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Abstract

We describe a process for defining and computing a fundamental do-
main in the upper half plane H of a Shimura curve XD

0 (N) associated to
an order in a quaternion algebra A/Q. A fundamental domain for XD

0 (N)
realizes a finite presentation of the quaternion unit group, modulo units
of its center. We give explicit examples of domains for the curves X6

0 (1),
X15

0 (1), and X35

0 (1). The first example is a classical example of a triangle
group and the second is a corrected version of that appearing in the book
of Vignéras [13], due to Michon. These examples are also treated in the
thesis of Alsina [1]. The final example is new and provides a demonstra-
tion of methods to apply when the group action has no elliptic points.

1 Introduction to Shimura curves

Let A/Q be a quaternion algebra, and let O/Z be a maximal order in A. We
say that A is indefinite if A ⊗Q R is isomorphic to the matrix algebra M2(R).
By fixing an isomorphism, we obtain an exact sequence

1 −→ {±1} −→ O∗
+ −→ PSL2(R),

where O∗
+ is the subgroup of units of positive norm, such that the image of

O∗
+ /{±1} is a discrete subgroup of PSL2(R). We define H to be the upper half

complex plane, on which we identify PSL2(R) with Aut(H) via the standard
action by linear fractional transformations. We denote the image of O∗

+ /{±1} in
PSL2(R) by ΓD

0 (1), where D is the discriminant of the algebra A/Q, and define
the Shimura curve XD

0 (1) to be an algebraic model for the compatification of
the quotient ΓD

0 (1)\H. An Eichler order of index N in O defines a subgroup of
ΓD

0 (1) which we denote by ΓD
0 (N), with corresponding Shimura curve XD

0 (N).
In the case of the split quaternion algebra A = M2(Q) of discriminant D = 1,

and maximal order O = M2(Z) we have the identification O∗
+ /{±1} = PSL2(Z).

The compactification of ΓD
0 (1)\H is obtained by adjoining the cusps of H, and

the Shimura curve X1
0 (1) can be identified with the classical modular curve

X(1). An Eichler order of index N in M2(Z) is conjugate to the ring of matrices
upper triangular modulo N , and the family of curves X1

0 (N) can be identified
with the classical family of modular curves X0(N).

When the algebra A is nonsplit, the quotient ΓD
0 (M)\H is already compact

and the Shimura curves XD
0 (M) provide a new class of curves whose Jacobians

are related to those of the modular curves X0(N), where N = DM . While the
structure of the groups Γ0(N) and the fundamental domains for their actions on
H can be inferred from the group structure of PSL2(Z) and the computation of
cosets for the quotient PSL2(Z)/Γ0(N), for each discriminant D it is necessary
to first compute anew the group structure and a fundamental domain for the
base group ΓD

0 (1) associated to a maximal order of discriminant D.
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We note that the above construction depends explicitly on the choice of
Eichler order and the choice of embedding in PSL2(R). The former choice
has minimal significance—every maximal order in an indefinite algebra is iso-
morphic, so we are free to choose one which is conveniently represented for
computation. The embedding in PSL2(R) is subject to uncountably many iso-
morphisms given by conjugation. We reduce the latter choice however to a
choice of a real quadratic subfield K of A and a K-basis for A, by which we
obtain an isomorphism A ⊗Q K ∼= M2(K). Choosing a real place v of K, the
isomorphism Kv

∼= R, gives an isomorphism A ⊗Q Kv
∼= M2(R).

In the sequel we present computations of fundamental domains for several
Shimura curves, with a description of the methods used. In the next section we
discuss representations of quaternion algebras and the structure of units which
we use for our computations. We follow with a review of hyperbolic geometry
and group actions, sufficient to prove the correctness of our results. In the final
section we give fundamental domains for the Shimura curves X6

0 (1), X15
0 (1),

X35
0 (1), of genera 0, 1, and 3, respectively, in terms of an explict representa-

tion. The example X35
0 (1) presents the initial obstacle that neither Q(

√
−3)

nor Q(
√
−1) embeds in the algebra ramified at 5 and 7, so there exist no tor-

sion elements in Γ35
0 (N), hence no elliptic points to serve as base vertices for a

fundamental domain.
The background material for this work follows closely the comprehensive

book of Vignéras [13], to which we refer the reader for further information.
In addition we note a strong overlap with the recent work of Alsina [1], who,
in particular, computes fundamental domains for X6

0 (1), X10
0 (1), X15

0 (1), and
classifies certain CM points and other invariants of Shimura curves.

