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Moduli of Genus 2 Curves
A genus 2 curve X /k (in char(k) = ¢ # 2) is defined by a Weierstrass equation

y* = f(),
where f(x) is a polynomial of degree 6. Over an algebraic closure, we have

6

X flx) =] (@ — ).

i=1
The points (u;,0) are then both the Weierstrass points and the fixed points of the hyperelliptic

involution.

The absolute Igusa invariants (ji, j2, j3) of X are defined either in terms of f(z) or, equivalently,
by symmetric functions on the set {u;}.

N.B. The projective Igusa invariants are weighted invariants Js, Jy, Jg, Js, J19, where
4Js = JoJs — J;

and Jyg is the discriminant of f(x). The absolute invariants are defined by

Jy o Jd . T3y
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The triple (j1, j2,73) determines a point of the moduli space My of genus 2 curves, a space
birational to A3,

=



Moduli of Genus 2 Curves with Level Structure

Beginning with the curve X : 3? = [[(z — u;) as above, a linear fractional transformation of the
z-line P! sends three of the u; to 0, 1, and co. This determines an isomorphism with a curve in
Rosenhain from:

v =a(r—1)(x —to)(x — t)(x — ts).
The triple (tg,t1,t2) is determined by an ordering on the Weierstrass points, and such a linear

fractional transformation. I’he Weierstrass points generate the 2-torsion subgroup, and an ordered
6-tuple of Weierstrass points determines a full 2-level structure on the Jacobian of X.

N.B. A map M, — A,, from the moduli space of genus g curve to the moduli space of principally
polarised abelian varieties of dimension ¢ is induced by sending a curve to its Jacobian. Hhe
map to A, allows us to define moduli spaces of curves together with a level structure on their
Jacobians.

For g = 2 this map is a birational isomorphism, and we identify the triple (¢y, t1, o) with a point
in the moduli space Ms(2), classifying genus 2 curves together with a full 2-level structure. The
forgetful morphism

./\/12(2) S— ./\/l2
(t()a tlv t2) I (j17 j27 ]3)
is a Galois covering of degree 720, with Galois group Sg = Sp,(Fs). The former group naturally

acts on the Weierstrass points (the first three of which must then be renormalised to (0,1, 00)).
The isomorphic group Sp,(Fs) is that which naturally acts on the 2-torsion subgroup.



The Richelot Correspondence
Given a genus two curve
X1 : y2 = Go(ﬂ?)Gl(x)GQ(ﬂf)
where each G;(z) has degree at most 2, Wwe define a second curve
Xy t? = §Hy(2)Hy(2)Hy(2),
by the equations
Hi(z) = Gi1(2)Gia(z) — G (2)Glio(@),

and an explicit constant 6. Then there exists a Richelot correspondence
C— X1 X XQ,
where the curve C'is defined by

[ Golx)Ho(2) + Gr(z)Hy(2) = 0,
y* = Go(2)G1(2)Ga(2),
t2 = 5HQ(Z)H1(Z)HQ(Z),

|yt = Go(z)Ho(2)(x — 2).

Q

The correspondence determines a (2, 2)-isogeny J; — Jo of Jacobians. More importantly from
our point of view, it will let use determine a correspondence of moduli:

X — Ms(2) x Ms(2).



The Richelot Correspondence on Moduli

Associated to a point (¢, t1,t2) € Ma(2), we can write down a curve
X1y’ = flz) = a(z = 1)(z — to)(x — t1)(z — ta).
A Richelot isogeny is determined setting f(z) = Go(x)G1(x)Ga(x), where the G;(x) are:
Go(z) = x(x —ty), Gi(z) = (x — 1)(z — t1), Gao(z) =2 — 1o,
The curve X5 : y? = 0 Hy(x) H,(x)H(x) is then determined by the triple of polynomials:

(SC) =2 — 2tox + t1ty — t1 + 1o,
(7) = — (2% = 2tw + tot),
( (t() — 1] — 1)332 + 2tz — toty,

FEE

x)
and 0 = toty — t1te +t1 — to.
Let (ug, u1,us) be a triple of solutions to H;(u;) = 0, and set

(vo, V1, v9) = (2t9 — g, 2ty — u1,2t1/(tg —t1 — 1) — uo)

equal to the conjugate solutions. T'hen
2

Xy = 6Ho(2)Hi(2)Hy(z) = 6 | [ (2w — wi) (2 — vy),
1=0

and a linear fraction transformation sending (ug, u1,u2) to (0,1, 00), maps (vg, v1,v2) to a new
triple (sg, $1, 52) € Ms(2).



