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Abstract. We give an overview of methods of construction of elliptic curves
which contain a subgroup of large prime order. Variations on the standard
random curve selection and complex multiplication methods are presented
for constructing elliptic curves containing a subgroup of large prime order.
The results of random curve selection and the CM method are qualitatively
contrasted in terms of the randomness of the resulting curves; in particular
we note that the CM method fails any reasonable measure of randomness if
applied over a base field of predetermined characteristic. We analyze both
practical and theoretical considerations in the choice of the group of points
used for cryptographic applications.

1. Introduction

An elliptic curve E over a finite field k is a nonsingular projective plane curve
defined by a Weierstrass equation

Y 2Z + (a1X + a3Z)Y Z = X3 + a2X
2Z + a4XZ

2 + a6Z
3,

with all ai in k. There is a unique point O = (0 : 1 : 0) on the line Z = 0, which
is specified as a distinguished point of the elliptic curve. It is thus standard to set
x = X/Z and y = Y/Z and defined E to be defined by the affine model

y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6,

of the curve, together with the distinguished point O at infinity.
The elliptic curve E over of field k can be identified with the set of points

E(k) = {O} ∪ {(α, β) |α, β ∈ k, β2 + (a1α+ a3)β = α3 + a2α
2 + a4α+ a6},

where k is an algebraic closure of k. Conversely the equation of the curve E is the
unique equation interpolating the points in the set E(k).

The set E(k) has the structure of an abelian group with identity O, under
the rule which says that three collinear points sum to O. More generally for any
field extension K/k we have a finite subgroup E(K) of K-rational points, and
for any k-algebra homomorphism K → L we have a homomorphism of groups
E(K) → E(L). We thus, in particular, distinguish the groups E(K), from the



geometric object E/k, which is a map associating a group to each field extension
K/k and defining compatible systems of maps between them.

The theory of elliptic curves and its connections to modular forms and class
field theory has a long and active history. This theory is treated, from a modern
viewpoint, in books of Silverman [26, 27], Hüsemoller [9], and Knapp [10]. Groups
of points on elliptic curves were suggested for use in cryptography independently
by Koblitz [11] and Miller [21]. The acceptance of elliptic curve cryptography is
attested in the new generation of books emphasizing elliptic curves over finite fields
from a cryptographic point of view, including the books of Menezes [19]; Blake,
Serousii and Smart [1]; and Enge [5].

A general group E(K) has the advantage over the corresponding multiplica-
tive group K∗ of the field, because the discrete logarithm problem appears to be
harder in general for the former. Moreover, for any given field K there exists a
large choice of curves. The multiplicative group K∗ can, in fact, be interpreted
as the group of points on a degenerate elliptic curve, or singular cubic curve (see
Chapter 3, §7, Hüsemoler [9]). It is therefore not unreasonable to expect that a
generic discrete logarithm algorithm for elliptic curves would apply as well to the
multiplicative group of a field.

In this paper we describe methods for constructing point groups of elliptic
curves of use for cryptography, and present some variants on the standard random
curve and complex multiplication (CM) constructions. Because the structure of the
groups E(K) is governed by the structure of the endomorphism ring of E, we begin
with background on endomorphisms of elliptic curves. In the following sections we
describe variants of the random curve and CM methods for construction of curves
with known numbers of points. Examples are chosen for pedagogic purposes. In
particular the bit size of the point groups (> 350) are in excess of the current
recommendations of 160–250 bits for commercial applications (see Lenstra and
Verheul [16]), but demonstrate the effectiveness of a construction where point
counting becomes nontrivial. On the other hand, this bit size is not unreasonably
large for military applications in which a 50 year life span of confidentiality is
insufficient or in cases where an additional security margin is sought. We take the
conservative position that to ensure a sufficiently general construction, the elliptic
curve should be chosen at random from a pool large enough to be effectively
innumerable. This contrasts in particular with suggestions for use of curves over
small fields, curves generated by the complex multiplication method over any field
of prespecified characteristic, or, in the extreme, of one of the two ordinary elliptic
curves over F2. In this view, the given example of the CM method over a field
of characteristic 2 is taken purely for the sake of comparison of the CM and
random curve methods, since the use of the CM method over a field of fixed
characteristic violates this principle. In the final section we discuss this randomness
criterion, make qualitative contrasts of “random” and “CM” curves, and discuss
the implications of cryptographic use of point groups over proper extensions of the
base field, in particular in light of the work of Gaudry, Hess and Smart [7].



