Part I. Magma Language

Magma is a programming language, which is interpretted rather than
compiled, like perl, python, or various shell scripts. Some native
magma code, written as packages, is compiled at startup time.

—_ = =
O — O

L 00N OOt W

The magma shell.

Magma categories.

Category handles.

Primitive structures.

Aggregate structures.

Coercion: element creation and transmutation.
Creating new structures from old.

Built-in operators.

Language syntax.

Functions and procedures.

. Packages and intrinsics.
. Infrastructure of advanced algorithms.

1. The magma shell

The most typical way to run magma is interactively via the magma
shell. Every statement ends in a semicolon. Output not assigned to
a variable, using :=, is printed to the standard output. $1. $2. and
$3 refer three previous objects sent to standard output.

weyl:™> magma
Magma V2.8-BETA Wed Oct 4 2000 10:40:38 on weyl

Linked at: Fri Sep 15 2000 18:21:23
Type 7 for help. Type <Ctrl>-D to quit.

Loading startup file "/home/kohel/.magma"

N VNNV —~ V

2. Magma categories

Every object in magma has a Parent structure or category to which
it belongs. Generally it is necessary to define the parent category
before initializing an element.

> ZZ := Integers();
> u := One(ZZ);

> u;

1

> Parent (u);

Integer Ring

> V := RSpace(ZZ,7);

> v := Zero(V);

> V;

(0000000

> Parent (v) ;

Full RSpace of degree 7 over Integer Ring

3. Primitive structures

Certain categories, such as the Integers (), are predefined as system-
wide global structures, and do not have to be constructed in order
to create elements. Other examples are the Rationals (), strings
and booleans.

>n = 27127-1;

> n;
170141183460469231731687303715884105727
>t := 2/31;

> t;

2/31

> s := "Integer Ring";
> 8;

Integer Ring

> true;

True

4. Category handles
Every object has a Category or Type name or handle.

> Parent(n);
Integer Ring

> Parent(n) eq s;
false

> Parent(n) eq ZZ;
True

> Category(n);
RngIntElt

> Category(s);
MonStgElt

> Category($1);
Cat

The category handle can be used for comparisons (with eq) of pos-
sibly imcompatible objects, and for type checking, permitting func-
tion overloading.

5. Aggregate structures

A. Sequences. A sequence is an indexed list of elements all of
which have the same parent, called the Universe of the sequence.
A common pitfall is to construct empty sequences without defining
the universe.

> [1;
[]

> Universe($1);

>> Universe($1);

~

Runtime error in ’Universe’: Illegal null sequence
> [Z2Z | 1;

[]

> Universe($1);

Integer Ring

If the universe is not explicitly defined, then objects will be coerced
into a common structure, if possible.

>SS :=[1, 2/31, 17 1;
> S;

[1, 2/31, 17]

> Universe(S);

Rational Field

> S[3];

17

> Parent ($1);

Rational Field

The syntax for sequence construction is:
[Universe | Element : Loop | Predicate]
As an example, we have the following sequence:

> FF<w> := FiniteField(376);
> [FF | x : x in FiniteField(3"2) | Norm(x) eq 1 1;
[1, w™182, 2, w"546]

B. Sets. A set is an unordered collection of objects having the
same parent, again, defined to be its Universe.

> { FiniteField(2°8) | 1, 2, 3, 4 };
{1, 0 }

> Random($1) ;

0

The syntax for set construction is analogous to that for sequences:
{ Universe | Element : Loop | Predicate }

The enumeration operator # applies to both sequences and sets.

> #[x°2 : x in FiniteField(3"3) | x ne 0];
26
> #{ x°2 : x in FiniteField(3"3) | x ne 0 };
13

C. Indexed sets. An indexed set is a collection of objects indexed
by the positive integers. An element is assigned the next available
index at its first occurence.

> S := {@ 4, 3, 7 @};

> S;

{@ 4, 3, 7 @}

>T :=4{@ 1, 1, 11 @};

> S join T; /* Union operator. */
{@ 4, 3, 7, 1, 11 @}

> $1[4];

1

> #$2;

5

D. Tuples. A tuple is analogous to a sequence, but unlike sets
and sequences, the parent structure — the set-theoretic product of
the parents of the entries — stores the parent of each component.

> <>

<>

> Parent ($1);

Cartesian Product<>

> <1,2/1>;

<1, 2>

> Parent ($1);

Cartesian Product<Integer Ring, Rational Field>

The parent structure of a tuple is more important than in the case
of sequences or sets.

