
Part I. Magma LanguageMagma is a programming language, whi
h is interpretted rather than
ompiled, like perl, python, or various shell s
ripts. Some nativemagma 
ode, written as pa
kages, is 
ompiled at startup time.1. The magma shell.2. Magma 
ategories.3. Category handles.4. Primitive stru
tures.5. Aggregate stru
tures.6. Coer
ion: element 
reation and transmutation.7. Creating new stru
tures from old.8. Built-in operators.9. Language syntax.10. Fun
tions and pro
edures.11. Pa
kages and intrinsi
s.12. Infrastru
ture of advan
ed algorithms.



1. The magma shellThe most typi
al way to run magma is intera
tively via the magmashell. Every statement ends in a semi
olon. Output not assigned toa variable, using :=, is printed to the standard output. $1, $2, and$3 refer three previous obje
ts sent to standard output.weyl:~> magmaMagma V2.8-BETA Wed O
t 4 2000 10:40:38 on weylLinked at: Fri Sep 15 2000 18:21:23Type ? for help. Type <Ctrl>-D to quit.Loading startup file "/home/kohel/.magma"> 1;1> 2;2> $1; $2;2 1



2. Magma 
ategoriesEvery obje
t in magma has a Parent stru
ture or 
ategory to whi
hit belongs. Generally it is ne
essary to de�ne the parent 
ategorybefore initializing an element.> ZZ := Integers();> u := One(ZZ);> u;1> Parent(u);Integer Ring> V := RSpa
e(ZZ,7);> v := Zero(V);> v;(0 0 0 0 0 0 0)> Parent(v);Full RSpa
e of degree 7 over Integer Ring



3. Primitive stru
turesCertain 
ategories, su
h as the Integers(), are prede�ned as system-wide global stru
tures, and do not have to be 
onstru
ted in orderto 
reate elements. Other examples are the Rationals(), stringsand booleans.> n := 2^127-1;> n;170141183460469231731687303715884105727> t := 2/31;> t;2/31> s := "Integer Ring";> s;Integer Ring> true;true



4. Category handlesEvery obje
t has a Category or Type name or handle.> Parent(n);Integer Ring> Parent(n) eq s;false> Parent(n) eq ZZ;true> Category(n);RngIntElt> Category(s);MonStgElt> Category($1);CatThe 
ategory handle 
an be used for 
omparisons (with eq) of pos-sibly im
ompatible obje
ts, and for type 
he
king, permitting fun
-tion overloading.



5. Aggregate stru
turesA. Sequen
es. A sequen
e is an indexed list of elements all ofwhi
h have the same parent, 
alled the Universe of the sequen
e.A 
ommon pitfall is to 
onstru
t empty sequen
es without de�ningthe universe.> [℄;[℄> Universe($1);>> Universe($1);^Runtime error in 'Universe': Illegal null sequen
e> [ ZZ | ℄;[℄> Universe($1);Integer Ring



If the universe is not expli
itly de�ned, then obje
ts will be 
oer
edinto a 
ommon stru
ture, if possible.> S := [ 1, 2/31, 17 ℄;> S;[ 1, 2/31, 17 ℄> Universe(S);Rational Field> S[3℄;17> Parent($1);Rational FieldThe syntax for sequen
e 
onstru
tion is:[ Universe | Element : Loop | Predi
ate ℄As an example, we have the following sequen
e:> FF<w> := FiniteField(3^6);> [ FF | x : x in FiniteField(3^2) | Norm(x) eq 1 ℄;[ 1, w^182, 2, w^546 ℄



B. Sets. A set is an unordered 
olle
tion of obje
ts having thesame parent, again, de�ned to be its Universe.> { FiniteField(2^8) | 1, 2, 3, 4 };{ 1, 0 }> Random($1);0The syntax for set 
onstru
tion is analogous to that for sequen
es:{ Universe | Element : Loop | Predi
ate }The enumeration operator # applies to both sequen
es and sets.> #[ x^2 : x in FiniteField(3^3) | x ne 0 ℄;26> #{ x^2 : x in FiniteField(3^3) | x ne 0 };13



C. Indexed sets. An indexed set is a 
olle
tion of obje
ts indexedby the positive integers. An element is assigned the next availableindex at its �rst o

uren
e.> S := {� 4, 3, 7 �};> S;{� 4, 3, 7 �}> T := {� 1, 1, 11 �};> S join T; /* Union operator. */{� 4, 3, 7, 1, 11 �}> $1[4℄;1> #$2;5



D. Tuples. A tuple is analogous to a sequen
e, but unlike setsand sequen
es, the parent stru
ture { the set-theoreti
 produ
t ofthe parents of the entries { stores the parent of ea
h 
omponent.> <>;<>> Parent($1);Cartesian Produ
t<>> <1,2/1>;<1, 2>> Parent($1);Cartesian Produ
t<Integer Ring, Rational Field>The parent stru
ture of a tuple is more important than in the 
aseof sequen
es or sets.> C := CartesianProdu
t(Integers(),RationalField());> t := C!<1,1>;> Parent(t[2℄);Rational Field



