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Abstract. Let E be an elliptic curve, K1 its Kummer curve E/{±1},
E2 its square product, and K2 the split Kummer surface E2/{±1}. The
addition law on E2 gives a large endomorphism ring, which induce en-
domorphisms of K2. With a view to the practical applications to scalar
multiplication on K1, we study the explicit arithmetic of K2.

1 Introduction

Let A be an abelian group, whose group law is expressed additively. Let M2(Z)
be the subring of End(A2), acting as

α(x, y) = (ax+ by, cx+ dy) where α =
(
a b
c d

)
·

Define endomorphisms σ and ϕi by

σ =
(

0 1
1 0

)
, ϕ = ϕ0 =

(
2 0
1 1

)
, and ϕ1 = σϕσ =

(
1 1
0 2

)
.

The Montgomery ladder for scalar multiplication by an integer n is expressed
on A2 by the recursion

vr = (0, x) and vi = ϕni
(vi+1) for i = r − 1, . . . , 1, 0,

where n has binary representation nr−1 . . . n1n0. The successive steps vi in the
ladder are of the form (mx, (m + 1)x) and v0 = (nx, (n + 1)x), from which we
output nx (see Montgomery [10] and Joye [8] for general formulation). We refer
to ϕ as the Montgomery endomorphism.

Since −1 is an automorphism in the center of M2(Z), an endomorphism of
A2 also acts on the quotient A2/{±1}. In particular, we will derive expressions
of the above operators on the split Kummer surface K2 = E2/{±1} associated
to an elliptic curve E.



Prior work has focused on Kummer curves K1 = E/{±1} ∼= P1, deter-
mined by the quotient π : E → K1, often expressed as operating only on the
x-coordinate of a Weierstrass model (see Montgomery [10], Brier and Joye [3] and
Izu and Takagi [7]). Such methods consider the full quotient K 2

1 = E2/{(±1,±1)}.
For this approach one takes the endomorphism

ρ =
(

1 1
1 −1

)
,

arising in duplication formulas for theta functions [11]. This endomorphism satis-
fies ρ2 = 2, giving a factorization of 2 in End(E2), and induces an endomorphism
of K2, which we also refer to as ρ. This gives a commutative diagram:

E2

��

ρ
//

&&NNNNNNNNN E2

��

K2

��

ρ
//

&&MMMMMMMMM K2

��

K 2
1 K 2

1 .

Although ρ does not extend to an endomorphism of K 2
1 we obtain a system of

polynomial equations in K 2
1 ×K 2

1 from the graph:

Γρ =
{(

(P,Q), ρ(P,Q)
)

: (P,Q) ∈ E2
}
⊂ E2 × E2.

One recovers π(P +Q) from specializing this sytem at known points π(P ), π(Q)
and π(P −Q). By considering the partial quotient K2 as a double cover of K 2

1 ,
we obtain endmorphisms of K2 induced by the isogenies ρ as well as ϕ0 and ϕ1.

Since the structure of addition laws of abelian varieties, or isogenies in gen-
eral, depends intrinsically on the embedding in projective space (see [6], [9]), we
develop specific models for the Kummer surface K2 associated to a model of
an elliptic curve E with prescribed embedding. For this purpose we investigate
Edwards models for elliptic curves embedded in P3.

2 Projective embeddings of a Kummer variety K

Let k be a field of characteristic different from 2 and A/k an abelian variety.
An addition law on A is defined by Lange and Ruppert [9] to be a polynomial
representative for the addition morphism A2 → A. Such maps depend in an
essential way on its projective embedding. Similarly, the explicit polynomial
maps for morphisms of the Kummer variety K = A/{±1} depend on a choice
of its projective embedding. We approach the problem of embedding K in the
following way.

Let i : A → Pr be a projectively normal embedding (see [6] for a definition
and motivation for this hypothesis), determined by a symmetric invertible sheaf
L = OA(1) = i∗OPr (1) and let π : A → K be the projection morphism.