2 Representations of quaternion algebras

One defines a quaternion algebra A over a field K to be a central simple algebra
of dimension four over K. The definition is often replaced by a constructive
one, setting A = K〈x, y〉, where x and y are generators satisfying relations
x2 = a 6= 0, y2 = b 6= 0, and xy + yx = 0. In this study we restrict to the case
of K = Q, although much of what is said here for Shimura curves generalizes
to totally real number fields.

As a first example, we consider the split quaternion algebra defined by a =
b = 1. There exists an isomorphism:

K〈x, y〉 // M2(K)

x, y �

//

[

1 0
0 −1

]

,

[

0 1
−1 0

]

.

We say that a quaternion algebra isomorphic to a 2× 2 matrix algebra is split.
A field L such that A ⊗K L ∼= M2(L) is said to be a splitting field for a

quaternion algebra A over K. A field extension L/K is a splitting field for A if
and only if it contains a quadratic subfield which embeds in A. For any number

2



field K and quaternion algebra A over K there exist infinitely many quadratic
splitting fields L/K of A up to isomorphism.

As a second example, we consider the quaternion algebra over K defined
as above with a nonsquare in K, and take the splitting field L = Q(t), where
t2 = a. Then we obtain the splitting:

A ⊗K L = L〈x, y〉 // M2(L)

x, y �

//

[

t 0
0 −t

]

,

[

0 1
b 0

]

.

In the sequel we work with quaternion algebras over Q defined by such a pre-
sentation and choose a matrix representation of this form.

In the study of quaternions algebras A over a number field K, the splitting
behaviour of A at the completions of K at the finite and infinite places serves
to classify the algebra up to isomorphism. We say that A is split at a place v
if Av = A ⊗K Kv is isomorphic to a matrix algebra, and otherwise say that A
is ramified at v. A nonsplit quaternion algebra over a local field is a division
algebra which is unique up to isomorphism. A classical result for Brauer groups
of number fields says that A is ramified at a finite, even number of places.

We define the reduced discriminant of a quaternion algebra over Q to be the
product of the finite primes which ramify and say that A is indefinite or definite
according to whether the prime at infinity is split or ramified.

3 Structure of units

We define the reduced trace Tr(x) and reduced norm N(x), respectively, of an
element x of a quaternion algebra A to be the trace and determinant under any
matrix representation of A. One easily verifies that these are elements of the
center K, and that x satisfies a characteristic polynomial x2 −Tr(x)x + N(x) =
0. Hereafter we omit the adjective reduced and refer to the trace, norm, and
discriminant associated to A.

The existence of a quadratic characteristic polynomial for quaternion ele-
ments immediately implies that any element of a quaternion algebra A/Q not
in the center must necessarily generate a quadratic extension. We can there-
fore classify the units in O∗

+ as either torsion units, existing in some cyclotomic
extension, or as lying in the free unit group of a real quadratic suborder of O.
In terms of the matrix representation of elements, it is standard to classify el-
ements γ of PSL2(R) in terms of their trace as elliptic (|Tr(γ)| < 2), parabolic
(|Tr(γ)| = 2), or hyperbolic (|Tr(γ)| > 2).

According to this classification, the elliptic elements have one fixed point
in H, while parabolic and hyperbolic elements have one and two fixed points,
respectively, which are cuspidal—that is, in the boundary P

1(R) of H. In the
case of nonsplit quaternion unit groups O∗

+ , we find that nontrivial parabolic
elements do not exist, and the distinction between elliptic and hyperbolic ele-
ments is precisely that of cyclotomic and real quadratic units. In particular we
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note that in a quaternion algebra over Q the only cyclotomic units are those
coming from embeddings of the fields Q(

√
−3) and Q(

√
−1).

