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Moduli of Genus 2 Curves

A genus 2 curve X/k (in char(k) = ` 6= 2) is defined by a Weierstrass equation

y2 = f (x),

where f (x) is a polynomial of degree 6. Over an algebraic closure, we have

X : f (x) =

6∏
i=1

(x− ui).

The points (ui, 0) are then both the Weierstrass points and the fixed points of the hyperelliptic

involution.

The absolute Igusa invariants (j1, j2, j3) of X are defined either in terms of f (x) or, equivalently,

by symmetric functions on the set {ui}.

N.B. The projective Igusa invariants are weighted invariants J2, J4, J6, J8, J10, where

4J8 = J2J6 − J2
4

and J10 is the discriminant of f (x). The absolute invariants are defined by

j1 =
J5

2

J10
, j2 =

J3
2J4

J10
, j3 =

J2
2J6

J10
.

The triple (j1, j2, j3) determines a point of the moduli space M2 of genus 2 curves, a space

birational to A3.



Moduli of Genus 2 Curves with Level Structure

Beginning with the curve X : y2 =
∏

(x− ui) as above, a linear fractional transformation of the

x-line P1 sends three of the ui to 0, 1, and ∞. This determines an isomorphism with a curve in

Rosenhain from:

y2 = x(x− 1)(x− t0)(x− t1)(x− t2).

The triple (t0, t1, t2) is determined by an ordering on the Weierstrass points, and such a linear

fractional transformation. The Weierstrass points generate the 2-torsion subgroup, and an ordered

6-tuple of Weierstrass points determines a full 2-level structure on the Jacobian of X .

N.B. A map Mg → Ag, from the moduli space of genus g curve to the moduli space of principally

polarised abelian varieties of dimension g is induced by sending a curve to its Jacobian. The

map to Ag allows us to define moduli spaces of curves together with a level structure on their

Jacobians.

For g = 2 this map is a birational isomorphism, and we identify the triple (t0, t1, t2) with a point

in the moduli space M2(2), classifying genus 2 curves together with a full 2-level structure. The

forgetful morphism

M2(2) //M2

(t0, t1, t2)
� // (j1, j2, j3)

is a Galois covering of degree 720, with Galois group S6
∼= Sp4(F2). The former group naturally

acts on the Weierstrass points (the first three of which must then be renormalised to (0, 1,∞)).

The isomorphic group Sp4(F2) is that which naturally acts on the 2-torsion subgroup.



The Richelot Correspondence

Given a genus two curve

X1 : y2 = G0(x)G1(x)G2(x)

where each Gi(x) has degree at most 2, we define a second curve

X2 : t2 = δH0(z)H1(z)H2(z),

by the equations

Hi(x) = G′
i+1(x)Gi+2(x)−Gi+1(x)G′

i+2(x),

and an explicit constant δ. Then there exists a Richelot correspondence

C −→ X1 ×X2,

where the curve C is defined by

C :


G0(x)H0(z) +G1(x)H1(z) = 0,

y2 = G0(x)G1(x)G2(x),

t2 = δH0(z)H1(z)H2(z),

yt = G0(x)H0(z)(x− z).

The correspondence determines a (2, 2)-isogeny J1 → J2 of Jacobians. More importantly from

our point of view, it will let use determine a correspondence of moduli:

X −→M2(2)×M2(2).



The Richelot Correspondence on Moduli

Associated to a point (t0, t1, t2) ∈M2(2), we can write down a curve

X1 : y2 = f (x) = x(x− 1)(x− t0)(x− t1)(x− t2).

A Richelot isogeny is determined setting f (x) = G0(x)G1(x)G2(x), where the Gi(x) are:

G0(x) = x(x− t0), G1(x) = (x− 1)(x− t1), G2(x) = x− t2.

The curve X2 : y2 = δH0(x)H1(x)H2(x) is then determined by the triple of polynomials:

H0(x) = x2 − 2t2x + t1t2 − t1 + t2,

H1(x) = −(x2 − 2t2x + t0t2),

H2(x) = (t0 − t1 − 1)x2 + 2t1x− t0t1,

and δ = t0t2 − t1t2 + t1 − t2.

Let (u0, u1, u2) be a triple of solutions to Hi(ui) = 0, and set

(v0, v1, v2) = (2t2 − u0, 2t2 − u1, 2t1/(t0 − t1 − 1)− u2)

equal to the conjugate solutions. Then

X2 : y2 = δH0(z)H1(z)H2(z) = δ

2∏
i=0

(x− ui)(x− vi),

and a linear fraction transformation sending (u0, u1, u2) to (0, 1,∞), maps (v0, v1, v2) to a new

triple (s0, s1, s2) ∈M2(2).



The Richelot Modular Correspondence

We summarise by writing down the defining set of polynomials for the previous correspondence.

First we have the relations between the ti’s and ui’s:

Φ0(T0, T1, T2, U0, U1, U2) = U 2
0 − 2T2U0 + T1T2 − T1 + T2,

Φ1(T0, T1, T2, U1) = U 2
1 − 2T2U1 + T0T2,

Φ2(T0, T1, T2, U2) = (T0 − T1 − 1)U 2
2 + 2T1U2 − T0T1.

