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Elliptic curve scalar multiplication

The cryptographic use of elliptic curves over finite fields in place of
the multiplicative group of a finite field in cryptography, in an
ElGamal or Diffie–Hellman protocol, is based on performance
relative to security. For the same security level, one can take a
significantly smaller sized field which compensates for the
additional complexity of elliptic curve operations.

On the other hand, the additional complexity of addition on elliptic
curves leaves room for more sophisticated ideas for minimizing its
cost. In the Diffie–Hellman protocol, it suffices to have a scalar
multiplication P 7→ nP , rather than a group. Here we focus on the
arithmetic of the Kummer curve and split Kummer surface

K1 = E/〈−1〉, and K2 = E × E/〈(−1,−1)〉.

which admit scalar multiplications (induced from E).
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Montogomery scalar multiplication

Let A be an additive abelian group and M2(Z) ⊂ End(A2), such
that

α(x, y) = (ax+ by, cx+ dy) where α =
(
a b
c d

)
·

Define endomorphisms σ by σ(x, y) = (y, x) and ϕi by

ϕ = ϕ0 =
(

1 1
0 2

)
, and ϕ1 = σ ◦ ϕ ◦ σ =

(
2 0
1 1

)
,

The Montgomery ladder for scalar multiplication by an integer n is
expressed on A2 by the recursion

vr = (x, 0) and vi = ϕni(vi+1) for i = r − 1, . . . , 1, 0,

where n has binary representation nr−1 . . . n1n0.
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Montogomery endomorphism

The successive steps vi in the ladder are of the form

((k + 1)x, kx)

and v0 = (nx, (n− 1)x), from which we output nx. We refer to ϕ
(= ϕ0 and ϕ1) as the Montgomery endomorphism(s).

Example. For n = 13 = 11012, we have

(x, 0)
ϕ1−→ (2x, x)

ϕ1−→ (4x, 3x)
ϕ0−→ (7x, 6x)

ϕ1−→ (13x, 12x)

Moreover, since −1 is an automorphism in the center of M2(Z), an
endomorphism of A2 also acts on the quotient A2/〈−1〉.

In particular, we will derive expressions for certain endomorphisms
of the split Kummer surface associated to an elliptic curve E (as a
means of computing ϕ), when E is in Edwards normal form.
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Montgomery endomorphism factorizations

There exists a close relation between the Montgomery
endomorphism ϕ and another endomorphism ρ:

ϕ =
(

1 1
0 2

)
and ρ =

(
1 1
1 −1

)
·

Both have determinant 2, up to sign, but the symmetry properties
of ρ make it more suitable for its efficient evaluation in the context
of elliptic curve products.

We observe that τ(x, y) = (x+ y, y) — determined by a single
addition — allows us to compute ϕ:

ϕ1 =
(

2 0
1 1

)
= τ ◦ σ ◦ ρ =

(
1 1
0 1

)(
0 1
1 0

)(
1 1
1 −1

)
,

and ϕ = σ ◦ ϕ1 ◦ σ (where the cost of σ is trivial).
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Application to Kummer quotients

Prior work has considered Montgomery addition in relation to the
Kummer curves (of a Weierstrass model):

K1 = E/{±1} ∼= P1,

determined by the quotient π(= x) : E → K1. Such work is
usually expresses as “operating only on the x-coordinate”.

Caution: Due to an unfortunate choice of coordinate names, an
Edwards curve has the traditional roles of the functions x and y
reversed: x is anti-invariant and y invariant under [−1]. Thus for
an Edwards curve, “eliminating the x-coordinate” refers to the
Kummer quotient π(= y) : E → K1.