In addition to the units in O∗
+ /{±1} we introduce elements of the normalizer

group N (ΓD
0 (1)) of ΓD

0 (1) in PSL2(R). We can find nontrivial elements of
N (ΓD

0 (1)) using the following lemma.

Lemma 3.1. Let p be a prime divisor of D = disc(A). If πp is an element of
O of norm p then πpOπ−1

p = O, and the image of πp is in N (ΓD
0 (1)).

Proof. For a prime ℓ 6= p we have πpOℓπ
−1
p = Oℓ since πp is a unit in Oℓ,

so the result holds locally at such primes. At the ramified prime p, the order
Op = O ⊗Z Zp is the unique maximal order, defined by

Op = {α ∈ Ap | vp(N(α)) ≥ 0}.

Since the norm is multiplicative, it follows that πpxπ−1
p ∈ Op for all x in Op.

The local-global correspondence for lattices in A implies that the result holds
globally.

More generally the quotient N (ΓD
0 (1))/ΓD

0 (1) is known to be an elementary
2-abelian group, generated precisely by elements of this form.

Lemma 3.2. The group N (ΓD
0 (1))/ΓD

0 (1) is isomorphic to (Z/2Z)m, where m
is the number of prime divisors of D, and is generated by any set of elements
{πpi ∈ O | N(πpi) = pi}, where p1, . . . , pm are the prime divisors of D.

Proof. See Michon [10] or Vignéras [13, Ch IV.B]

If the trace of an element πp is zero then we obtain a new elliptic element
in N (ΓD

0 (1)). Thus when ΓD
0 (1) fails to have elliptic elements we may exploit

the existence of elliptic points of the normalizer to build a fundamental do-
main for the group ΓD

0 (1) such that the vertices are distinguished points of the
curve XD

0 (1).
As our computational model, we make an explicit identification of PGL+

2 (R)
with PSL2(R) so that for a fixed quadratic splitting field K/Q, we may represent
an element π of the normalizer by an element of PGL+

2 (K), without extending
K to by the square roots

√
pi.

We are able to generate “random” units in O∗
+ by searching for fundamental

units of real quadratic suborders, which may have norm 1 or −1. The search for
elements πp of norm p in O is facilitated by taking the product of an element
of norm −p with any unit in O∗ of norm −1, whose existence is proved by the
following lemma.

Lemma 3.3. An Eichler order in a indefinite quaternion algebra over Q con-
tains a unit of norm −1.

Proof. We define the discriminant form to be the form Tr(x)2 − 4N(x) on
O/Z. This form is a ternary quadratic form of discriminant 4 disc(O), which
represents the discriminants of the quadratic subrings Z[x] in O (see Chapter 6
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of Kohel [5]). It suffices to show that the discriminant form represents a prime p
congruent to 1 mod 4, since then O contains a real quadratic order of discrim-
inant p, whose fundamental unit has norm −1. Since O is an Eichler order it
is either ramified and maximal or locally isomorphic an upper triangular ma-
trix algebra at each finite prime. In both cases, the discriminant form is not
zero modulo any prime p, in particular represents the class of 1 mod 4, and by
the assumption that O is indefinite, represents both 1 and −1 at infinity. It fol-
lows that the discriminant form admits a representation of a primitive indefinite
quadratic form which represents 1 mod 4. By the Chebotarev density theorem,
this latter form represents a positive density of primes 1 mod 4, and the result
holds.

We note that the lemma is false if O is not an Eichler order. For example,
if O is nonmaximal at a ramified prime p ≡ 3 mod 4, then the discriminant
form is not primitive, as it represents only integers congruent to 0 mod p, and
no quadratic order of this discriminant contains a unit of norm −1. The lemma
also fails for a quaternion order of the form Z+4O, whose norm form represents
only integers congruent to 0 or 1 mod 4.

4 Hyperbolic geometry and group action

The metric on H defines a volume measure which permits the effective com-
putation of volumes of hyperbolic polygons (see Vignéras [13, Ch. IV]). We
define the arithmetic volume of such a region to be 1/(2π) times its hyperbolic
volume. If the region is a fundamental domain of any discrete group acting on
H such that Γ\H∗ is compact then the arithmetic volume is a rational number.
In particular we have the following formula for this quantity when Γ = ΓD

0 (1).