2. Endomorphism Structure of Elliptic Curves

The structure of the abelian groups E(K) is intimately related to the endomor-
phism ring structure of E and, in particular, to the distinguished Frobenius el-
ement. We therefore we recall some background material on endomorphisms of
elliptic curves as a means of constructing and analyzing rational point groups
appropriate for cryptographic use.

An endomorphism φ : E → E is a rational polynomial map

(x, y) 7→ (f(x), g(x, y)),

where g(x, y) = g1(x)y + g0(x) with f(x), g1(x), and g0(x) in k(x), such that

g(x, y)2 + (a1f(x) + a3)g(x, y) = f(x)3 + a2f(x)2 + a4f(x) + a6,

and which takes O to O. As a consequence of the definition, an endomorphism
φ induces a homomorphism E(K) → E(K) for any field extension K/k. Thus
the addition law on the curve gives a well-defined addition of endomorphisms, and
composition defines a compatible associative multiplication operation. This gives a
ring structure to the set Endk(E) of endomorphisms, in which the multiplication-
by-n maps [n] define a subring isomorphic to Z.

For an elliptic curve E/k, where |k| = q, we define the distinguished Frobenius
endomorphism φ : E → E by

(x, y) 7→ (xq, yq).

Clearly φ(P ) = P if and only if the point P is in E(k). By a standard result of
Hasse (see Silverman [26]), the Frobenius endomorphism satisfies a characteristic
equation X2 − tX + q = 0, where t is an integer satisfying |t| ≤ 2

√
q.

If the trace of Frobenius t is congruent to 0 mod p, we say that the curve is
supersingular, otherwise we call it ordinary. Menezes, Okamoto and Vanstone [20]
have proved that the discrete logarithm on supersingular elliptic curves can be
reduced to a discrete logarithm in the multiplicative group of a finite extension
field of degree generally 2, and at most 6, over the base field. This reduction to
finite fields holds in general. However, in the ordinary case, Koblitz [12] has proved
that the degree of the extension is generically large. We thus consider only the
ordinary case for the purpose of cryptography. The following theorem, however,
on the structure of endomorphisms, holds in general.

Theorem 1. Let ψ be an endomorphism of E not contained in Z. Then ψ has an
irreducible characteristic polynomial X2 +aX+ b and generates a ring isomorphic
to the imaginary quadratic order O = Z[X]/(X2 + aX + b). The map

ρ = [n] + [m]ψ 7−→ ρ̂ = [n− am]− [m]ψ

defines an automorphism of Z[ψ] and Tr(ρ) = ρ+ ρ̂ and N(ρ) = ρρ̂ agree with the
trace and norm from O to Z. In particular we have Tr(ψ) = −[a] and N(ψ) = [b].



Proof. This follows from the standard properties of the dual isogeny, for which we
refer to Chapter III §6 of Silverman [26], noting that ρ̂ is the dual of ρ and N(ρ)
is its degree.

For an ordinary elliptic curve E, the endomorphism ring Endk(E) is a com-
mutative ring of rank 2 over Z, and the full endomorphism ring is generated by an
element ψ satisfying φ = [n] + [m]ψ for integers n and m. If K is a field extension
of degree r over k, then φr acts as the identity on the points in E(K), so that
φr − 1 is in the kernel of the action of Endk(E) on E(K). In fact the following
stronger result holds.

Theorem 2. There exists a noncanonical isomorphism of Endk(E)-modules

E(K) ∼= Endk(E)/(φr − 1).

In particular, the number |E(K)| of K-rational points is given by N(φr − 1).

Proof. The isomorphism appears in Theorem 1 of Lenstra [15]. An analysis of this
isomorphism shows that

Endk(E)/(φr − 1) ∼= Z/m1Z× Z/(N(φr − 1)/m1)Z,

where m1 is the largest divisor of [Endk(E) : Z[φ]] such that φr ≡ 1 mod m1.
This isomorphism will be the main tool used for the construction and analysis

of groups of rational points on elliptic curves. The group order N(φr − 1) can be
rapidly computed from Theorem 1. Let t be the trace of of Frobenius, and write

Xr − 1 ≡ uX + v mod (X2 − tX + q).

