x2, by setting

λ =
y1 − y2
x1 − x2

, ν =
x1y2 − y1x2
x1 − x2

·

Then P1 + P2 = P3 = (x3, y3) = (λ2 − x1 − x2,−λx3 − ν).

N.B. This defines µ outside of the diagonal ∆, the antidiagonal ∇,
the horizontal H = E × {O} and vertical V = {O} × E divisors.
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A projective addition law on Weierstrass model

Projectively, in (X1,Y1,Z1) and (X2,Y2,Z2), we have

λ =
Y1Z2 − Z1Y2

X1Z2 − Z1X2
, ν =

X1Y2 − Y1X2

X1Z2 − Z1X2
,

and then

x3 =

(
Y1Z2 − Z1Y2

X1Z2 − Z1X2

)2

− X1Z2 + Z1X2

Z1Z2
,

y3 = −
(
Y1Z2 − Z1Y2

X1Z2 − Z1X2

)
x3 −

X1Y2 − Y1X2

X1Z2 − Z1X2
·

Clearing denominators we obtain bihomogeneous polynomial
expressions (X3,Y3,Z3) of bidegree (4, 4) in the input points,
or (3, 3) after exploiting a cancellation of Z1Z2 in x3.
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Projective addition laws on Weierstrass models

It was well-known (after Lange & Ruppert) that there exists a finite
dimensional space of bidegree (2, 2) addition laws (homogeneous
polynomial maps for µ), and that any nonzero addition law fails to
be defined on some divisor on E × E , its exceptional divisor.

Bosma & Lenstra computed explicit bidegree (2, 2) addition laws
for a Weierstrass model E , which span a 3-dimensional space, and
showed that two addition laws suffice to define µ globally.

However, compared to the bidegree (4, 4) addition law defined by

(X3(X1Z2 − Z1X2), Y3, (X1Z2 − Z1X2)3Z1Z2),

where

X3 = (Y1Z2 − Z1Y2)2Z1Z2 − (X1Z2 + Z1X2)(X1Z2 − Z1X2)2,
Y3 = −(Y1Z2 − Z1Y2)X3 − (X1Y2 − Y1X2)(X1Z2 − Z1X2)2Z1Z2,

the bidegree (2, 2) polynomials are too cumbersome to be practical.
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Scalar multiplication

The principal operation in elliptic curve cryptography is scalar
multiplication. To carry out [n] : E → E , the doubling morphism
[2] plays an important role. If nr . . . n0 is the binary representation
of n, then

[n]P =
r∑

i=0

ni [2
i ]P,

and we can determine [n]P(= Qr ) by calculating in parallel the
sequences (Pi ) and (Qi ) with P0 = P, Q0 = n0P,

Pi = [2i ]P = [2]Pi−1, and Qi = Qi−1 + niPi .

Using windowing methods, the number of calls to [2] exceeds
additions, and it becomes important to have efficient doubling.
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Arithmetic on Weierstrass models

If E has a rational 2-torsion point, then a speed-up can be
obtained by an isogeny decomposition

[2] = ϕ ◦ ϕ̂.

Optimally the isogenies ϕ and ϕ̂ are given by quadratic
polynomails.

Unfortunately for Weierstrass models, no quadratic polynomials
defining a 2-isogeny of Weierstrass models can exist.

Worse, any polynomial map (necessarily of degree ≥ 3) must fail
on some subset of points.

In contrast, quartic models in P3 admit 2-isogenies defined by
quadratic polynomials.
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Edwards model of elliptic curves

In 2007, Edwards introduced a model of elliptic curve with
remarkable properties. Bernstein, Lange, et al. carried out a
descent of the base field and twist , we obtain the twisted Edwards
model

E : ax2 + y2 = 1 + dz2, z = xy ,

with identity O = (0, 1, 0). This embeds via (1 : x : y : z) as the
project model in P3

aX 2
1 + X 2

2 = X 2
0 + dX 3

3 , X0X3 = X1X2.

This model combines features of efficient doubling and addition
laws, combined with arithmetic completeness — if d and d/a are
nonsquares in k∗, then a single addition law is valid for all points
over k .
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Edwards addition law

The interest in Edwards model is the simple rational addition law:

(x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3),
given by

x3 =
x1y2 + y1x2
1 + dz1z2

and y3 =
−ax1x2 + y1y2

1− dz1z2
with z3 = x3y3.

In terms of the projective model in P3, this gives

P + Q = (U0V0 : U0V1 : U1V0 : U1V1)

where each Ui , Vj are bilinear in the coordinates of P and Q:

(U0,U1) ∈
{ (

X2Y1 − X1Y2, X0Y3 − X3Y0

)
,(

X0Y0 − dX3Y3, X2Y2 − aX1Y1

) }
(V0,V1) ∈

{ (
aX1Y1 + X2Y2, X0Y3 + X3Y0

)
,(

X0Y0 + dX3Y3, X2Y1 + X1Y2

) }
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Edwards arithmetic

In comparison to the multipage formulas for bidegree (2, 2)
addition laws on the Weierstrass model, these addition laws on
Edwards’ model is strikingly elegant and efficient.

Moreover, specializing to Xi = Yi , we find simple expressions for
doubling as well, which also are everywhere defined.

These results spawned a minor industry of optimization of the pair
of elliptic curve model and algorithms for evaluating their addition
and doubling laws.
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Elliptic curve models

The previous discussion motivates the study of elliptic curves with
given projective model, by which we mean E/k with given
embedding ι : E → Pr .

The addition and doubling laws are polynomial expressions in
terms of the coordinate functions X0, . . . ,Xr , which play an
intrinsic role in their definition.