Lemma 4.1. The arithmetic volume of ΓD
0 (1) is given by

|vol(F)| =
1

6

∏

p|D

(p − 1).

Proof. See Vignéras [13], Lemme IV.3.1.

Let Γ be an discrete co-compact subgroup of PSL2(R) and let en(Γ) be the
number of elliptic points z̄ of Γ\H such that |{γ ∈ Γ | γ(z) = z}| = n where z
is any representative of z̄ in H.

Lemma 4.2. The arithmetic volume of a fundamental domain F for Γ satifies
the following relation:

|vol(F)| = 2g(Γ) − 2 +
∑

n≥1

n − 1

n
en(Γ),

where g(Γ) is the genus of the Riemann surface Γ\H.

Proof. See Vignéras [13], Proposition IV.2.10.
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Lemma 4.3. The numbers en of elliptic elements for ΓD
0 (1) satisfy the identi-

ties:

e2 =
∏

p|D

(

1 −
(−4

p

))

, e3 =
∏

p|D

(

1 −
(−3

p

))

,

and en = 0 for all n greater than 3. The numbers en for N (ΓD
0 (1)) are zero

except for n in {1, 2, 3, 4, 6, 8, 12}.

Proof. See Vignéras [13, Ch. IV.A-B].

We now generalize the formulas for the numbers of elliptic points to include
their normalizers.

Lemma 4.4. Let γ be an elliptic element of order n > 1 in N (ΓD
0 (1)), and

identify γ with a representative in O∩A∗
+ of square-free integral norm m. Then

m divides D and the possible combinations for the subring R = Z[γ] ⊂ O,
the minimal polynomial f(x) of γ, and the integers m and n are given in the
following table.

R f(x) m n
Z[
√−m] x2 + m 2

Z[
√
−1]

{

x2 + 1
x2 + 2x + 2

m 6= 2
m = 2

2
4

Z[(1 +
√
−3)/2]

{

x2 ± x + 1
x2 ± 3x + 3

m 6= 3
m = 3

3
6

Proof. The projective normalization µ = γ/
√

m in A ⊗Q R of an elliptic
element γ in N (ΓD

0 (1)) of norm m is a root of unity. On the other hand, the
square of this element is an element of O∗

+ = ΓD
0 (1) and so is quadratic over Z.

Therefore the normalized element µ is contained in the biquadratic extension
Q[

√
m, α]. The possible roots of unity are those of order 1, 2, 3, 4, 6 or 12,

giving rise to elliptic elements of projective order 1, 2, 3, or 6. It follows that
the possible rings and minimal polynomials for γ are those specified.

For a prime p dividing the discriminant of A, a p-orientation on a maximal
order O is a homorphism O → Fp2 . An embedding R ⊂ O is said to be optimal
if O/R is torsion free, and an orientation distinguishes two embeddings of R
into O which do not commute with a collection of p-orientations on O for each
prime p dividing the discriminant D. As a special case of Corollaire III.5.12
in Vignéras [13], the number rn(O, R) of optimal, oriented embeddings of a
quadratic subring R in O is given by

rn(O, R) = h(R)
∏

p|D

(

1 −
(dR

p

))

,

where dR is the discriminant of R. We can now express the number of elliptic
points for a group N (ΓD

0 (1)) < G < ΓD
0 (1) in terms of these invariants.
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Theorem 4.5. Let G be an extension of Γ = ΓD
0 (1) contained in N (ΓD

0 (1)).
Then the invariants en(G) are given by the following formula:

en(G) =
1

[G : Γ]

∑

R

δn(G, R)rn(O, R)

where the sum is over all imaginary quadratic orders and where

δ2(G, R) =







2 if −3,−4 6= dR ∈ {−m,−4m} and πm ∈ G,
1 if dR = −4 and π2 6∈ G,
0 otherwise;

δ3(G, R) =

{

1 if dR = −3 and π3 6∈ G,
0 otherwise;

δ4(G, R) =

{

2 if dR = −4 and π2 ∈ G,
0 otherwise;

δ6(G, R) =

{

2 if dR = −3 and π3 ∈ G,
0 otherwise.

