
Part I. Magma LanguageMagma is a programming language, whih is interpretted rather thanompiled, like perl, python, or various shell sripts. Some nativemagma ode, written as pakages, is ompiled at startup time.1. The magma shell.2. Magma ategories.3. Category handles.4. Primitive strutures.5. Aggregate strutures.6. Coerion: element reation and transmutation.7. Creating new strutures from old.8. Built-in operators.9. Language syntax.10. Funtions and proedures.11. Pakages and intrinsis.12. Infrastruture of advaned algorithms.



1. The magma shellThe most typial way to run magma is interatively via the magmashell. Every statement ends in a semiolon. Output not assigned toa variable, using :=, is printed to the standard output. $1, $2, and$3 refer three previous objets sent to standard output.weyl:~> magmaMagma V2.8-BETA Wed Ot 4 2000 10:40:38 on weylLinked at: Fri Sep 15 2000 18:21:23Type ? for help. Type <Ctrl>-D to quit.Loading startup file "/home/kohel/.magma"> 1;1> 2;2> $1; $2;2 1



2. Magma ategoriesEvery objet in magma has a Parent struture or ategory to whihit belongs. Generally it is neessary to de�ne the parent ategorybefore initializing an element.> ZZ := Integers();> u := One(ZZ);> u;1> Parent(u);Integer Ring> V := RSpae(ZZ,7);> v := Zero(V);> v;(0 0 0 0 0 0 0)> Parent(v);Full RSpae of degree 7 over Integer Ring



3. Primitive struturesCertain ategories, suh as the Integers(), are prede�ned as system-wide global strutures, and do not have to be onstruted in orderto reate elements. Other examples are the Rationals(), stringsand booleans.> n := 2^127-1;> n;170141183460469231731687303715884105727> t := 2/31;> t;2/31> s := "Integer Ring";> s;Integer Ring> true;true



4. Category handlesEvery objet has a Category or Type name or handle.> Parent(n);Integer Ring> Parent(n) eq s;false> Parent(n) eq ZZ;true> Category(n);RngIntElt> Category(s);MonStgElt> Category($1);CatThe ategory handle an be used for omparisons (with eq) of pos-sibly imompatible objets, and for type heking, permitting fun-tion overloading.



5. Aggregate struturesA. Sequenes. A sequene is an indexed list of elements all ofwhih have the same parent, alled the Universe of the sequene.A ommon pitfall is to onstrut empty sequenes without de�ningthe universe.> [℄;[℄> Universe($1);>> Universe($1);^Runtime error in 'Universe': Illegal null sequene> [ ZZ | ℄;[℄> Universe($1);Integer Ring



If the universe is not expliitly de�ned, then objets will be oeredinto a ommon struture, if possible.> S := [ 1, 2/31, 17 ℄;> S;[ 1, 2/31, 17 ℄> Universe(S);Rational Field> S[3℄;17> Parent($1);Rational FieldThe syntax for sequene onstrution is:[ Universe | Element : Loop | Prediate ℄As an example, we have the following sequene:> FF<w> := FiniteField(3^6);> [ FF | x : x in FiniteField(3^2) | Norm(x) eq 1 ℄;[ 1, w^182, 2, w^546 ℄



B. Sets. A set is an unordered olletion of objets having thesame parent, again, de�ned to be its Universe.> { FiniteField(2^8) | 1, 2, 3, 4 };{ 1, 0 }> Random($1);0The syntax for set onstrution is analogous to that for sequenes:{ Universe | Element : Loop | Prediate }The enumeration operator # applies to both sequenes and sets.> #[ x^2 : x in FiniteField(3^3) | x ne 0 ℄;26> #{ x^2 : x in FiniteField(3^3) | x ne 0 };13



C. Indexed sets. An indexed set is a olletion of objets indexedby the positive integers. An element is assigned the next availableindex at its �rst ourene.> S := {� 4, 3, 7 �};> S;{� 4, 3, 7 �}> T := {� 1, 1, 11 �};> S join T; /* Union operator. */{� 4, 3, 7, 1, 11 �}> $1[4℄;1> #$2;5



D. Tuples. A tuple is analogous to a sequene, but unlike setsand sequenes, the parent struture { the set-theoreti produt ofthe parents of the entries { stores the parent of eah omponent.> <>;<>> Parent($1);Cartesian Produt<>> <1,2/1>;<1, 2>> Parent($1);Cartesian Produt<Integer Ring, Rational Field>The parent struture of a tuple is more important than in the aseof sequenes or sets.> C := CartesianProdut(Integers(),RationalField());> t := C!<1,1>;> Parent(t[2℄);Rational Field



