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Institut de Mathématiques de Luminy

Belgian Mathematical Society - London Mathematical Society
Algebraic Geometry and Cryptography Special Session

Leuven, 5 December 2009



Complex multiplication Real multiplication

Contents

1 Complex multiplication
CM overview
Motivation: Number theory
Motivation: Cryptography

2 Real multiplication
RM overview
Application: RM zeta functions
Application: explicit real endomorphisms
Application: explicit RM and point counting



Complex multiplication Real multiplication

CM overview

CM Motivation

Let A/k be a simple abelian variety. Then A is said to have
complex multiplication if End(A) is an order in a totally imaginary
quadratic extension of a totally real field K . Such a field K is
called a CM field, and is the largest such ring which can occur as
the endomorphism ring of an abelian variety.

Question: Why are we interested?

1 The beauty of the mathematics.
It provides a connection between algebraic geometry and
constructive class field theory.

2 The applications to cryptography.
There are explicit and very efficient constructions of elliptic
curves and abelian varieties with known group orders.
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Motivation: Number theory

The abelian varieties (or Jacobians) with CM by O are determined
by a zero dimensional scheme (Galois orbits of points) in the
moduli space Ag of p.p. abelian varieties (or Mg of curves).

Elliptic curves. For g = 1 the coordinate function is the
j-invariant, and the scheme is defined by the Hilbert class
polynomial HD(j), e.g.

H−3(j) = j = 0, H−4(j) = j − 123 = 0,

and

H−23(j) = j3 + 3491750j2 − 5151296875j + 12771880859375 = 0.

A root j generates the Hilbert class field H = K (j) over
K = Q(

√
D).
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Level structure. In order to reduce the height of the moduli
points, a standard trick is to introduce level structure. For
example, H−71(x) is:

x7 +313645809715x6−3091990138604570x5+98394038810047812049302x4

− 823534263439730779968091389x3+5138800366453976780323726329446x2

− 425319473946139603274605151187659x+119·176·233·413·473·533.

but if we use a low degree function on X +
0 (N) we find:

19 : x7 + 12x6 + 64x5 + 219x4 + 556x3 + 974x2 + 964x + 391
29 : x7 + 4x6 + 4x5 − 2x4 − 2x3 + x + 1
37 : x7 − 2x6 + 9x5 − 10x4 − x3 + 8x2 − 5x + 1
43 : x7 − 3x6 + 2x5 + x4 − 2x3 + 2x2 − x + 1
83 : x7 − 2x6 + 4x5 − 4x4 + 5x3 − 4x2 + 2x − 1
89 : x7 − 4x6 + 5x5 − x4 − 3x3 + 2x2 − 1.
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Genus 2 curves. For g = 2, the invariants of a curve is a triple
(j1, j2, j3) of Igusa invariants, and the CM subscheme is defined by
an ideal in k[j1, j2, j3]. E.g. the CM curve y2 = x5 − 1 (with
K = Q(ζ5)) has Igusa invariants

(j1, j2, j3) = (0, 0, 0).

In general, the degree and coefficient size of this ideal grows with
the class number and defines a subfield of the Hilbert class field of
the reflex field of K .

As in the case g = 1, the moduli points encode arithmetic
information about the reduction and congruence behavior of the
geometric objects, so the heights of the points grows with the
discriminant of K .
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Motivation: Cryptography

Random curve point counting. The efficient construction of a
random abelian surface A/Fp such that A(Fp) has known order N
over a large prime finite field Fp is a challenging open problem.

Using an optimized Schoof, Atkin, Elkies algorithm for genus 2 can
produce a Jacobian J/Fp with N prime of cryptographic size
(160-256 bits), but may require months of computation. See:

http://chic.gforge.inria.fr/index_en.html

This difficulty fuels the interest in CM curves in cryptography (and
efforts to improve the algorithms for random curves).

http://chic.gforge.inria.fr/index_en.html
http://chic.gforge.inria.fr/index_en.html


Complex multiplication Real multiplication

Motivation: Cryptography

Motivation: Cryptography

CM curve point counting. In contrast, given a CM curve, it
takes a matter of seconds to produce such a Jacobian surface. For
example, let p be the prime

82868313845568823383146027529869455231.