That is, we find X →M2(2)× A3

Φ(x, u) = (Φ0(x, u),Φ1(x, u),Φ2(x, u)) = (0, 0, 0).

where x = (t0, t1, t2) and u = (u0, u1, u2). Then we define the second projection to M2(2):

ψ : M2(2)× A3 ψ−→M2(2)

by letting ψ be the map ((t0, t1, t2), (u0, u1, u2)) 7→ (u0, u1, u2, v0, v1, v2), followed by the trans-

formation

(s0, s1, s2) = (S(v0), S(v1), S(v3)),where S(z) =
(u1 − u2)(z − u0)

(u1 − u0)(z − u2)
·

Then the image of X in M2(2)× A3 ×M2(2) is defined by

Φi(T0, T1, T2, U0, U1, U2) = Ψj(T0, T1, T2, U0, U1, U2, Sj) = 0.



The Richelot Modular Correspondence

In summary, for (x, u, y) ∈M2(2)× A3 ×M2(2) we have

Φ(x, u) = (Φ0(x, u),Φ1(x, u),Φ2(x, u)) = (0, 0, 0),

Ψ(x, u, y) = (Ψ0(x, u, y),Ψ0(x, u, y),Ψ0(x, u, y)) = (0, 0, 0),

whose zero set X admits two finite covers of M2(2).

We are interested in pairs x = (t0, t1, t2) and y = (s0, s1, s2) such that y = xσ for some automor-

phism σ of the base field k. We then set xi = x and xi+1 = y. Since each xi corresponds to a

Richelot isogeny Ji → Ji+1, the Galois action determines a cycle of isogenies:

J1
x1 // J2 x2

$$JJJJJJ

J6 J3x3
yyssssss

J5

x5eeKKKKKK

J4
x4oo

In fact, with the map ψ as defined above, the point y = (s0, s1, s2) determines the dual isogeny,

which can only be the Galois conjugate of x = (t0, t1, t2) if it determines a 2-cycle:

J1

x
++

J2y
kk

Instead we modify ψ, and Ψi, by composing with a permutation of (u0, u1, u2, v0, v1, v2) to find a

Galois conjugate 2-level structure. This corresponds to an isomorphism of the curve

X2 : y2 = δx(x− 1)(x− s0)(x− s1)(x− s2),

to another in Rosenhain form.



Canonical Lifting

Suppose that A/k is an ordinary, simple abelian variety over a finite field of characteristic `. Let

R be the unramified extension of Z` such that [R : Z`] = [k : F`]. A canonical lift is an abelian

variety Ã/R such that

Ã/R×R k = A/k and End(Ã) = End(A).

The main theorem of complex multiplication describes the relation between (certain) ideal classes

of a maximal order OK , isogenies of an abelian variety A/Q with End(A) = OK , and and the

action of Galois on the conjugates of A.

We say that an isogeny ϕ splits A[n] if ker(ϕ) is a proper subgroup of A[n] and ker(ϕ) 6⊆ A[m]

for any m | n. The canonical lift of A/k is determined by:

• A cycle of isogenies Ã1 → Ã2 → · · · → Ãr → Ã1 with Ã1×Rk = A such that the compositum

is an endomorphism of Ã1 whose kernel splits Ã1[n]; or

• An isogeny ϕ : Ã1 → Ã2 with Ã1 ×R k = A such that Ã2 = Ãσ
1 with ker(ϕ) splitting Ã1[n].

The latter condition, exploiting the Galois action, yeilds a better algorithmic solution to the

construction of the canonical lift. As a constructive CM method, we only need to solve for the

canonical lift of a moduli point in M2(R), and solve a system of equations Φ(x, xσ) = 0 for

x ∈M2(R).



Canonical Lifts of Moduli

Recall that we derived a set of defining equations in M2(2)× A3 ×M2(2),

Φ(x, u) = (Φ0(x, u),Φ1(x, u),Φ2(x, u)) = (0, 0, 0),

Ψ(x, u, y) = (Ψ0(x, u, y),Ψ0(x, u, y),Ψ0(x, u, y)) = (0, 0, 0),

where

x = (t0, t1, t2) ∈M2(2), u = (u0, u1, u2) ∈ A3, y = (s0, s1, s2) ∈M2(2).

In order to preserve the simplicity of these defining equations, we refrain from eliminating u ∈ A3

to find relations only in M2(2) ×M2(2). Also we work with moduli in M2(2)(R), with 2-level

structure, rather than M2(R), and only afterwards compute the image under M2(2) →M2.

We can solve this system of equations by Hensel’s Lemma, first for u, given x, such that

Φ(x, u) = (0, 0, 0),

and then for y satisfying

Ψ(x, u, y) = (0, 0, 0).

However, the resulting y need not converge to xσ. For this purpose we adapt a method of Harley

from the one-dimensional setting (of moduli of genus 1 curves) to higher dimension.