We say that an embedding j : K → Ps is compatible with i : A → Pr if
π is represented by a linear polynomial map. In terms of the invertible sheaf
L1 = OK (1) = j∗OPs(1), this condition is equivalent to:

Hom(π∗L1,L ) ∼= Γ(A, π∗L −1
1 ⊗L ) 6= 0,

where Γ(A,M ) is the space of global sections for a sheaf M . If we have π∗L1
∼=

L then Hom(π∗L1,L ) ∼= k, and π admits a unique linear polynomial map, up
to scalar.

Conversely we can construct an embedding of K comptable with given i :
A → Pr as follows. The condition that i : A → Pr is projectively normal is
equivalent to an isomorphism of graded rings

k[X0, X1, . . . , Xr]/IA =
∞⊕
n=0

Γ(A,L n),

where IA is the defining ideal for A in Pr. We fix an isomorphism L ∼= [−1]∗L ,
from which we obtain an eigenspace decomposition of the spaces Γ(A,L n):

Γ(A,L n) = Γ(A,L n)+ ⊕ Γ(A,L n)−.

The sign is noncanonical, but we may choose the sign for the isomorphism L ∼=
[−1]∗L such that dim Γ(A,L )+ ≥ dim Γ(A,L )−. Setting V = Γ(A,L )+, we
define j : K → Ps by the image of A in Ps = P(V ). This defines the sheaf
L1 = j∗OPs(1) and gives a homomorphism π∗L1 → L .

In what follows we carry out this construction to determine projective em-
beddings for the Kummer varieties K1 and K2 associated to an elliptic curve
embedded as an Edwards model in P3, and study the form of the endomorphisms
σ, ϕ and ρ.

3 Edwards model and projective embeddings of K1

Let E be an elliptic curve embedded in P3 as an Edwards model (see Edwards [4],
Bernstein and Lange [1], and Hisil et al. [5] or Kohel [6] for this form):

X2
0 + dX2

3 = X2
1 +X2

2 , X0X3 = X1X2,

with identity O = (1 : 0 : 1 : 0), and negation map

[−1](X0 : X1 : X2 : X3) = (X0 : −X1 : X2 : −X3).

The eigenspace decomposition for Γ(E,L ) is

Γ(E,L ) =
4⊕
i=1

kXi = (kX0 ⊕ kX1)⊕ (kX2 ⊕ kX3).

The Kummer curve of E is K1
∼= P1, with quotient map

(X0 : X1 : X2 : X3) 7→ (X0 : X2) = (X1 : X3).

We can now express the scalar multiplication by 2 on K1 in terms of coordinate
functions X0, X1 on K1.



Lemma 1. The duplication morphism [2] : K1 → K1 is uniquely represented by
the polynomial map

(X0 : X1) 7→ ((d− 1)X4
0 − d(X2

0 −X2
1 )2 : (X2

0 −X2
1 )2 + (d− 1)X4

1 ).

Proof. The correctness of the polynomial map can be directly verified by the
fact that the known endomorphisms [2] on E commutes with π and the above
polynomial map for [2] on K1. The uniqueness follows from the existence of the
above degree four polynomial expressions, since from deg([2]) = 4 we obtain
[2]∗L1

∼= L 4
1 . Since degree n polynomial expressions for a morphism ψ are in

bijection with
Hom(ψ∗L1,L

n
1 ) ∼= Γ(E,ψ∗L −1

1 ⊗L n
1 ),

the result follows. ut

4 Segre embedings and projective products

In general a projective model behaves well with respect to the theory. In order
to characterize a product X × Y with X ⊆ Pr and Y ⊆ Ps we apply the Segre
embedding S : Pr × Ps → Prs+r+s given by(

(X0 : X1 : · · · : Xr), (Y0 : Y1 : · · · : Ys)
)
7−→ (X0Y0 : X1Y0 : · · · : XrYs),

and consider the image S(X × Y ) in Prs+r+s.
For r = s = 1, we have (r + 1) + (s + 1) = 4 coordinates to represent a

point in P1 × P1 and (r+ 1)(s+ 1) = 4 coordinates for a point in P3. For higher
degrees or powers Pr1 × · · · × Prt the Segre embedding becomes unwieldy for
explicit computation.