Then the genus 2 curve C : y2 = x5 + 3 over Fp has Jacobian
whose number N of points:

6867157439607693550919607918760021921783195331645921526927337384226808323221

is prime. In particular the class [(1, 2)]− [∞] generates a cyclic
group of prime order N.
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Explicit CM in genus 2

The known methods for CM constructions in genus 2 are:

1 complex analytic (van Wamelen, Spalleck, Weng, Dupont,
Houtmann, etc.),

2 p-adic analytic (G.H.K.R.W., Carls, K., Lubicz),

3 CRT (Lauter et al.).

The CRT method is not yet practical. The 2-adic and 3-adic
methods implemented, are limited by the congruence condition on
the CM field at p, and finding a suitable input curve, over a small
finite field, with endomorphism ring equal to the maximal order. A
good general implementation of the complex analytic method is
not yet available.
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Explicit CM in genus 2

A genus 2 database of CM invariants. The simple form and
tiny invariants for the curve in the previous example is deceptive.
In general, due to the size of the output, it is a challenging problem
to determine defining equations for CM Igusa invariants. See:

http://echidna.maths.usyd.edu.au/kohel/dbs/complex_multiplication2.html

Once a set of defining polynomials are known for given K , it is
nevertheless still efficient to sieve for degree one primes (of good
ordinary reduction) and and write down a CM curve (using
Mestre’s algorithm) whose Jacobian has known prime number of
points.

http://echidna.maths.usyd.edu.au/kohel/dbs/complex_multiplication2.html
http://echidna.maths.usyd.edu.au/kohel/dbs/complex_multiplication2.html
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RM moduli. The data of (the maximal order of) a CM field
determines a zero dimensional scheme in Ag . For g = 2 these
comprise a finite set of points in a 3-dimensional space.

If we restrict to the real subring of discriminant D, we determine a
2-dimensional Humbert surface HD in A2. This is a new
phenomenon not seen in genus 1. As a codimension one subspace
of a rational space it is determined by a polynomial equation.

For details of the determination of these Humbert polynomials,
especially in covers of A2 with level structure, see the thesis of
D. Gruenewald:

http://echidna.maths.usyd.edu.au/~davidg,

Alternatively, for N. Elkies and A. Kumar approach via K3 surfaces:

http://www.math.harvard.edu/~elkies/banff07.pdf

http://echidna.maths.usyd.edu.au/~davidg
http://echidna.maths.usyd.edu.au/~davidg
http://www.math.harvard.edu/~elkies/banff07.pdf
http://www.math.harvard.edu/~elkies/banff07.pdf
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Question: Why are we interested?

1 Mathematical beauty.
The Humbert surfaces are fundamental geometric objects in
A2 (or M2), with connections to Hilbert modular forms,
Shimura curves, etc.

2 Applications.
The real subring determines half of the data of the Frobenius
characteristic polynomial and for small discriminants D the
endomorphisms on an RM Jacobian can be made effective.
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RM zeta functions. For small discriminants for which the
Humbert surface HD has been computed, we obtain a random RM
construction over finite fields. If D is known, then the
characteristic polynomial of Frobenius factors:

χ(T ) = T 4 − tT 3 + sT 2 − ptT 2 + p2 = χ1(T )χ2(T ),

where

χi (T ) = T 2 − τiT + p for τi =
t ±m

√
D

2
·

We can then replace the bounds

|t| ≤ 4
√

p and |s − 2p| ≤ 4p,

with
|t| ≤ 4

√
p and |m|

√
D ≤ 4

√
p.
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Application: explicit real endomorphisms

Explicit endomorphisms. Let K be a field and C/K the genus 2
family of curves:

C : y2 = x5 − 5x3 + 5x + t.

If P = (ξ, γ) is a generic point on C over its function field
F = K (ξ, γ), then in Mumford representation, we have

[P]− [∞] = (x − ξ, y − γ) ∈ J(F ).

Then J has real multiplication by Z[η5] = Z[t]/(t2 − t − 1). In
particular:

[η5](P) = (x2 + (−η5 + 1)ξx + ξ2 − η5 − 2, y − γ).

See K. and Smith, (ANTS 7, Berlin).
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RM torsion decomposition. The use of explicit real
multiplication for such families will permit us (for half of the
primes `) to determine a decomposition

A[`] = G1 ⊕ G2.

Since a generic genus 2 divisor is of the form [P1] + [P2]− 2[∞],
G ⊂ A[`] is determined by a meet-in-the-middle construction

φ([P1]− [∞]) = −φ([P2]− [∞]),

where φ = n + mη is a generator for a principal ideal over (`).

Since the order of Gi is `2 rather than `4 for A[`], this allows one
to push the explicit SEA calculation further using larger primes `
for a combined random RM and SEA algorithm.
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THE END
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