To understand elliptic curve arithmetic, rather than classifying
curves up to arbitrary isomorphism, we will be interested in elliptic
curves up to projective linear isomorphism.

Such a classification determines the complexity of arithmetic on
elliptic curves, up to additions and multiplications by constants.
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Embeddings by complete linear systems

The classification is simplified by the imposed condition that the
curve model is given by a complete linear system with respect to
an effective divisor D = (P0) + · · ·+ (Pr ).

If the Riemann-Roch space has basis (1, x1, . . . , xr ), the map

P 7−→ (1 : x1(P) : · · · : xr (P)).

gives an embedding in E → Pr (r = deg(D)− 1) such that the line
X0 = 0 then cuts out D.

The question of projective linear isomorphism between two models
for E is reduced to whether the two divisors are linearly equivalent.

This equivalence class, in turn, is uniquely determined by the
degree d = r + 1 and the point P = P0 + · · ·+ Pr ∈ E (k).
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Elliptic curve models

The fastest arithmetic is observed for elliptic curve models with a
high degree of symmetry. Such symmetries come from [−1] and
translation by points in a finite subgroup G ⊂ E [d ].

This suggests the study of elliptic curve models E → Pr ,
embedding with respect to a divisor D such that:

1 [−1] is a projective linear transformation.

2 Translation by P ∈ G acts by projective linear transformation.

Moreover by choose the basis of coordinate functions, so that
d-torsion points act by a combination of coordinate permutation
and scalar multiplication by roots of unity, the resulting addition
laws take a particularly simple form.
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Hessian normal form

For cubic models, it is natural to investigate models with 3-torsion
level structure, which acts linearly. The Hessian normal form is an
embedded cubic curve H ⊂ P2 given by

X 3 + Y 3 + Z 3 = dXYZ ,

and with identity (0 : 1 : −1). The 3-torsion subgroup decomposes
H[3] ∼= µµ3 × Z/3Z, such that P = (1 : ζ3 : ζ23 ) ∈ µµ3 acts by

(X : Y : Z ) 7→ (X : ζ3Y : ζ23Z ),

Q = (1 : −1 : 0) ∈ Z/3ZZ acts by (X : Y : Z ) 7→ (Y : Z : X ), and

[−1](X : Y : Z ) = (X : Z : Y ).

The line X0 = 0 cuts out a subgroup

{(0, 1,−1), (0, ζ3,−ζ23 ), (0, ζ23 ,−ζ3)}

isomorphic to µµ3 = {1, ζ3, ζ23}.
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Split µµ4-normal form

The split µµ4-normal form C ⊂ P3 is the elliptic curve model

X 2
0 − X 2

2 = c2 X1X3, X 2
1 − X 2

3 = c2 X0X2,

with identity O = (c : 1 : 0 : 1). A subgroup isomorphic to
µµ4 = {1, i ,−1,−i} is cut out by X2 = 0:

{(c : 1 : 0 : 1), (c : i : 0 : i), (c : −1 : 0 : −1), (c : −i : 0 : −i)}.

We note that this model is isomorphic to the −1-twist of an
Edwards curves, which admits addition laws with the most efficient
known evaluation algorithm, but has good reduction at 2.

The split µµ4-normal form is analogous to the above Hessian normal
form in that it parametrizes a full level-4 structure.
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Explicit addition laws

We recall that, by a theorem of Lange and Ruppert, the minimal
bidegree of any addition law is (2, 2), and for an elliptic curve
model of degree d , the laws of this minimal bidegree span a space
of dimension d .

We give the form of these addition laws, and the resulting
complexity for the above models.
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Addition laws: Hessian model

Theorem

The space of addition laws of bidegree (2, 2) on H is spanned by:

(X 2
1Y2Z2 − Y1Z1X

2
2 , Z

2
1X2Y2 − X1Y1Z

2
2 , Y 2

1 X2Z2 − X1Z1Y
2
2 ),

(X1Y1Y
2
2 − Z 2

1X2Z2, X1Z1X
2
2 − Y 2

1 Y2Z2, Y1Z1Z
2
2 − X 2

1X2Y2 ),
(X1Z1Z

2
2 − Y 2

1 X2Y2, Y1Z1Y
2
2 − X 2

1X2Z2, X1Y1X
2
2 − Z 2

1Y2Z2 ).

As a consequence, the doubling map sends (X ,Y ,Z ) to

(X (Y 3 − Z 3), (X 3 − Y 3)Z ,Y (Z 3 − X 3)).

The best known algorithms for evaluating these maps gives a
complexity of 12M for addition and 7M + 1S for doubling.
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Addition laws: split µµ4-normal form

Theorem

The space of addition laws of bidegree (2, 2) for C is spanned by :

(X 2
13 − X 2

31, c(X13X20 − X31X02), X 2
20 − X 2

02, c(X20X31 − X13X02)),
(c(X03X10 + X21X32), X 2

10 − X 2
32, c(X03X32 + X10X21), X 2

03 − X 2
21),

(X 2
00 − X 2

22, c(X00X11 − X22X33), X 2
11 − X 2

33, c(X00X33 − X11X22)),
(c(X01X30 + X12X23), X 2

01 − X 2
23, c(X01X12 + X23X30), X 2

30 − X 2
12),

where Xij = XiYj .

and the doubling map sends (X0,X1,X2,X3) to

(X 4
0 − X 4

2 , cX
2
0X

2
1 − cX 2

2X
2
3 ,X

4
1 − X 4

3 ,−cX 2
1X

2
2 + cX 2

0X
2
3 ).

We deduce the best known complexity for their evaluation: 8M for
addition (7M + 2S in char. 2) and 4M + 3S (2M + 5S in char. 2).
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