Then we find the explicit form

N(φr − 1) = u2q + t uv + v2,

for the number of points in E(K). We note that m = [Endk(E) : Z[φ]] is a
well-defined invariant of the curve E/k, and together with the trace t, suffices
to determine the group structure of E(K) for all extensions K/k. For further
information in this direction we refer to the thesis of the author [13].

An elliptic curve over a finite field can be considered as the reduction of an
elliptic curve over a number ring. As such it is an element of a two parameter family.
The first parameter is the j-invariant of the curve, and the second is the prime of
reduction. There are two approaches to the problem of choosing suitable elliptic
curves for cryptographic use, which correspond to fixing one of the parameters and
choosing the second at random. In the complex multiplication (CM) method we
choose a suitable j-invariant of a curve, and the prime of reduction is determined
subsequently. The random curve method first fixes the base field, essentially fixing
a prime of reduction, then selects random curves to find one with good properties.
We explore aspects of these two methods in the sections which follow.



3. Random Curve Selection

We let k be fixed, and choose E/k at random. The order of E(k) can be computed
in polynomial time using the SEA method of Schoof [24], with improvements of
Elkies [4] and Atkin. We continue until we find a curve whose order is divisible by
a large prime.

When the construction time is critical or a sophisticated point counting al-
gorithm unavailable, we can consider the following variant of the random curve
method. Let K be a fixed finite field, and let k be a proper subfield. We choose
E/k at random, compute the group order E(k) over the smaller field. Then by
Theorem 2, the order of E(K) is given by N(φr − 1), where φ is the Frobenius
endomorphism relative to k. Since N(φ − 1) is a divisor of relatively small order,
the objective is to find a large prime factor in

|E(K)/E(k)| = N(φr − 1)/N(φ− 1).

Example 3. Choosing random elliptic curves over k = F231 , we obtain a particular
example:

y2 + xy = x3 + γ,

having Tr(φ) = 77689, where γ = w217980880 and w31 + w3 + 1 = 0. Over an
extension K = F2403 of degree 13, we find the order of the group E(K)/E(k) to
be:

N(φ13 − 1)/N(φ− 1) = 79 · p366

containing a 366-bit prime factor p366.

We note that the endomorphism ring has discriminantD = −2554353871 and
class number 42966. The size of the class number makes this curve impractical to
construct by the complex multiplication method which follows. We return to the
implications of this in the final section.

4. CM Constructions

For any negative integer D congruent to 0 or 1 mod 4, there exists, up to isomor-
phism, a unique imaginary quadratic order O = Z[(D +

√
D)/2]. In the complex

multiplication method we choose a discriminant D of an imaginary quadratic or-
der and find a finite field of q elements such that m2D = t2 − 4q for integers t
and m and such that q − t+ 1 contains a large prime factor. We denote by (D/p)
the Legendre symbol for the prime p. The existence and construction of an elliptic
curve with this discriminant is given by the following theorem.

Theorem 4. For O to be the endomorphism ring of an ordinary elliptic curve E
over k of characteristic p, it is necessary and sufficient that

1. D = disc(O) satisfies (D/p) = 1; and
2. The order in the class group of a prime over p divides [k : Fp].



Proof. The results follow from the classical class field theory for complex multi-
plication, going back to Deuring [3]. The first condition ensures that the elliptic
curve is ordinary, and follows from Chapter 10 or Theorem 12 of Chapter 13 in
Lang [14]. The second condition defines the minimal field of definition of E, and
is a consequence of Theorem7 of Chapter 12 of the same volume.

4.1. Class Polynomial Construction

In order to construct an elliptic curve with complex multiplication we use some
classical constructions of class field theory. The following theorem is the effective
variant of Theorem 4 used to produce the j-invariant of a particular elliptic curve.

Theorem 5. Let O be an imaginary quadratic order of discriminant D and class
number h(O). There exists a unique monic irreducible polynomial HD(X) of degree
h(O) such that E is an ordinary elliptic curve over a field k of characteristic p
with endomorphism ring O if and only if (D/p) = 1 and the j-invariant of E is a
root of HD(X) mod p in k.