In particular, for the product K 2
1
∼= P1×P1 this gives the embedding of K 2

1

in P3 as the hypersurface U0U3 = U1U2, given by(
(X0 : X1), (Y0 : Y1)

)
7−→ (U0 : U1 : U2 : U3) = (X0Y0 : X1Y0 : X0Y1 : X1Y1).

The inverse is given by the product of projections π1 : S(K 2
1 )→ K1

(U0 : U1 : U2 : U3) 7−→ (U0 : U1) = (U2 : U3),

and π2 : S(K 2
1 )→ K1

(U0 : U1 : U2 : U3) 7−→ (U0 : U2) = (U1 : U3).

Each projection is represented locally by a two-dimensional space of linear poly-
nomial maps, but no such map defines πi globally as a morphism.

We use the Segre embedding K 2
1 → S(K 2

1 ) to provide a projective embed-
ding for K 2

1 and construct K2 as a double cover of S(K 2
1 ) in S(K 2

1 ) × P1 ⊆
P3 × P1. To preserve the compactness of the representation we work with the
model in P3 × P1, rather than its model in P7, however we give this model in
Theorem 1.



In order to define a morphism K2 → K2 it suffices to make use of the
factorization through K 2

1 × P1 to each of the products. Thus a morphism ψ :
X → K2 is determined by three maps ψi = πi◦ψ for 1 ≤ i ≤ 3, and a composition
with a Segre embedding of K 2

1 to P3 gives the map to K2 in P3 × P1. We note,
however, that expansion of polynomial maps for this factorization S ◦ (π1 × π2)
may yield polynomial maps of higher degree than K2 → S(K 2

1 ) directly (see
Theorem 1).

Note. Despite the isomorphism K1
∼= P1, and even equality under the projective

embedding, we write K 2
1 and K 2

1 × P1 rather than (P1)2 and (P1)3 in order to
reflect the distinguished role of the two Kummer curves in this product.

5 Edwards model and projective embeddings of K2

We now describe the embeddings of K2 as a double cover of K 2
1 .

Theorem 1. Let E : X2
0 + dX2

3 = X2
1 +X2

2 , X0X3 = X1X3 be an elliptic curve
in P3 with identity O = (1 : 0 : 1 : 0). The Kummer surface K2 has a model as
a hypersurface in K 2

1 × P1 given by

(X2
0 −X2

1 )(Y 2
0 − Y 2

1 )Z2
0 = (X2

0 − dX2
1 )(Y 2

0 − dY 2
1 )Z2

1 ,

with base point π(O) = ((1 : 1), (1 : 1), (1 : 0)), and projection E2 → K2 given
by π1(P,Q) = (X0 : X2), π2(P,Q) = (Y0 : Y2), and

π3(P,Q) = (X0Y0 : X1Y1) = (X2Y0 : X3Y1) = (X0Y2 : X1Y3) = (X2Y2 : X3Y3),

where (P,Q) =
(
(X0 : X1 : X2 : X3), (Y0 : Y1 : Y2 : Y3)

)
.