E. Ve
tors and matri
es. Sin
e there is a unique global freemodule of rank n over a ringR, the following shorthand 
onstru
torshave now been provided in V2.7.1. Ve
tors.> Ve
tor([2,11,7℄);( 2 11 7)2. Matri
es.> Matrix([> Ve
tor([ (i+j) mod 3 : i in [1..3℄ ℄)> : j in [1..3℄ ℄);[2 0 1℄[0 1 2℄[1 2 0℄> $1 eq Matrix(3,3,[ (i+j) mod 3 : i, j in [1..3℄ ℄);true



6. Coer
ion: element 
reationand transmutation.The 
oer
ion operator ! is used to 
onstru
t an element of a stru
-ture, or to map it into a stru
ture, where a nature mapping exists.> QQ := RationalField();> QQ!17;17> P<x> := PolynomialRing(QQ);> P![2,-3,1℄;x^2 - 3*x + 2Automati
 
oer
ion of obje
ts o

urs systemati
ally throughout themagma language. Consider the following examples:> f := hom< QQ -> QQ | x :-> x >;> f(2);2> 17 eq 17/1;true



7. Creating new stru
tures from oldThe 
onstru
tion of obje
ts in magma is re
ursive, we 
an rationalfun
tion �elds over the integers, 
reate an ellipti
 
urve over thefun
tion �eld, and 
ompute the fun
tion �eld of the 
urve.> F1<u> := Fun
tionField(ZZ);> F2<x> := Fun
tionField(F1);> E := Ellipti
Curve([u+1,u,u,0,0℄);> E;Ellipti
 Curve defined by y^2 + (u + 1)*x*y + u*y =x^3 + u*x^2 over Rational fun
tion field of rank 1over Integer RingVariables: u> P := E![0,0,1℄;> P;(0 : 0 : 1)> P in E;true



Now we 
an do arithmeti
 in this 
urve { even though no one de-signed fun
tion �elds to be used as base �elds for ellipti
 
urves.> [ k*P : k in [1..4℄ ℄;[ (0 : 0 : 1), (-u : u^2 : 1), (-u : 0 : 1),(0 : -u : 1) ℄> 5*P;(0 : 1 : 0)> $1 eq E!0;true> KE<y> := Fun
tionField(E);> y^2;((-u - 1)*x - u)*y + x^3 + u*x^2N.B. The above example shows thatX1(5) has genus 0. The ellipti

urve E above is a universal 
urve over X1(5).Exer
ise. Constru
t a point on an ellipti
 
urve over its own fun
-tion �eld, and re
over the division polynomials for the multipli
ation-by-n maps on the 
urve.



8. Built-in operatorsWe've already seen the assignment := and 
oer
ion ! operators.Eltseq. In many instan
es, the 
oer
ion operator ! 
an a

epta de�ning sequen
e for an obje
t. In su
h 
ir
umstan
es, ! andElementToSequen
e (or the shorthand Eltseq) are inverses.Arithmeti
 operations. The standard arithmeti
 operators +,-, *, /, ^ are de�ned for many 
ategories. Where they exist,the standard assignment versions also exist +:=, -:=, *:=, /:=,^:=. N.B. In non-
ommutative rings, like matrix algebras, or non-abelian groups or semigroups, no left multipli
ation assignment op-erator presently exists.Integral division and remainder. The operators mod and divare de�ned su
h that n equals (n div m)*m + (n mod m) and nmod m is a nonegative number at less than the absolute value of m.Boolean operators. The unary operator not and the binaryoperators and and or operate on the booleans true and false.



Comparison operators. The operator eq tests for equality ofobje
ts in magma, returning a boolean, and for obje
ts whi
h havea ordering or partial ordering, the 
omparison operators are le, lt,gt, and ge.Sequen
e and set operators. Strings and sequen
es are ele-ments of free monoids for whi
h 
at or * serve as the binary oper-ation.Sets. Sets admit the operators join and meet, as well as booleanoperators subset and in.Re
ursion operators Any of the above binary operators, say op,whi
h sati�es an asso
iative law gives rise to a re
ursive operator &opwhi
h applies to sequen
es. If the operation is also 
ommutative,then a re
ursion operator applies to sets.> s := &*[ "I", "n", "t", "e", "g", "e", "r" ℄;> t := &*[ "R", "i", "n", "g" ℄;> s 
at " " 
at t;Integer Ring



N.B. There are no fun
tions Sum or Produ
t in magma, be
ausethe re
ursion operators &+ and &* �ll these voids. The re
ursionoperators &op 
an be very useful, as demonstrated by this one lineimplementation of the subset operator.> X := {1..100};> Y := { a : a in X | IsOdd(a) };> &and[ a in X : a in Y ℄;true> Y subset X;trueMembership and enumeration operators. The operator inis overloaded as both an membership operator and an enumerationoperator, as demonstrated in the above example.