The theorem is effective, since the roots of the class polynomial HD(X) can
be computed over C as special values of the modular function j(τ) on points τ
representing the R-ideal classes (see Section 7.6.2 of Cohen [2]). By computing the
roots to sufficient precision, the polynomial HD(X) is determined as an element
of Z[X]. For the discriminant −47, we find that H−47(X) equals

X5 + 2257834125X4 − 9987963828125X3 + 5115161850595703125X2

− 14982472850828613281250X + 16042929600623870849609375

On the other hand the size of the coefficients rapidly becomes an obstacle, as
suggested by this small example. For D in restricted congruence classes we obtain
alternative class polynomials over Z with smaller coefficients. For instance Yui
and Zagier [31] prove the existence of a class polynomial WD(X) defined for D ≡
1 mod 8 and D 6= 0 mod 3 using Weber functions. The class polynomial W−47(X)
takes the more compact form:

X5 − 2X4 + 3X3 − 3X2 +X + 1.

A root α of this equation corresponds to the j-invariant j = (α24−16)3/α24, from
which we can construct a curve with the desired endomorphism ring j-invariant j
is by Theorem 6 which follows.

Since one is interested only in the roots of the class polynomials modulo a
prime, the size of the coefficients of WD(X), computed using special values of ana-
lytic functions in C, is only relevant to prevent coefficient explosion over Z. Similar
class polynomials, of reduced coefficient size, can be defined for discriminants in
other congruence classes (see Gee [8]).

4.2. Isomorphism Classes of Elliptic Curves

In order to pass from a class polynomial to an elliptic curve with known number
of points, we require a construction for curves with given j-invariant. An elliptic
curve, however, may have several nonisomorphic twists with the same j-invariant.



The following theorem classifies all elliptic curves over a finite field k with given
j-invariant.

Theorem 6. Let j be an element of a finite field k, and denote by k∗n the subgroup
of n-th residues in k∗.

If k has characteristic 2, then all isomorphism classes of curves E with j-
invariant j are given by the following equations:

(1) y2 + a3y = x3 + a4x+ a6, if j = 0,
(2) y2 + xy = x3 + a2x

2 − 1/j, if j 6= 0.

In the first, supersingular, case, the coefficient a3 is a unit whose class in k∗/k∗3

is determined by the isomorphism class of the curve. Two curves with coefficients
a3, a4, a6 and a′3, a

′
4, a

′
6 are isomorphic exactly when a′3 = u3a3; when a′4 and u4a4

are in the same additive class mod ker(Trk
` ), where ` = k ∩ F4; and when a′6 and

u6a6 are in the same additive class mod ker(Trk
F2

). In the second, ordinary, case,
the isomorphism class is uniquely determined by the class of a2 mod ker(Trk

F2
).

If k has characteristic 3, then all isomorphism classes of curves with j-
invariant j are given by the following equations:

(1) y2 = x3 + a4x+ a6, if j = 0,
(2) y2 = x3 + a2x

2 − a3
2/j, if j 6= 0.

In the first, supersingular, case, the coefficient a4 is a unit whose class in k∗/k∗4 is
determined by the isomorphism class of the curve. Two curves with coefficients a4,
a6 and a′4 a

′
6 are isomorphic exactly when a4 = u4a′4 and the equation r3 + a4r +

a6 = u6a′6 has a solution r in k. In the second, ordinary, case, the isomorphism
class is uniquely determined by the class of a2 in k∗/k∗2.

If k has characteristic ≥ 5, then all isomorphism classes of curves with j-
invariant j are given by the following equations with t in k∗:

(1) y2 = x3 + a6, if j = 0,
(2) y2 = x3 + a4x, if j = 123,
(3) y2 = x3 − a2

2jx/48(j − 1728) + a3
2j/864(j − 1728) otherwise.

The isomorphism class is uniquely determined by the class of an in k∗/k∗n.

Proof. This follows by explicit verification, starting from the form of an isomor-
phism given in Appendix A of Silverman [26]. For the conditions in characteristic
2, we observe that a ≡ b mod ker(Trk

F2
) is equivalent to Trk

F2
(a) = Trk

F2
(b) and also

to the existence of a solution r to the equation r2 + r = a+ b over k.
We note that Morain [22] finds a more refined expression for the supersingular

elliptic curves in characteristic 3, which also classifies the corresponding trace.
This builds on Schoof [25], who does a complete enumeration of the abstract
isomorphism classes of elliptic curves in terms of endomorphism rings structure.
A more refined analysis of the supersingular case in characteristic 2 would provide
a similar classification of the trace in terms of explicit equations.