Under the Segre embedding S : K 2
1 7→ P3, this determines the variety in

P3 × P1 cut out by

(U2
0 − U2

1 − U2
2 + U2

3 )Z2
0 = (U2

0 − dU2
1 − dU2

2 + d2U2
3 )Z2

1 ,

on the hypersurface U0U3 = U1U2 defining S(K 2
1 ). The Segre embedding of K2

in P7 is cut out by the quadratic relation

T 2
0 − T 2

1 − T 2
2 + T 2

3 = T 2
4 − dT 2

5 − dT 2
6 + d2T 2

7 ,

on the image of the Segre embedding of (P1)3 → P7, determined by:

T0T3 = T1T2, T0T5 = T1T4, T0T6 = T2T4,
T0T7 = T3T4, T1T6 = T3T4, T1T7 = T3T5,
T2T5 = T3T4, T2T7 = T3T6, T4T7 = T5T6.

The morphism to E2 → S(K2) ⊆ P7 is determined by:

(X0Y0 : X2Y0 : X0Y2 : X2Y2, X1Y1 : X3Y1 : X1Y3 : X3Y3).



Proof. The quadratic relation for K2 in K 2
1 × P1:

(X2
0 −X2

1 )(Y 2
0 − Y 2

1 )Z2
0 = (X2

0 − dX2
1 )(Y 2

0 − dY 2
1 )Z2

1 ,

follows by pulling back the relation to E2 by

π∗(Y1/Y0) = (Y2/Y0), π∗(X1/X0) = (X2/X0), π∗(Z1/Z0)2 = (X1Y1/X0Y0)2.

Since the morphism maps through E2/{±1}, defines a double cover of K 2
1 ,

and is irreducible, we conclude that the quadratic relation determines K2. The
remaining models follow by tracing this quadratic relation through the Segre
embeddings.

The last model, in P7, can be interpreted as coming from the construction of
Section 2, applied to the Segre embedding of E2 in P15. The sixteen-dimensional
space of global sections splits into two eight-dimensional subspaces, for which

{X0Y0 : X2Y0 : X0Y2 : X2Y2, X1Y1 : X3Y1 : X1Y3 : X3Y3}

forms a basis for the plus one eigenspace. The compatibility of the maps from
E2 is verified by projecting from the models in P7 and P3 × P1 to K 2

1 × P1. ut

The description of the maps in the previous theorem, together with the action
of [−1] on the Edwards model, implies the next corollary.

Corollary 1. The automorphism σ : E2 → E2 given by (P,Q) 7→ (Q,P ) in-
duces the automorphism of K2 in the respective models in K 2

1 ×P1, P3×P1 and
P7: (

(X0 : X1), (Y0 : Y1), (Z0 : Z1)
)
7→
(
(Y0 : Y1), (X0 : X1), (Z0 : Z1)

)
,(

(U0 : U1 : U2 : U3), (Z0 : Z1)
)
7→
(
(U0 : U2 : U1 : U3), (Z0 : Z1)

)
,

(T0 : T1 : T2 : T3 : T4 : T5 : T6 : T7) 7→ (T0 : T2 : T1 : T3 : T4 : T6 : T5 : T7).

The automorphism ι : K2 → K2 induced by the automorphisms [−1] × [1] and
[1]× [−1] of E2 is given by:(

(X0 : X1), (Y0 : Y1), (Z0 : Z1)
)
7→
(
(X0 : X1), (Y0 : Y1), (Z0 : −Z1)

)
,(

(U0 : U1 : U2 : U3), (Z0 : Z1)
)
7→
(
(U0 : U1 : U2 : U3), (Z0 : −Z1)

)
,

(T0 : T1 : T2 : T3 : T4 : T5 : T6 : T7) 7→ (T0 : T1 : T2 : T3 : −T4 : −T5 : −T6 : −T7).

6 Endomorphisms of Kummer surfaces K2

We are now able to define polynomial maps for the Montgomery endomorphism
ϕ, where ρ, τ , and ϕ are the endomorphisms

ϕ =
(

2 0
1 1

)
and ρ =

(
1 1
1 −1

)
and τ =

(
1 1
0 1

)
,



as elements of M2(Z)/{±1}. In addition we recall the definitions

ι =
(
−1 0

0 1

)
=
(

1 0
0 −1

)
and σ =

(
0 1
1 0

)
,

and note the commuting relations ρ ◦ ι = σ ◦ ρ and ρ ◦ σ = ι ◦ ρ for ι, σ, and ρ.
Explicit polynomial maps for the Montgomery endomorphism ϕ on K2 follow

from the identities

ϕ0 = ϕ = τ ◦ σρ and ϕ1 = σ ◦ ϕ ◦ σ.