Proof. This follows from the classification of elliptic elements in Lemma 4.4
and consideration of the ramification of the cover ΓD

0 (1)\H → G\H.

5 Examples

We present here examples of fundamental domains for Γ6
0(1), Γ15

0 (1), and Γ35
0 (1).

This provides the base case from which domains for the families of subgroups
ΓD

0 (N) can be studied. We note, however, that even within the collection of
groups ΓD

0 (1) associated to the maximal orders in rational quaternion algebras
the genus of the Shimura curve XD

0 (1) may be arbitrarily large. For reference
we display in Figure 1 the initial genera of the Shimura curves of discriminant
D and index 1.

5.1 Fundamental domain for Γ6
0(1).

The group Γ6
0(1) is a well-known triangle group in the literature. This group

is treated in Alsina [1], where one also finds an explicit description of a funda-
mental domain. Ihara proved that, as an abstract curve, X6

0 (1) is isomorphic to
the conic X2 +Y 2 +3Z2 = 0, as reported in Kurihara [9]. Elkies [4] determines
equations for the quotient curve associated to the normalizer, and also treats
several examples of the subgroups N (Γ6

0(ℓ)) for small primes ℓ.
We apply Lemma 4.5 to compute the the elliptic invariants for each of the

extensions groups G with image W in N (Γ6
0(1))/Γ6

0(1) = 〈π̄2, π̄3〉, and present
this information with the genus and volume data in the following table. The
elliptic points will be explicitly determined as part of the fundamental domain
computation.
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D gD
0 (1)

6 0
10 0
14 1
15 1
21 1
22 0
26 2
33 1
34 1
35 3
38 2
39 3

D gD
0 (1)

46 1
51 3
55 3
57 3
58 2
62 3
65 5
69 3
74 4
82 3
85 5
86 4

D gD
0 (1)

87 5
91 7
93 5
94 3
95 7
106 4
111 7
115 7
118 4
119 9
122 6
123 7

D gD
0 (1)

129 7
133 9
134 6
141 7
142 5
143 11
145 9
146 7
155 11
158 7
159 9
161 11

D gD
0 (1)

166 6
177 9
178 7
183 11
185 13
187 13
194 9
201 11
202 8
203 15
205 13
206 9

Table 1: Genera of Shimura groups ΓD
0 (1).

W g6
0(1) e2 e3 e4 e6 |vol(F)|

〈1〉 0 2 2 0 0 1/3
〈π̄2〉 0 0 1 2 0 1/6
〈π̄3〉 0 1 0 0 2 1/6
〈π̄6〉 0 3 1 0 0 1/6

〈π̄2, π̄3〉 0 1 0 1 1 1/12

Figure 1: Genus and invariant data for extensions of Γ6
0(1).

We define a presentation of the quaternion algebra A = Q〈x, y〉 of discrim-
inant 6 by the relations x2 = 2, y2 = −3, and xy = −yx, and let O be the
Z-module with basis {1, (x + z)/2, (1 + y)/2, z}. The module O is immediately
verified to be closed under multiplication and forms a maximal order of A since
the discriminant of its norm form is 62 (see Lemme I.4.7 and Corollaire I.4.8 of
Vigneras [13] for the computational construction and Corollaire III.5.3 for its
value). We introduce a representation A → M2(R) given by

x 7−→
(√

2 0

0 −
√

2

)

, y 7−→
(

0 1
−3 0

)

, z 7−→
(

0
√

2

3
√

2 0

)

,

under which Γ6
0(1) acts on H.

Without further ado, we begin by writing down a system of units in Γ6
0(1):

γ1 = (x + 2y − z)/2, γ3 = (1 + y)/2,
γ2 = (x − 2y + z)/2, γ4 = (1 + 3y − 2z)/2.

(1)

and note that they satisfy the elementary relations:

γ2
1 = γ2

2 = γ3
3 = γ3

4 = γ4γ2γ3γ1 = 1. (2)
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We moreover define the elements π2, π3, and π6 of the normalizer N (Γ6
0(1)) by:

π2 = (−2 + x + 2y − z)/2, π3 = (3 + y)/2, π6 = 2y − z. (3)

Together with the identity, these elements form a set of coset representatives for
the quotient N (Γ6

0(1))/Γ6
0(1), and satisfy the additional projective relations:

π2
2 = γ1, π2

3 = γ3, π2
6 = 1 and π2 = π6π3. (4)

Here by projective relation we mean that the relation holds up to some element
of Q∗. We note that all of the above relations are verified by elementary means
and are independent of any matrix representation or embedding in PSL2(R).