The Richelot Modular Correspondence
We summarise by writing down the defining set of polynomials for the previous correspondence.
First we have the relations between the ¢;’s and u;’s:

CI)O(T()) T17 T27 U07 Ula UQ) — Ug — 2T2U0 =+ T1T2 - Tl =+ T27
(T, Ty, Ty, Uy) = U? — 215Uy + Ty,
Oo(Ty, Th, T, Us) = (Ty — Ty — 1)U3 + 211Uy — TyT1.

That is, we find X — M;y(2) x A?
O(z,u) = (Po(z,u), P1(z, u), Po(x,u)) = (0,0,0).
where © = (g, t1, t2) and u = (ug, ug, ug). Then we define the second projection to My(2):
bt Ma(2) x A3 -5 My(2)

by letting v be the map ((to, t1, ta), (wo, u1, uz)) — (ug, U1, uz, vy, v1, v2), followed by the trans-
formation

(80,81, 82) = (S(vg), S(v1), S(v3)), where S(z) = (1 — ua)(z — U’O).

(w1 — up)(2 — uz)

Then the image of X in M3(2) x A3 x My(2) is defined by
q)i(TOD T17 T27 U07 Ul) UQ) — \IJ](T()a T17 T27 UO) U17 U27 S]) = 0.



The Richelot Modular Correspondence

In summary, for (z,u,y) € My(2) x A3 x Ms(2) we have
CI)(:U, u) - (CI)O(ZIZ, u): q)l(xa U), CI)Q(ZIJ, u)) - (O, 0, 0),
\Ij(xa u, y) — (\IJ()(.CC, u, y)v \IJO(QZJ u, y)v \IJO(QZJ u, y)) - (07 07 0)7

whose zero set X admits two finite covers of My(2).

We are interested in pairs x = (to, t1,t2) and y = (sg, S1, S2) such that y = 27 for some automor-
phism o of the base field k. We then set z; = x and x;,1 = y. Since each x; corresponds to a
Richelot isogeny J; — J; 11, the Galois action determines a cycle of isogenies:

Jo Js

*’Q N xS/
J5 e J4
In fact, with the map ¢ as defined above, the point y = (s, 1, $2) determines the dual isogeny,
which can only be the Galois conjugate of x = (ty, t1, t2) if it determines a 2-cycle:

y —

Instead we modify ¢, and W;, by composing with a permutation of (ug, uy, us, vg, v1, v2) to find a
Galois conjugate 2-level structure. This corresponds to an isomorphism of the curve

Xy % =dx(x — 1)z — s0)(z — 51)(x — 59),

to another in Rosenhain form.



Canonical Lifting

Suppose that A/k is an ordinary, simple abelian variety over a finite field of characteristic £. Let
R be the unramified extension of Zy such that [R : Z,] = [k : Fy|. !\ canonical lift is an abelian
variety A/ R such that

A/R xpk = A/k and End(A) = End(A).

The main theorem of complex multiplication describes the relation between (certain) ideal classes
of a maximal order O, isogenies of an abelian variety A/Q with End(A) = Og, and and the
action of Galois on the conjugates of A.

We say that an isogeny ¢ splits A[n] if ker(p) is a proper subgroup of A[n] and ker(p) € Alm)|
for any m | n. The canonical lift of A/k is determined by:

e A cycle of isogenies 1211 — 1212 — e — flr — 1211 with 1211 X pk = A such that the compositum
is an endomorphism of A; whose kernel splits A;[n]; or

e Anisogeny ¢ : A — Ay with A; x» k = A such that Ay = A7 with ker(y) splitting A;[n].

The latter condition, exploiting the Galois action, yeilds a better algorithmic solution to the
construction of the canonical lift. As a constructive CM method, we only need to solve for the
canonical lift of a moduli point in My(R), and solve a system of equations ®(x,x%) = 0 for

xr e MQ(R)



Canonical Lifts of Moduli

Recall that we derived a set of defining equations in My(2) x A% x Mo(2),

Oz, u) = (Po(z,u), P1(z,u), Po(x,u)) = (0,0,0),
U(x,u,y) = (Vol(x,u,y), Vo(x,u,y), Vo(x,u,y)) = (0,0,0),

where
Tr = (to,tl,tg) c MQ(Z), u = (uo,ul,uQ) < AS, Yy = (SQ, S1, 82) S MQ(Q).

In order to preserve the simplicity of these defining equations, we refrain from eliminating v € A3
to find relations only in My(2) x My(2). Also we work with moduli in Mo (2)(R), with 2-level
structure, rather than My(R), and only afterwards compute the image under My(2) — M.