As a consequence the Montgomery ladder can be expressed in terms of the
automorphisms σ, ι, and endomorphisms ρ and τ . The following two theorems,
whose proof follows from standard addition laws on the Edwards model (see
Bernstein and Lange [1], [2], Hisil [5], and Kohel [6]), and verification of the
commutativity relations π ◦ ψ = ψ ◦ π for an endomorphism ψ.

Theorem 2. The projections of the endomorphisms ρ : K2 → K2 are uniquely
represented by polynomials of bidegree (1, 1), (1, 1), and (2, 0), explicitly:

π1 ◦ ρ
(
(U0 : U1 : U2 : U3), (Z0 : Z1)

)
= (U0Z0 − dU3Z1 : −U0Z1 + U3Z0)

π2 ◦ ρ
(
(U0 : U1 : U2 : U3), (Z0 : Z1)

)
= (U0Z0 + dU3Z1 : U0Z1 + U3Z0),

π3 ◦ ρ
(
(U0 : U1 : U2 : U3), (Z0 : Z1)

)
= (U2

0 − dU2
3 : −U2

1 + U2
2 ).

The projection ρ : K2 → S(K 2
1 ) admits a two-dimensional space of polynomial

maps of bidegree (2, 1) spanned by:(
U2

0 − dU2
1 − dU2

2 + dU2
3 )Z0 :

−(d− 1)U0U3Z0 − (U2
0 − dU2

1 − dU2
2 + d2U2

3 )Z1 :
−(d− 1)U0U3Z0 + (U2

0 − dU2
1 − dU2

2 + d2U2
3 )Z1 :

−(U2
0 − U2

1 − U2
2 + dU2

3 )Z0

)(
(U2

0 − dU2
1 − dU2

2 + dU2
3 )Z1 :

−(d− 1)U0U3Z1 − (U2
0 − U2

1 − U2
2 + U2

3 )Z0 :
−(d− 1)U0U3Z1 + (U2

0 − U2
1 − U2

2 + U2
3 )Z0 :

−(U2
0 − U2

1 − U2
2 + dU2

3 )Z1

)
.

Theorem 3. The maps πi ◦ τ : K2 → K1 are given by

π1 ◦ τ
(
(U0 : U1 : U2 : U3), (Z0 : Z1)

)
= (U0Z0 − dU3Z1 : −U0Z1 + U3Z0),

π2 ◦ τ
(
(U0 : U1 : U2 : U3), (Z0 : Z1)

)
= (U0 : U2) = (U1 : U3).

and π3 ◦ τ
(
(U0 : U1 : U2 : U3), (Z0 : Z1)

)
is given by the equivalent expressions(

(U2
0 − dU2

3 )Z0 : (U0U1 − U2U3)Z0 + (U0U2 − dU1U3)Z1

)(
− (U0U2 − U1U3)Z0 + (U0U1 − dU2U3)Z1 : (U2

1 − U2
2 )Z1

)



7 Conclusion

The above polynomial maps for Montgomery endomorphism ϕ of K2 allows one
to carry out a simultaneous symmetric addition and doubling on the Kummer
surface. Besides the potential efficiency of this computation, this provides a
simple geometric description of the basic ingredient for the Montgomery ladder
on an Edwards model of an elliptic curve. The symmetry of the derived model
for the split Kummer surface, and the endomorphisms ι, σ, and ρ provide the
tools necessary for scalar multiplication on Edwards curves in cryptographic
applications requiring protection from side channel attacks.
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