> C := CartesianProduct(Integers(),RationalField());
>t := CI1,1>;
> Parent (t[2]);
Rational Field

E. Vectors and matrices. Since there is a unique global free
module of rank n over a ring R, the following shorthand constructors
have now been provided in V2.7.

1. Vectors.

> Vector([2,11,7]);
(211 7)

2. Matrices.

> Matrix ([

> Vector([(i+j) mod 3 : i in [1..3] 1)

> : j in [1..3]1 1);

[2 0 1]

[0 1 2]

[1 2 0]

> $1 eq Matrix(3,3,[(i+j) mod 3 : i, j in [1..3] 1);
true

6. Coercion: element creation
and transmutation.

The coercion operator ! is used to construct an element of a struc-
ture, or to map it into a structure, where a nature mapping exists.

> QQ := RationalField();

> QQ!'17;

17

> P<x> := PolynomialRing(QQ) ;
> P![2,-3,1];

Xx"2 - 3%x + 2

Automatic coercion of objects occurs systematically throughout the
magma language. Consider the following examples:

>f :=hom< QQ > QQ | x :=> x >;
> £(2);

2

> 17 eq 17/1;

true

7. Creating new structures from old

The construction of objects in magma is recursive, we can rational
function fields over the integers, create an elliptic curve over the
function field, and compute the function field of the curve.

> Fi<u> := FunctionField(ZZ);

> F2<x> := FunctionField(F1);

> E := EllipticCurve([u+1,u,u,0,0]);

> E;

Elliptic Curve defined by y~2 + (u + 1)*x*xy + uxy =
Xx"3 + uxx"2 over Rational function field of rank 1
over Integer Ring

Variables: u
> P := E!'[0,0,1];

> P;
(0 : 0 :1)
> P in E;

true

Now we can do arithmetic in this curve — even though no one de-
signed function fields to be used as base fields for elliptic curves,

> [kP : k in [1..4] 1;

[(0O:0:1), (~ku:u2:1), (ku:0: 1),
(0 :-u:1) 1]

> b*P;

(0 :1:0)

> $1 eq E!0;

True

> KE<y> := FunctionField(E);

> y72;

((-u - 1)*x — wx*y + x"3 + uw*x"2

N.B. The above example shows that X;(5) has genus 0. The elliptic

curve E above is a universal curve over Xi(5).

Exercise. Construct a point on an elliptic curve over its own func-
tion field, and recover the division polynomials for the multiplication-
by-n maps on the curve.

8. Built-in operators

We've already seen the assignment := and coercion ! operators.

Eltseq. In many instances, the coercion operator ! can accept
a defining sequence for an object. In such circumstances, ! and
ElementToSequence (or the shorthand Eltseq) are inverses.

Arithmetic operations. The standard arithmetic operators +,
-, *, /, ~ are defined for many categories. Where they exist,
the standard assignment versions also exist +:=, —:=, *:=, /:=,
~:=. N.B. In non-commutative rings, like matrix algebras, or non-
abelian groups or semigroups, no left multiplication assignment op-
erator presently exists.

Integral division and remainder. The operators mod and div
are defined such that n equals (n div m)*m + (n mod m) and n
mod m is a nonegative number at less than the absolute value of m.

Boolean operators. The unary operator not and the binary
operators and and or operate on the booleans true and false.

Comparison operators. The operator eq tests for equality of
objects in magma, returning a boolean, and for objects which have
a ordering or partial ordering, the comparison operators are le, 1t,
gt, and ge.

Sequence and set operators. Strings and sequences are ele-
ments of free monoids for which cat or * serve as the binary oper-
ation.

Sets. Sets admit the operators join and meet, as well as boolean
operators subset and in.

Recursion operators Any of the above binary operators, say op,
which satifies an associative law gives rise to a recursive operator &op
which applies to sequences. If the operation is also commutative,
then a recursion operator applies to sets.

> g e = &*[llIlI, Ilnll, lltll, Ilell, llgll, llell, Ilrll];
> t e = &*[lIRll, Ilill, llnll, Ilgll];
> s cat " " cat t;

Integer Ring

N.B. There are no functions Sum or Product in magma, because
the recursion operators &+ and &= fill these voids. The recursion
operators &op can be very useful, as demonstrated by this one line
implementation of the subset operator.

> X = {1..100};

>Y :={a: ain X | Is0dd(a) };
> &and[a in X : a in Y];

true

> Y subset X;

true

Membership and enumeration operators. The operator in
is overloaded as both an membership operator and an enumeration
operator, as demonstrated in the above example.