With respect to the chosen representation we define the points a, b, and c to
be the fixed points of the elements γ4, γ2π

2
3π6, and γ2, respectively—specifically

these are the points:

a =
(−2

√
2 + 3)

√
−3

3
, b =

(4
√

2 − 5)(3 + 2
√
−3)

21
, c =

(
√

2 − 1)(1 +
√
−2)

3
.

From these points we define b′ = −b̄ and c′ = −c̄ to be the reflections around
the imaginary axis, and define elements d, d′, and e by d′ = π6b, d = π6b

′, and
e = π6a.

Theorem 5.1. The hyperbolic polygon F with vertices (a, b, c, d, e, d′, c′, b′, a) is
a fundamental domain for Γ6

0(1). The polygon F0 with vertices (a, b, c, t), where
t = (

√
2 − 1)

√
−3/3 is a fixed point of the elliptic element π6, is a fundamental

domain for N (Γ6
0(1)).

Proof. The edge gluing relations for the domains F and F0 are determined by
the equations (1) and (3), as can be directly verified. A volume computation
shows that the volumes ∼ 0.3333 and ∼ 0.08333 agree with the known values
of 1/3 and 1/12 for Γ6

0(1) and N (Γ6
0(1)) in Figure 1, from which it follows that

the polygons are not the union of multiple domains.

From the gluing relations on the edges of the fundamental domains we ob-
tain the following corollary. We note that essentially the same presentation for
N (Γ6

0(1)), describing N (Γ6
0(1)) as a triangle group, appears in Elkies [4].

Corollary 5.2. The generators (1) with relations (2) give a finite presentation
for the group Γ6

0(1). The generators π3 and π6 with relations

π6
3 = π2

6 = (π6π3)
4 = 1

give a finite presentation for the group N (Γ6
0(1)).

The content of the previous theorem is summarized graphically in Figure 2,
which shows a fundamental domain F for Γ6

0(1). The subdivisions define four
constituent fundamental domains F0, π2F0, π3F0, and π6F0 for the normalizer
N (Γ6

0(1)), with boundary geodesics formed by the imaginary axis and a bisecting
arc stabilized by π2. The edge gluing relations are indicated by the arrows, and
the actions of the πm are determined by their relations (4) and the indicated
mapping on the constituent subdomains of F .
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(
√

2−1)√
3

γ4

γ2

e

a

c

γ1

γ3

− (
√

2−1)√
3

0

c′

F0 π3F0

π2F0

b′

d′ d

b

π6F0

Figure 2: Fundamental domain for Γ6
0(1).

5.2 Fundamental domain for Γ15
0 (1).

A fundamental domain for Γ15
0 (1) and N (Γ15

0 (1)), due to Michon, appears
Vignéras [13], IV.3.C. The domain given below is normalized to be defined
over the splitting field Q(

√
3), to be computationally more effective than the

biquadratic field Q(
√

3,
√

5) of Michon, and corrects errors in the book of
Vignéras. A similar corrected example also appears in the thesis of Alsina [1],
also over the splitting field Q(

√
3).

We take the quaternion algebra of discriminant 15 presented by A = Q〈x, y〉
with the relations x2 = 3, y2 = 5, and xy = −yx, and choose the maximal order
O having basis {1, x, (1 + y)/2, (x + z)/2}. As with the previous example the
maximality of O is verified by showing that the discriminant of the associated
norm form is 152. We embed A in M2(R) by taking

x 7−→
(√

3 0

0 −
√

3

)

, y 7−→
(

0 1
5 0

)

, z 7−→
(

0
√

3

−5
√

3 0

)

.