This Kummer curve approaches focus on arithmetic of K1 and the
full quotient K2

1; we introduce the study of the intermediate
surface K2:

E2 −→ K2 = E2/〈(−1,−1)〉 −→ K2
1 = E2/〈(±1,±1)〉.
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Kummer quotients and endomorphisms

In the study of the arithmetic of Kummer quotients, the
endomorphism of E2,

ρ =
(

1 1
1 −1

)
satisfying ρ2 = 2, plays an important role. The successive
quotients, and the endomorphism ρ, give a hierarchy of commuting
maps

E2

��

ρ
//

&&NNNNNNNNN E2

��

K2

��

ρ
//

&&MMMMMMMM K2

��

K2
1 K2

1.

Note that ρ induces an endomorphism of K2, also denoted ρ, but
no such map is induced on K2

1.
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Differential addition of Kummer quotients

Although ρ does not extend to an endomorphism of K2
1 we obtain

a system of polynomial equations in K2
1 ×K2

1 from the graph:

Γρ =
{(

(P,Q), ρ(P,Q)
)

: (P,Q) ∈ E2
}
⊂ E2 × E2,

where ρ(P,Q) = (P +Q,P −Q). We denote by Γρ the image of
Γρ in K2 or K2

1.

One recovers π(P +Q) by specializing this system at known points

π(P ), π(Q), π(P −Q).

Such an interpolation algorithm is called a pseudo-addition or
differential addition on K1.
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Edwards model for elliptic curves

In 2007, Edwards introduced a new model for elliptic curves,
defined by the affine model

x2 + y2 = a2(1 + z2), z = xy,

over any field k of characteristic different from 2. The complete
linear system associated to the degree 4 model determines a
nonsingular model in P3 with identity O = (1 : 0 : a : 0):

a2(X2
0 +X2

3 ) = X2
1 +X2

2 , X0X3 = X1X2,

as a family of curves over k(a) = k(X(4)). Lange and Bernstein
introduced a rescaling to descend to k(d) = k(a4) = k(X1(4)),
and subsequently (with Joye, Birkner, and Peters) a quadratic twist
by c, to define the twisted Edwards model with O = (1 : 0 : 1 : 0):

X2
0 + dX2

3 = cX2
1 +X2

2 , X0X3 = X1X2.
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Edwards model factorization

The (twisted) Edwards model. . .

X2
0 + dX2

3 = cX2
1 +X2

2 , X0X3 = X1X2 with O = (1 : 0 : 1 : 0)

admits a factorization S ◦ (π1 × π2) = id through P1 × P1, where

π1(X0 : X1 : X2 : X3) = (X0 : X1) = (X2 : X3),
π2(X0 : X1 : X2 : X3) = (X0 : X2) = (X1 : X3),

and S : P1 × P1 → P3 is the Segre embedding

S((U0 : U1), (V0 : V1)) = (U0V0 : U1V0 : U0V1 : U1V1).

Remark: The inverse morphism is

[−1](X0 : X1 : X2 : X3) = (X0 : −X1 : X2 : −X3),

π2 : E → P1 = K1 is the Kummer quotient, and π2(O) = (1 : 1).
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Edwards addition law

The remarkable property of the Edwards model is that the
composition of the addition morphism

µ : E × E −→ E

with each of the projectons πi : E → P admits a basis of bilinear
defining polynomials. For µ ◦ π1, we have{

(X0Y0 + dX3Y3, X1Y2 +X2Y1),
(cX1Y1 +X2Y2, X0Y3 +X3Y0)

}
,

and for µ ◦ π2, we have{
(X1Y2 −X2Y1, −X0Y3 +X3Y0),
(X0Y0 − dX3Y3, −cX1Y1 +X2Y2)

}
.

Addition laws given by polynomial maps of bidegree (2, 2) are
recovered by composing with the Segre embedding.
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Models for Kummer quotients

The Edwards Kummer curve K1
∼= P1 is determined by the

projection π2 to (X0 : X2), however on K1 we denote the
coordinate functions (X0 : X1). The following lemma is a
consequence of the addition law projection for π2.