We can solve this system of equations by Hensel’s Lemma, first for u, given x, such that
O(x,u) = (0,0,0),

and then for y satistying
U(x,u,y)=(0,0,0).

However, the resulting y need not converge to 7. For this purpose we adapt a method of Harley
from the one-dimensional setting (of moduli of genus 1 curves) to higher dimension.



The Method of Harley

In the one-dimensional setting, Harley developed a means of solving a generalised p-adic AGM
recursion, determined by a geometric correspondence of moduli:

P(z,27) =0,
where o is the Frobenius automorphism. In particular, if x is such a solution, and x; = x mod p',
then we set |
0= —(z —z;).
D

We observe that

1 . .
E(D(Ii’ yi) + 0 @y (s, 7)) + 67 (s, 27) = P2, ) mod p' = 0 mod p'.
Thus it comes down to determining ¢ such that
67+ 63+~ = 0mod p'.
The additional condition v,(3) > 0 implies that a unique p-adic solution is determined.
N.B. Such an equation ®(x,y) = 0 arises as the defining equations for the image modular curve

XQ(N]?) — X()(N) X X()(N),

where X((N) is a modular curve of genus 0.



Generalised Method of Harley

In place of a single modular equation ®(z,z?) = 0, we need to generalise the method to the
multivariate setting. For a solution (z, u,y) with y = 27 to the system of equations

O(z,u) = V(r,u,y) =0,
we set z; = x mod ¢'. Then

1 .
—O(x;,u;) + Ay - Do®(xy, ui) + Ay - Dy®(4,u;) = 0 mod £,

gi
where { {
A, = E(az —x;) and A, = E(u — ),
and
0Pg(z,u) 0Py(xu) 0Po(x,u) 0Pg(xu) 0P1(zu) 0Do(z,u)
0%y(0u) 90y(0a) DB 0%y(8a) 98)(80) 0By(0u)
L Do (z,u Py (x,u Do (x,u L Do (x,u Dy (z,u Do(z,u
qu)(.f, U) o oty oty oty and Duq)(.’lf, U) o ouq ouq ouq
00g(z,u) 0P1(x,u) O0Po(x,u) 0Pg(xu) 0P1(z,u) 0Do(z,u)
Jtoy Jtoy Jto Juo Juo Ouo
And also
1

— (g, us, 27 ) + Ay - DpV(xg, wiyx)) + Ay - DV (2, u, 27 ) + AT - DV (24, u, 27 ) = 0 mod P,
pZ

where DV, D, V¥, and D,V are the similarly defined Jacobian matrices.



Generalised Method of Harley

We solve for u; such that ®(z;,u;) = 0 mod ¢*, then, assuming D,® is invertible, we may
eliminate A, to find an equation

A7-A+A,-B+C=0mod /.

where
A=D,V,
B=D,V - D,®D,®'D,V,
1 1 1 .
C = E(\Ij) — E((I))DudleU\I! = E(qj) mod /'

We apply this for input x;, correct to precision £*, and u; such that ®(z;, u;) = 0. This provides
a matrix equation which we can solve for the deficiency A, mod ¢, Bnd set x;,1 = z; + (',

We note that when B # 0 mod £, there will generally be multiple solutions to the matrix equation,
and we must determine which solution extends to the canonical lift.

This gives a convergent Hensel lifting algorithm for the CM moduli, in which precision doubles
with each iteration.

An algebraic relation can be recovered over Z by means of LLL reduction of the lattice dependency
relations betwee powers of j1, 7o, and j3.



A 3-Adic Example

Let For = F3[w]/(w? — w + 1), and set z = (¢, t1, t2) = (w't, w®, 2), determining a Galois cycle
of length 3. Mhe point y = (s, 1, 82) = (w0, w?*,2) is the image of x under Frobenius, and
defines a second curve related to the first by a Richelot correspondence. I'hen the 3-adic lifts of
these invariants map to a triple of absolute Igusa invariants (ji, 72, J3), satisfying:

1046035320358 — 206446061949723136805+
1584797903444725069000181 18454 —
579342036699717747296635942993686 723 —
475721039936395998603032571096726185115648 2 —
2319410019701066580457483440392962776928771637248 j; —
1633610752539414651637667693318669910064037028972986368,

1968358 — 315442791369055 + 13018458284705642175 4 —
0011847196705020909893875j3—
46912922512338152998337057320000 52+
13719344346806722534193757175744000000 j,—
12517234157035811590789580667261104123000000,

5314415 — 800798197608545 + 681652231356458824713j4—
16215372310264493365693339933 —
15661371920042978396759721 7337689612 —
1479377322341359891148215922582439772160j3—
039937021370655707607384087330217698726510592.