4.3. CM Example

By Theorem 4 and Theorem 5 the degree of the field extension k/Fp must divide
the degree of the class polynomial HD(X) or of an alternate class polynomial.
For large degree extensions over Fp of small characteristic, the computation of the
class polynomial becomes computationally expensive. To compensate, we indicate
how to employ an intermediate degree extension to useful effect.

By sieving over small discriminants, we choose a discriminant D = −8647
with class number 31, the class group being generated by a prime p2 over 2.
Therefore there exists a curve E over k = F231 with endomorphism ring of this
discriminant. Prior to doing any computations with curves, we find that the ring
Z[φ] generated by Frobenius is isomorphic to Z[X]/(X2 − tX + 231), where t =
±35875.

Over a degree 13 extension K = F2403/k we find that the group order of
E(K)/E(k) is either equal to a large composite number with small prime factors
if t = −35875, or equals

N(φ13 − 1)/N(φ− 1) = 157 · 7333 · p352,

for a 352-bit prime p352 when t = 35875.
In order to construct an elliptic curve with this trace, we compute the Weber

class polynomial W−8647(X), which takes the form:

X31 − 33X30 + 135X29 + 1585X28 + 16905X27 + 77577X26

+ 261396X25 + 677142X24 + 1406953X23 + 2509293X22

+ 4044270X21 + 6101029X20 + 8852701X19 + 12285213X18

+ 15808518X17 + 18153439X16 + 17693230X15 + 13330467X14

+ 5493408X13 − 3612428X12 − 10816811X11 − 13646625X10

− 11600862X9 − 6330185X8 − 678696X7 + 3083034X6

+ 4212540X5 + 3382143X4 + 1882711X3 + 683247X2

+ 136725X + 1

Then W−8647(X) mod 2 has a root α = w1023401681 over F2[w] = F231 , where w
has minimal polynomial X31 + X3 + 1. From the associated j-invariant, we first
construct the curve y2+xy = x3+γ by Theorem 6, where γ = w1878640454 and find
that the trace of the Frobenius endomorphism is −35875. Passing to the quadratic
twist we find the curve

y2 + xy = x3 + x2 + γ,

with the desired trace 35875.

4.4. Sieving for Discriminants

For a fixed field k of cardinality q = ps one can sieve for discriminants D up
to a particular bound which satisfy the conditions of Theorem 4. The condition
(D/p) = 1 implies that there exists a prime p over p, and one can quickly test if



ps is a principal ideal. The following corollary of Theorem 4 gives a more direct
approach to finding a suitable D.

Corollary 7. Let k be a field of q elements and let m be an integer coprime to
q. For any integer t such that t2 ≡ 4q mod m2 with |t| ≤ 2

√
q, the integer D =

(t2 − 4q)/m2 is the discriminant of the endomorphism ring of an ordinary elliptic
curve over k.

While this approach is constructive, using factorization modulo the prime
divisors of m and Hensel lifting, the problem remains that the computation of class
polynomials appears to have exponential complexity, which effectively implies an
absolute bound on the discriminant. Thus, in practice, it is necessary to choose m
sufficiently large such that |D| is of a prescribed size.

5. Cryptographic Considerations

5.1. Enumerability of Curves

In the examples, we have specified the exact field F231 over which we are to choose
an elliptic curve. The size of the field is sufficiently large that it is meaningful to
speak of a randomly selected curve as being generic. However, if the CM method
is used, then the number of curves available for use becomes severely constrained.
The discriminants with |D| < 104, D ≡ 1 mod 8, and in which a prime over 2 has
order 31 in the class group are limited to the 11 values

−719,−911,−2471,−2927,−3727,−4159,−4247,−4951,−6439,−7639,−8647.