Lemma

The duplication morphism on E induces [2] : K1 → K1, given by

(X0 : X1) 7→ ((d−1)X4
0−d(X2

0−X2
1 )2 : (X2

0−X2
1 )2 +(d−1)X4

1 ).

This polynomial map is unique and determines [2] everywhere.

Remark. Clearly π2(O) = (1 : 1) maps to itself, and the pre-image
of (1 : 1) are the solutions to

X4
0 − (d+ 1)X2

0X
2
1 + dX4

1 = (X2
0 − dX2

1 )(X2
0 −X2

1 ) = 0,

which are the equations cutting out E[2]. 12
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Product Kummer curve model

The Segre embedding maps a projective space product Pr × Ps
into a projective space P(r+1)(s+1)−1, given by

((X0 : · · · : Xr), (Y0 : · · · : Ys)) 7→ (X0Y0 : X1Y0 : · · · : XrYs).

For the Kummer curve product, this gives S : K2
1
∼= P1 × P1 → P3

((X0 : X1), (Y0 : Y1)) 7→ (X0Y0 : X1Y0 : X0Y1 : X1Y1)
= (U0 : U1 : U2 : U3).

whose image is U0U3 = U1U2.

We use this representation for S(K2
1) ⊂ P3 and construct K2 as a

double cover:

E2 −→ K2 = E2/〈(−1,−1)〉 −→ S(K2
1) ∼= K2

1 = E2/〈(±1,±1)〉.
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Split Kummer surface models

We now describe the embeddings of K2 as a double cover of K2
1.

Theorem

The Kummer surface K2 has a model as a hypersurface in K2
1 × P1

given by

(X2
0 −X2

1 )(Y 2
0 − Y 2

1 )Z2
0 = (X2

0 − dX2
1 )(Y 2

0 − dY 2
1 )Z2

1 ,

with base point π(O) = ((1 : 1), (1 : 1), (1 : 0)).
Under the Segre embedding S : K2

1 7→ P3, this determines the
variety in P3 × P1 cut out by

(U2
0 − U2

1 − U2
2 + U2

3 )Z2
0 = (U2

0 − dU2
1 − dU2

2 + d2U2
3 )Z2

1 ,

on the hypersurface U0U3 = U1U2 defining S(K2
1).
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Edwards Kummer quotient maps

Recall that E : X2
0 + dX2

3 = X2
1 +X2

2 , X0X3 = X1X3 is an
Edwards elliptic curve in P3 with identity O = (1 : 0 : 1 : 0).

For a pair (P,Q) =
(
(X0 : X1 : X2 : X3), (Y0 : Y1 : Y2 : Y3)

)
, the

projection
E2 → K2 ⊂ K2

1 × P1

is given by

π1(P,Q) = (X0 : X2), π2(P,Q) = (Y0 : Y2),

and

π3(P,Q) = (X0Y0 : X1Y1) = (X2Y0 : X3Y1)
= (X0Y2 : X1Y3) = (X2Y2 : X3Y3) = (Z0 : Z1).

After composition with the Segre embedding, we find

(P,Q) 7→ (X0Y0 : X2Y0 : X0Y2 : X2Y2) = (U0 : U1 : U2 : U3).
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Kummer endomorphisms

Recall that our objective is to compute ϕ0 and ϕ1, which can be
defined by ϕ1 = τ ◦ σ ◦ ρ and ϕ = σ ◦ ϕ1 ◦ σ. For ρ (and τ) we
describe explicit polynomial maps:

((U0 : U1 : U2 : U3), (Z0 : Z1)) 7−→ ((V0 : V1 : V2 : V3), (W0 : W1)),

for Vi and Wj , for which it suffices to define:

π1((V0 : V1 : V2 : V3), (W0 : W1)) = (V0 : V1) = (V2 : V3),
π2((V0 : V1 : V2 : V3), (W0 : W1)) = (V0 : V2) = (V1 : V3),
π3((V0 : V1 : V2 : V3), (W0 : W1)) = (W0 : W1).