The Method of Harley

In the one-dimensional setting, Harley developed a means of solving a generalised p-adic AGM

recursion, determined by a geometric correspondence of moduli:

Φ(x, xσ) = 0,

where σ is the Frobenius automorphism. In particular, if x is such a solution, and xi ≡ x mod pi,

then we set

δ =
1

pi
(x− xi).

We observe that

1

pi
Φ(xi, yi) + δ Φx(xi, x

σ
i ) + δσ Φx(xi, x

σ
i ) ≡ Φ(x, y) mod pi ≡ 0 mod pi.

Thus it comes down to determining δ such that

δσα + δβ + γ = 0 mod pi.

The additional condition vp(β) > 0 implies that a unique p-adic solution is determined.

N.B. Such an equation Φ(x, y) = 0 arises as the defining equations for the image modular curve

X0(Np) −→ X0(N)×X0(N),

where X0(N) is a modular curve of genus 0.



Generalised Method of Harley

In place of a single modular equation Φ(x, xσ) = 0, we need to generalise the method to the

multivariate setting. For a solution (x, u, y) with y = xσ to the system of equations

Φ(x, u) = Ψ(x, u, y) = 0,

we set xi ≡ x mod `i. Then

1

`i
Φ(xi, ui) + ∆x ·DxΦ(xi, ui) + ∆u ·DuΦ(xi, ui) ≡ 0 mod `i,

where

∆x =
1

`i
(x− xi) and ∆u =

1

`i
(u− ui),

and

DxΦ(x, u) =


∂Φ0(x,u)
∂t0

∂Φ1(x,u)
∂t0

∂Φ2(x,u)
∂t0

∂Φ0(x,u)
∂t1

∂Φ1(x,u)
∂t1

∂Φ2(x,u)
∂t1

∂Φ0(x,u)
∂t2

∂Φ1(x,u)
∂t2

∂Φ2(x,u)
∂t2

 and DuΦ(x, u) =


∂Φ0(x,u)
∂u0

∂Φ1(x,u)
∂u0

∂Φ2(x,u)
∂u0

∂Φ0(x,u)
∂u1

∂Φ1(x,u)
∂u1

∂Φ2(x,u)
∂u1

∂Φ0(x,u)
∂u2

∂Φ1(x,u)
∂u2

∂Φ2(x,u)
∂u2

 ·

And also

1

pi
Ψ(xi, ui, x

σ
i ) + ∆x ·DxΨ(xi, ui, x

σ
i ) + ∆u ·DuΨ(xi, ui, x

σ
i ) + ∆σ

x ·DyΨ(xi, ui, x
σ
i ) ≡ 0 mod pi,

where DxΨ, DuΨ, and DyΨ are the similarly defined Jacobian matrices.



Generalised Method of Harley

We solve for ui such that Φ(xi, ui) ≡ 0 mod `2i, then, assuming DuΦ is invertible, we may

eliminate ∆u to find an equation

∆σ
x · A + ∆x ·B + C ≡ 0 mod `i.

where
A = DyΨ,

B = DxΨ−DxΦDuΦ
−1DuΨ,

C =
1

`i
(Ψ)− 1

`i
(Φ)DuΦ

−1DuΨ ≡ 1

`i
(Ψ) mod `i

We apply this for input xi, correct to precision `i, and ui such that Φ(xi, ui) = 0. This provides

a matrix equation which we can solve for the deficiency ∆x mod `i, and set xi+1 = xi + `i∆x.

We note that when B 6≡ 0 mod `, there will generally be multiple solutions to the matrix equation,

and we must determine which solution extends to the canonical lift.

This gives a convergent Hensel lifting algorithm for the CM moduli, in which precision doubles

with each iteration.

An algebraic relation can be recovered over Z by means of LLL reduction of the lattice dependency

relations betwee powers of j1, j2, and j3.



A 3-Adic Example

Let F27 = F3[w]/(w3 − w + 1), and set x = (t0, t1, t2) = (w14, w8, 2), determining a Galois cycle

of length 3. The point y = (s0, s1, s2) = (w16, w24, 2) is the image of x under Frobenius, and

defines a second curve related to the first by a Richelot correspondence. Then the 3-adic lifts of

these invariants map to a triple of absolute Igusa invariants (j1, j2, j3), satisfying:

10460353203j6
1 − 20644606194972313680j5

1+

1584797903444725069000181184j4
1−

57934203669971774729663594299868672j3
1−

475721039936395998603032571096726185115648j2
1−

2319410019701066580457483440392962776928771637248j1−
1633610752539414651637667693318669910064037028972986368,

19683j6
2 − 3154427913690j5

2 + 13018458284705642175j4
2−

9011847196705020909893875j3
2−

46912922512338152998837057320000j2
2+

13719344346806722534193757175744000000j2−
42517234157035811590789580667261104128000000,

531441j6
3 − 80079819760854j5

3 + 681652231356458824713j4
3−

1621537231026449336569333993j3
3−

1566137192004297839675972173376896j2
3−

1479377322341359891148215922582439772160j3−
939937021370655707607384087330217698726510592.