9. Language syntax

A. Language conventions. Functions in magma are upper case
and should refer to the noun which they return. For example, in-
stead of the verb Factor, magma uses the noun form:

> Factorization(2°(2°7)+1);
[<59649589127497217, 1>, <5704689200685129054721, 1>]

Syntax bugs. One bug in this convention is the function Evaluate,
which should be called Evaluation. Another bug is the function
LLL which should be called LLLReduction, since it does not return
even one of the L’s to which it refers.

B. Loops and flow control. The most commonly used flow
control routines are if, for, and while loops.

if P in S then while P in S do for P in S do

L] e o o 9 e o o 9

end if; end while; end for;

The if statement also permits elif. .then and else clauses. Note
the two distinct in operators in the for, if, and while routines.

10. Functions and procedures
Consider the file function X.m with content:

function X(A,B)
A +:= B;
return A;

end function;

and the file procedure X.m with content:

procedure X(7A,B)
A +:= B;
end procedure;

Back in the magma shell we 1load and use these functions.

> load "function_X.m";
Loading "function_X.m"
> A :=2; B :=7,;

> X(A,B);

9

But notice that the global variable A remains unchanged by the
function.

> A;
2

In contrast the variable A is passed by reference, with “A, to the
procedure X and can be changed.

> load "procedure_X.m";
Loading "procedure_X.m"
> X(7A,B);

> A;

9

Magma functions and procedures have no type checking of ar-
guments, and overwrite any and all functions or intrinsics of the
same name.

11. Packages and intrinsics.

Intrinsics include all functions or procedures with type checking
and overloading which are built into the kernel of magma (written
and compiled in C). It is possible to view the signature of any
such function from the magma shell.

> ModularCurveXO0;
Intrinsic ’ModularCurveX0’

Signatures:
(<RngIntElt> N) -> CrvMod

The modular curve X_O0(N) of level N.

More and more intrinsics are being written in the magma lan-
guage, as part of packages distributed with the system. All such
magma code is in human readable form in the various subdirecto-
ries of $MAGMA ROOT/package/, where $MAGMA ROOT is the root

directory where magma is installed.

Consider the file intrinsic_X.m with content:

intrinsic X(A::RngIntElt,B::RngIntElt) -> RngIntElt
{Returns the sum of A and B.}
A +:= B;
return A;

end intrinsic;

intrinsic X("A::RngIntElt,B::RngIntElt)
{Assigns the sum of A and B to A.}
A +:= B;

end intrinsic;

The file intrinsic X.m constitutes an integer addition package.
Two intrinsics are defined, one is a function X and the second a
procedure X. We use the package by means of the Attach command.

> Attach("intrinsic_X.m");
> A :=2; B :=7,;

> X(A,B);

9

> X("A,B);

> A;

9

In a Unix shell, we also notice that magma has created two new
files, an intrinsic X.dat file and an intrinsic X.sig file.

weyl "> 1ls intrinsick*
intrinsic_X.dat 1intrinsic_X.m 1intrinsic_X.sig

The former is the compiled file, and the latter is a signature, which
is checked at each carriage return in the magma shell, to see if the
file has changed and needs to be recompiled.

> Attach("intrinsic_X.m");

> X;

Intrinsic ’X’

Signatures:

(<RngIntElt> A, <RngIntElt> B) -> RnglntElt
Returns the sum of A and B.

(<RngIntElt> A, <RngIntElt> B)

Assigns the sum of A and B to A.

12. Infrastructure of advanced algorithms.

Here is a select list of some of the underlying high performance
algorithms built into magma, and some of their principle authors and
developers. Numerous people have contributed code and provided
assistence in development during academic visits to Sydney and the
magma group.

Group theory. (John Cannon, Bill Unger, Volker Gebhardt).

Number theory. (Claus Fieker, KANT, Nicole Sutherland).

Galois groups. (Katharina Geissler).

Elliptic curves. (Geoff Bailey).

Function fields of curves. (Florian Hess).

Groebner bases. (Allan Steel).

Lattice basis reduction. (Allan Steel).

Integer factorization, polynomial factorization (Allan Steel).

Fast multiplication. (up to Dan Bernstein to bring Allan Steel
up to speed in the Cult of Fast Multiplication.)

Discrete logarithms. (Scott Contini and Paulette Lieby).

Number field sieve. (Scott Contini).

Various other high-level applications are written in the magma lan-
guage by postdocs in the magma group.

Algebraic geometry. (Gavin Brown).
Mucking around. (David Kohel).

Still more are contributed by outside collaborators.

Hyperelliptic curves. (Michael Stoll).
Modular symbols. (William Stein).