With |D| < 105, |D| < 106, and |D| < 107 these numbers are 50, 191, and
623, respectively. The expected size of the class number of D and the size of the
coefficients of a class polynomial place an effective absolute upper bound on the
size of |D|. Thus for fixed field k there are a very constrained set of discriminants of
small absolute value which can be the endomorphism ring of a curve over k. Thus,
as the above example shows, the CM method, when used over fixed base ring or
characteristic, is tantamount to prescribing a fixed enumerable set of curves of use
for cryptography. In order to regain a reasonable concept of randomness, the CM
method should only be applied in a context where the characteristic of the finite
field is not prespecified.

5.2. Qualitative Distinction of CM and Random Curves

The methods presented here for computing class polynomials severely limit the
size of a CM discriminant. As indicated above this means that the number of
constructible curves over any particular field will be be contained in an enumerable
set of curves. These curves will have the property that the discriminant of the
endomorphism ring is exceptionally small compared to the general case. Indeed
the method by which a curve was produced can be effectively determined by the
size of the discriminant. While defined over the same field, the random curve
method gave rise to a curve with D = −2554353871 and class number 42966,



while in the CM method we constructed a curve of discriminant D = −8647 with
class number 31. While no specific attacks profit exceptionally from the special
form of elliptic curves constructed by the CM method, the potential remains.

5.3. Working over Field Extensions

In both examples given above we chose to define a curve over a field k and work
in the group of rational points over a proper extension K. By working over an
extension field of degree r, one loses r bits due to the small subgroup E(k) of
order N(φ − 1). The benefit is a more time efficient construction of the elliptic
curve.

One advantage of these sort of composite degree extensions is the use of the
Frobenius endomorphism with respect to k on the group E(K). The Frobenius
endomorphism can be rapidly computed without divisions in the field K. The
following corollary of Theorem 2 describes the action of Frobenius on the cyclic
subgroups of interest in cryptography.

Corollary 8. Let E be an elliptic curve over k and let K be an extension of degree
r over k. Suppose that n is a prime divisor of |E(K)| and is coprime to |E(K)|/n.
Then E(K) contains a subgroup H of order n and

Endk(E)/(φr − 1, n) ∼= H ∼= Z/nZ,

where (φr − 1, n) is the ideal generated by φr − 1 and n. In particular φ acts as [a]
on H for some r-th root of unity modulo n.

This permits scalar multiplication to be computed in base φ or base 2. In-
deed, the work of Müller [23] in characteristic 2 and Smart [28] in odd character-
istic, based on [18] and [29], exploit base φ representations for efficiency of scalar
multiplication. The work of Wiener and Zuccherato [30] and Gallant, Lambert,
and Vanstone [6], shows that an attacker also benefits by a factor of r1/2, where
r = [K : k], in the discrete logarithm on such a curve. Since the algorithm re-
mains exponential, this work is relevant when applied to a cryptosystem of critical
security margin.

The recent work of Gaudry, Hess, and Smart [7] shows how the process of Weil
decent in characteristic 2 can reduce a discrete logarithm on an elliptic curve over
and extension k of F2 to a discrete logarithm in the Jacobian J of a hyperelliptic
curve C over a proper subfield `. This method maps the discrete logarithm in
E(k) to that in J(`), with an explicit criterion for testing whether the map is
injective. This, however, does not apply to the discrete logarithm problem in the
point group E(K) when K is a proper extension K/k. Thus an interesting open
question is whether a discrete logarithm in E(K) can be mapped injectively into
a discrete logarithm problem in J(L) for a proper subfield L of K. The method of
Gaudry et al. was found to be effective when the extension degree was < 5. In the
event of an affirmative answer to this question, the choice of base field F231 of the
examples taken for this exposition should be of sufficiently large prime degree over
F2 that the size of the genus of the curve C found by Weil descent would make this



reduction an impractical means of attack. Moreover, the same construction, when
applied in odd characteristic, even p = 3, fails to give a reduction to a discrete
logarithm on a curve of particularly simple form.

We note that the use of a proper subgroup of E(K), as presented in the
examples, is potentially susceptible to the protocol attack of Lim and Lee [17].
The proper design of an encryption protocol, while not treated here, is of equal
importance to the proper construction and choice of the group. In this instance,
to prevent the leakage of bits, the design of a cryptoscheme on such a group
must incorporate a verification of the order of an input message, or include a
premultiplication by the cofactor, to eliminate the telltale “witness” to the secret
key.
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