E. Vetors and matries. Sine there is a unique global freemodule of rank n over a ringR, the following shorthand onstrutorshave now been provided in V2.7.1. Vetors.> Vetor([2,11,7℄);( 2 11 7)2. Matries.> Matrix([> Vetor([ (i+j) mod 3 : i in [1..3℄ ℄)> : j in [1..3℄ ℄);[2 0 1℄[0 1 2℄[1 2 0℄> $1 eq Matrix(3,3,[ (i+j) mod 3 : i, j in [1..3℄ ℄);true



6. Coerion: element reationand transmutation.The oerion operator ! is used to onstrut an element of a stru-ture, or to map it into a struture, where a nature mapping exists.> QQ := RationalField();> QQ!17;17> P<x> := PolynomialRing(QQ);> P![2,-3,1℄;x^2 - 3*x + 2Automati oerion of objets ours systematially throughout themagma language. Consider the following examples:> f := hom< QQ -> QQ | x :-> x >;> f(2);2> 17 eq 17/1;true



7. Creating new strutures from oldThe onstrution of objets in magma is reursive, we an rationalfuntion �elds over the integers, reate an ellipti urve over thefuntion �eld, and ompute the funtion �eld of the urve.> F1<u> := FuntionField(ZZ);> F2<x> := FuntionField(F1);> E := ElliptiCurve([u+1,u,u,0,0℄);> E;Ellipti Curve defined by y^2 + (u + 1)*x*y + u*y =x^3 + u*x^2 over Rational funtion field of rank 1over Integer RingVariables: u> P := E![0,0,1℄;> P;(0 : 0 : 1)> P in E;true



Now we an do arithmeti in this urve { even though no one de-signed funtion �elds to be used as base �elds for ellipti urves.> [ k*P : k in [1..4℄ ℄;[ (0 : 0 : 1), (-u : u^2 : 1), (-u : 0 : 1),(0 : -u : 1) ℄> 5*P;(0 : 1 : 0)> $1 eq E!0;true> KE<y> := FuntionField(E);> y^2;((-u - 1)*x - u)*y + x^3 + u*x^2N.B. The above example shows thatX1(5) has genus 0. The elliptiurve E above is a universal urve over X1(5).Exerise. Construt a point on an ellipti urve over its own fun-tion �eld, and reover the division polynomials for the multipliation-by-n maps on the urve.



8. Built-in operatorsWe've already seen the assignment := and oerion ! operators.Eltseq. In many instanes, the oerion operator ! an aepta de�ning sequene for an objet. In suh irumstanes, ! andElementToSequene (or the shorthand Eltseq) are inverses.Arithmeti operations. The standard arithmeti operators +,-, *, /, ^ are de�ned for many ategories. Where they exist,the standard assignment versions also exist +:=, -:=, *:=, /:=,^:=. N.B. In non-ommutative rings, like matrix algebras, or non-abelian groups or semigroups, no left multipliation assignment op-erator presently exists.Integral division and remainder. The operators mod and divare de�ned suh that n equals (n div m)*m + (n mod m) and nmod m is a nonegative number at less than the absolute value of m.Boolean operators. The unary operator not and the binaryoperators and and or operate on the booleans true and false.



Comparison operators. The operator eq tests for equality ofobjets in magma, returning a boolean, and for objets whih havea ordering or partial ordering, the omparison operators are le, lt,gt, and ge.Sequene and set operators. Strings and sequenes are ele-ments of free monoids for whih at or * serve as the binary oper-ation.Sets. Sets admit the operators join and meet, as well as booleanoperators subset and in.Reursion operators Any of the above binary operators, say op,whih sati�es an assoiative law gives rise to a reursive operator &opwhih applies to sequenes. If the operation is also ommutative,then a reursion operator applies to sets.> s := &*[ "I", "n", "t", "e", "g", "e", "r" ℄;> t := &*[ "R", "i", "n", "g" ℄;> s at " " at t;Integer Ring



N.B. There are no funtions Sum or Produt in magma, beausethe reursion operators &+ and &* �ll these voids. The reursionoperators &op an be very useful, as demonstrated by this one lineimplementation of the subset operator.> X := {1..100};> Y := { a : a in X | IsOdd(a) };> &and[ a in X : a in Y ℄;true> Y subset X;trueMembership and enumeration operators. The operator inis overloaded as both an membership operator and an enumerationoperator, as demonstrated in the above example.