9. Language syntaxA. Language 
onventions. Fun
tions in magma are upper 
aseand should refer to the noun whi
h they return. For example, in-stead of the verb Fa
tor, magma uses the noun form:> Fa
torization(2^(2^7)+1);[ <59649589127497217, 1>, <5704689200685129054721, 1> ℄Syntax bugs. One bug in this 
onvention is the fun
tion Evaluate,whi
h should be 
alled Evaluation. Another bug is the fun
tionLLL whi
h should be 
alled LLLRedu
tion, sin
e it does not returneven one of the L's to whi
h it refers.B. Loops and 
ow 
ontrol. The most 
ommonly used 
ow
ontrol routines are if, for, and while loops.if P in S then...;end if; while P in S do...;end while; for P in S do...;end for;The if statement also permits elif..then and else 
lauses. Notethe two distin
t in operators in the for, if, and while routines.



10. Fun
tions and pro
eduresConsider the �le fun
tion X.m with 
ontent:fun
tion X(A,B)A +:= B;return A;end fun
tion;and the �le pro
edure X.m with 
ontent:pro
edure X(~A,B)A +:= B;end pro
edure;Ba
k in the magma shell we load and use these fun
tions.> load "fun
tion_X.m";Loading "fun
tion_X.m"> A := 2; B := 7;> X(A,B);9



But noti
e that the global variable A remains un
hanged by thefun
tion.> A;2In 
ontrast the variable A is passed by referen
e, with ~A, to thepro
edure X and 
an be 
hanged.> load "pro
edure_X.m";Loading "pro
edure_X.m"> X(~A,B);> A;9Magma fun
tions and pro
edures have no type 
he
king of ar-guments, and overwrite any and all fun
tions or intrinsi
s of thesame name.



11. Pa
kages and intrinsi
s.Intrinsi
s in
lude all fun
tions or pro
edures with type 
he
kingand overloading whi
h are built into the kernel of magma (writtenand 
ompiled in C). It is possible to view the signature of anysu
h fun
tion from the magma shell.> ModularCurveX0;Intrinsi
 'ModularCurveX0'Signatures:(<RngIntElt> N) -> CrvModThe modular 
urve X_0(N) of level N.More and more intrinsi
s are being written in the magma lan-guage, as part of pa
kages distributed with the system. All su
hmagma 
ode is in human readable form in the various subdire
to-ries of $MAGMA ROOT/pa
kage/, where $MAGMA ROOT is the rootdire
tory where magma is installed.



Consider the �le intrinsi
 X.m with 
ontent:intrinsi
 X(A::RngIntElt,B::RngIntElt) -> RngIntElt{Returns the sum of A and B.}A +:= B;return A;end intrinsi
;intrinsi
 X(~A::RngIntElt,B::RngIntElt){Assigns the sum of A and B to A.}A +:= B;end intrinsi
;The �le intrinsi
 X.m 
onstitutes an integer addition pa
kage.Two intrinsi
s are de�ned, one is a fun
tion X and the se
ond apro
edure X. We use the pa
kage by means of the Atta
h 
ommand.



> Atta
h("intrinsi
_X.m");> A := 2; B := 7;> X(A,B);9> X(~A,B);> A;9In a Unix shell, we also noti
e that magma has 
reated two new�les, an intrinsi
 X.dat �le and an intrinsi
 X.sig �le.weyl ~> ls intrinsi
*intrinsi
_X.dat intrinsi
_X.m intrinsi
_X.sigThe former is the 
ompiled �le, and the latter is a signature, whi
his 
he
ked at ea
h 
arriage return in the magma shell, to see if the�le has 
hanged and needs to be re
ompiled.



> Atta
h("intrinsi
_X.m");> X;Intrinsi
 'X'Signatures:(<RngIntElt> A, <RngIntElt> B) -> RngIntEltReturns the sum of A and B.(<RngIntElt> ~A, <RngIntElt> B)Assigns the sum of A and B to A.



12. Infrastru
ture of advan
ed algorithms.Here is a sele
t list of some of the underlying high performan
ealgorithms built into magma, and some of their prin
iple authors anddevelopers. Numerous people have 
ontributed 
ode and providedassisten
e in development during a
ademi
 visits to Sydney and themagma group.Group theory. (John Cannon, Bill Unger, Volker Gebhardt).Number theory. (Claus Fieker, KANT, Ni
ole Sutherland).Galois groups. (Katharina Geissler).Ellipti
 
urves. (Geo� Bailey).Fun
tion �elds of 
urves. (Florian Hess).Groebner bases. (Allan Steel).Latti
e basis redu
tion. (Allan Steel).Integer fa
torization, polynomial fa
torization (Allan Steel).Fast multipli
ation. (up to Dan Bernstein to bring Allan Steelup to speed in the Cult of Fast Multipli
ation.)Dis
rete logarithms. (S
ott Contini and Paulette Lieby).Number �eld sieve. (S
ott Contini).



Various other high-level appli
ations are written in the magma lan-guage by postdo
s in the magma group.Algebrai
 geometry. (Gavin Brown).Mu
king around. (David Kohel).Still more are 
ontributed by outside 
ollaborators.Hyperellipti
 
urves. (Mi
hael Stoll).Modular symbols. (William Stein).