The image point ((V0 : V1 : V2 : V3), (W0 : W1)) requires the
composition of the Segre embedding with (π1 ◦ ρ)× (π2 ◦ ρ).
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Kummer automorphism σ

Theorem

The automorphism σ is given on K2 ⊂ K2
1 × P1 by

((X0 : X1), (Y0 : Y1), (Z0 : Z1)) 7−→ ((Y0 : Y1), (X0 : X1), (Z0 : Z1)),

and on K2 ⊂ S(K2
1)× P1, by

((U0 : U1 : U2 : U3), (Z0 : Z1)) 7−→ ((U0 : U2 : U1 : U3), (Z0 : Z1)).

Note. This is on O(1) algorithm (change of pointers).
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Kummer endomorphism ρ

Theorem

The projections of the endomorphism ρ : K2 → K2 are uniquely
represented by polynomials of bidegree (1, 1), (1, 1), and (2, 0),
explicitly:

π1 ◦ ρ
(
(U0 : U1 : U2 : U3),(Z0 : Z1)

)
= (U0Z0 − dU3Z1 : −U0Z1 + U3Z0)

π2 ◦ ρ
(
(U0 : U1 : U2 : U3),(Z0 : Z1)

)
= (U0Z0 + dU3Z1 : U0Z1 + U3Z0)

π3 ◦ ρ
(
(U0 : U1 : U2 : U3),(Z0 : Z1)

)
= (U2

0 − dU2
3 : −U2

1 + U2
2 )

Note. This is fast.
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Kummer endomorphism τ

Theorem

The projections πi ◦ τ : K2 → K1, for 1 ≤ i ≤ 2, are uniquely
represented by polynomials of bidegree (1, 1) and (1, 0),

π1 ◦ τ
(
(U0 : U1 : U2 : U3), (Z0 : Z1)

)
= (U0Z0 − dU3Z1 : −U0Z1 + U3Z0),

π2 ◦ τ
(
(U0 : U1 : U2 : U3), (Z0 : Z1)

)
= (U0 : U2) = (U1 : U3),

and π3 ◦ τ
(
(U0 : U1 : U2 : U3), (Z0 : Z1)

)
is given by any linear

combination of the expressions of bidegree (2, 1):(
(U2

0 − dU2
3 )Z0 : (U0U1 − U2U3)Z0 + (U0U2 − dU1U3)Z1

)(
− (U0U2 − U1U3)Z0 + (U0U1 − dU2U3)Z1 : (U2

1 − U2
2 )Z1

)
Note. This is not.

19



The Montgomery endomorphism Edwards elliptic curves Kummer quotients Arithmetic of Kummer quotients

A Kummer pseudo-addition for ϕ

The efficient computation of ϕ1 = τ ◦ σ ◦ ρ : K2 → K2 and
ϕ0 = σ ◦ ϕ1 ◦ σ using the previous theorems is hindered by the
expensive computation of the one bit of information lost in the
map K2 → S(K2

1). But so far we haven’t use the special properties
of the sequence of points which arise in scalar multiplication.

In the application we apply this map to a sequence

(P,Q) = ((k + 1)T, kT )

for a fixed point T , hence we remain on the irreducible curve

∆T = δ∗(T ) = {(P,Q) ∈ E2 | δ(P,Q) = T},
where δ is the difference morphism (δ(P,Q) = P −Q).

We can derive more efficient algorithms based on the restrictions to
∆T . In particular note that ϕ determines a well-defined morphism

ϕT : ∆T −→ ∆T .
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Expressing ϕT as a conjugate duplication

More precisely, each ϕi factors through the duplication map:

∆T −→ ∆
[2]−→ ∆ −→ ∆T .