9. Language syntaxA. Language onventions. Funtions in magma are upper aseand should refer to the noun whih they return. For example, in-stead of the verb Fator, magma uses the noun form:> Fatorization(2^(2^7)+1);[ <59649589127497217, 1>, <5704689200685129054721, 1> ℄Syntax bugs. One bug in this onvention is the funtion Evaluate,whih should be alled Evaluation. Another bug is the funtionLLL whih should be alled LLLRedution, sine it does not returneven one of the L's to whih it refers.B. Loops and ow ontrol. The most ommonly used owontrol routines are if, for, and while loops.if P in S then...;end if; while P in S do...;end while; for P in S do...;end for;The if statement also permits elif..then and else lauses. Notethe two distint in operators in the for, if, and while routines.



10. Funtions and proeduresConsider the �le funtion X.m with ontent:funtion X(A,B)A +:= B;return A;end funtion;and the �le proedure X.m with ontent:proedure X(~A,B)A +:= B;end proedure;Bak in the magma shell we load and use these funtions.> load "funtion_X.m";Loading "funtion_X.m"> A := 2; B := 7;> X(A,B);9



But notie that the global variable A remains unhanged by thefuntion.> A;2In ontrast the variable A is passed by referene, with ~A, to theproedure X and an be hanged.> load "proedure_X.m";Loading "proedure_X.m"> X(~A,B);> A;9Magma funtions and proedures have no type heking of ar-guments, and overwrite any and all funtions or intrinsis of thesame name.



11. Pakages and intrinsis.Intrinsis inlude all funtions or proedures with type hekingand overloading whih are built into the kernel of magma (writtenand ompiled in C). It is possible to view the signature of anysuh funtion from the magma shell.> ModularCurveX0;Intrinsi 'ModularCurveX0'Signatures:(<RngIntElt> N) -> CrvModThe modular urve X_0(N) of level N.More and more intrinsis are being written in the magma lan-guage, as part of pakages distributed with the system. All suhmagma ode is in human readable form in the various subdireto-ries of $MAGMA ROOT/pakage/, where $MAGMA ROOT is the rootdiretory where magma is installed.



Consider the �le intrinsi X.m with ontent:intrinsi X(A::RngIntElt,B::RngIntElt) -> RngIntElt{Returns the sum of A and B.}A +:= B;return A;end intrinsi;intrinsi X(~A::RngIntElt,B::RngIntElt){Assigns the sum of A and B to A.}A +:= B;end intrinsi;The �le intrinsi X.m onstitutes an integer addition pakage.Two intrinsis are de�ned, one is a funtion X and the seond aproedure X. We use the pakage by means of the Attah ommand.



> Attah("intrinsi_X.m");> A := 2; B := 7;> X(A,B);9> X(~A,B);> A;9In a Unix shell, we also notie that magma has reated two new�les, an intrinsi X.dat �le and an intrinsi X.sig �le.weyl ~> ls intrinsi*intrinsi_X.dat intrinsi_X.m intrinsi_X.sigThe former is the ompiled �le, and the latter is a signature, whihis heked at eah arriage return in the magma shell, to see if the�le has hanged and needs to be reompiled.



> Attah("intrinsi_X.m");> X;Intrinsi 'X'Signatures:(<RngIntElt> A, <RngIntElt> B) -> RngIntEltReturns the sum of A and B.(<RngIntElt> ~A, <RngIntElt> B)Assigns the sum of A and B to A.



12. Infrastruture of advaned algorithms.Here is a selet list of some of the underlying high performanealgorithms built into magma, and some of their priniple authors anddevelopers. Numerous people have ontributed ode and providedassistene in development during aademi visits to Sydney and themagma group.Group theory. (John Cannon, Bill Unger, Volker Gebhardt).Number theory. (Claus Fieker, KANT, Niole Sutherland).Galois groups. (Katharina Geissler).Ellipti urves. (Geo� Bailey).Funtion �elds of urves. (Florian Hess).Groebner bases. (Allan Steel).Lattie basis redution. (Allan Steel).Integer fatorization, polynomial fatorization (Allan Steel).Fast multipliation. (up to Dan Bernstein to bring Allan Steelup to speed in the Cult of Fast Multipliation.)Disrete logarithms. (Sott Contini and Paulette Lieby).Number �eld sieve. (Sott Contini).



Various other high-level appliations are written in the magma lan-guage by postdos in the magma group.Algebrai geometry. (Gavin Brown).Muking around. (David Kohel).Still more are ontributed by outside ollaborators.Hyperellipti urves. (Mihael Stoll).Modular symbols. (William Stein).