In particular, setting τT to be the translation–by–T map
τT (P ) = P + T , we have

ϕ0 = (τT × [1]) ◦ [2] ◦ (τT × [1])−1

taking

(P + T, P ) 7→ (P, P ) 7→ (2P, 2P ) 7→ (2P + T, 2P ),

and similarly for

ϕ1 = ([1]× τT )−1 ◦ [2] ◦ ([1]× τT ).

21



The Montgomery endomorphism Edwards elliptic curves Kummer quotients Arithmetic of Kummer quotients

A Kummer differential morphism for ϕT

Theorem

Let T = (T0 : T1 : T2 : T3) be a fixed point of E\E[2]. Then the
restriction of ϕ to ∆T ⊂ S(K2

1) determines a morphism

ϕT : ∆T → ∆T

defined by ϕT (U0 : U1 : U2 : U3) = S((S0, S1), (R0, R1)), where

(S0, S1) = ((U2
0 + dU2

3 )T0 − 2dU0U3T2, 2U0U3T0 − (U2
0 + dU2

3 )T2),
(R0, R1) = [2](U0 : U2)

= ((d− 1)U4
0 − d(U2

0 − U2
2 )2, (U2

0 − U2
2 )2 + (d− 1)U4

2 ).

Note. This is relatively fast.
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Lifting back from S(K2
1) to K2 and E2

Let T = (T0 : T1 : T2 : T3) be a fixed point in E. When T is not in
E[2], the quotient K2 → S(K2

1) is easily seen to be injective on
∆T . Consequently there exists a lifting back to ∆T ⊂ K2.
Algebraically, it suffices to define (Z0 : Z1), which is given by:

(Z0 : Z1) = (U0T0 − dU3T2 : U0T2 − U3T0).

As expected, this fails if and only if (T0 : T2) = (U0 : U3) and
U2

0 − dU2
3 — this defines the 2-torsion subgroup E[2].

Similarly, the map ∆T → ∆T ⊂ K2 is injective on all points except

E[2]T = {(P + T, P ) : P ∈ E[2]}.

This gives the following theorem.
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Lifting ∆T back to E2

Theorem

For all T be in E, the quotient ∆T → ∆T ⊂ K2 is injective for all
points outside of E[2]T ⊂ ∆T . The inverse ((X0 : X1 : X2 : X3),
(Y0 : Y1 : Y2 : Y3)) of ((U0 : U1 : U2 : U3), (Z0 : Z1)) is defined by

(Y0 : Y1) = (Y2 : Y3) = (U2T0 − U1T2 : U0T3 − U3T1)
= (U0T1 − dU3T3 : −U1T0 + U2T2)

(Y0 : Y2) = (Y1 : Y3) = (U0 : U2) = (U1 : U3),

and then

(X0 : X1) = (X2 : X3) = (Y0T0 + dY3T3 : Y1T2 + Y2T1)
= (Y1T1 + Y2T2 : Y0T3 + Y3T0)

(X0 : X2) = (X1 : X3) = (U0 : U1) = (U2 : U3),

24



The Montgomery endomorphism Edwards elliptic curves Kummer quotients Arithmetic of Kummer quotients

A lifted Kummer differential morphism for ϕT

Theorem

Let T = (T0 : T1 : T2 : T3) be a fixed point of E\E[2]. Then the
morphism ϕT : ∆T → ∆T is defined by

((U0 : U1 : U2 : U3), (Z0 : Z1)) 7→ ((V0 : V1 : V2 : V3), (W0 : W1)),

where (V0 : V1 : V2 : V3) = S((S0, S1), (R0, R1)) is determined by

(S0, S1) = (U0Z0 − dU3Z1 : −U0Z1 + U3Z0),
(R0, R1) = [2](U0 : U2)

= ((d− 1)U4
0 − d(U2

0 − U2
2 )2, (U2

0 − U2
2 )2 + (d− 1)U4

2 ),

and then (W0 : W1) = (V0T0 − dV3T2 : V0T2 − V3T0).

Note. This is fast (compared to one addition and one doubling)?
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