The elliptic invariants and genus are given by Lemmas 4.2 and 4.5 for each of the
extensions groups G with image W in N (Γ15

0 (1))/Γ15
0 (1) = 〈π̄3, π̄5〉, and present

this information with the genus and volume data in Figure 3. With resepct
to this embedding, we obtain a fundamental domain F for Γ15

0 (1), pictured in
Figure 4.
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W g15
0 (1) e2 e3 e4 e6 |vol(F)|

〈1〉 1 2 0 0 0 4/3
〈π̄3〉 0 2 0 0 2 2/3
〈π̄5〉 1 0 1 0 0 2/3
〈π̄15〉 0 4 1 0 0 2/3

〈π̄3, π̄5〉 0 3 0 0 1 1/3

Figure 3: Genus and invariant data for extensions of Γ15
0 (1).

In the figure, points a, b, c are given by

a =
(t + 3)(−5 +

√
−5)

30
, b =

(t + 2)(−2 +
√
−1)

5
, c =

(t + 2)(2 +
√
−1)

5
.

All the other vertices of the domain can be given in terms of these points, and
in clockwise order around the domain, the vertices of F are given by

{a, b, c, γ2a, γ−1

3 γ2a, γ1c, γ1b, γ−1

2 γ−1

3 γ2a}.

Theorem 5.3. The region F is a fundamental domain for Γ15
0 (1) associated to

the generators
γ1 = 2 − x, γ3 = (4 + 3x − z)/2,
γ2 = (3 + y)/2, γ4 = (4 + 3x + z)/2,

which provides Γ15
0 (1) with the presentation

Γ15
0 (1) ∼= 〈γ1, γ2, γ3, γ4 | (γ3γ1)

3 = (γ4γ1)
3 = γ3γ2γ

−1
4 γ−1

2 = 1〉.

Proof. The relations can be verified directly. The points b and c are taken to
be the fixed points of γ4γ1 and γ3γ1 respectively, and with this choice it can
then be seen that all the edge identifications of F are given by γ1, γ2, γ3, γ4, as
indicated in the figure. We compute the volume of the region to be ∼ 1.3333,
which agrees with the expected value of 2/3. The verification of the relations,
together with the computation of the volume shows that the region given is
indeed a fundamental domain for Γ35

0 (1).

A set of coset representatives for N (Γ15
0 (1))/Γ15

0 (1) is given by 1 and

π3 = (x + z)/2, π5 = (5 + y)/2, π15 = z,

which satisfy the projective relations:

π2
3 = π2

15 = 1, π5π3 = π15.

Theorem 5.4. A fundamental domain for N (Γ15
0 (1) can be given by a region

F0 having vertices
{b, γ−1

1 π3a, π3a, γ1b}.
Moreover N (Γ15

0 (1)) is generated by the γ1, π3, and π15, and has a presentation

N (Γ15
0 (1)) ∼= 〈γ1, π3, π15 | π2

15 = π2
3 = (γ1π15)

2 = (γ1π3)
6 = 1〉.

11



i√
5

b

a

c

γ1

γ4 γ3

γ2

F0

π15F0

0 1

π3F0 π5F0

Figure 4: Fundamental domain for Γ15
0 (1) and its normalizer.

Proof. To verify that F0 is a fundamental domain for the normaliser we sim-
ply note that the edges are identified by elements in the normaliser, and that
precicely four copies of this domain give the domain for Γ35

0 (1), which means
this is a domain for a subgroup of the normalizer containing Γ35

0 (1) with index
4, but we know that 4 is the index of Γ35

0 (1) in N (Γ35
0 (1)). Here we are using

the fact that a is the fixed point of π3π
−1

15 γ−1

1 π−1

3 , in adition to the choices of b
and c as being elliptic points for Γ35

0 (1).

Figure 4 shows the domain F for Γ35
0 (1) divided by the dashed lines into

four fundamental domains for N (Γ35
0 (1)). These dividing lines are lines from

vertices b to γ1b, and from c to γ1c, which are lines stabilied by π3 and γ2π3

respectively, and the imaginary axis.

6 The fundamental domain for Γ35
0 (1).

For the case of D = 35, we take the quaternion algebra of discriminant 35
presented by A = Q〈x, y〉, with the relations x2 = 5, y2 = 7, and xy = −yx,
and choose the maximal order O having basis {1, (1+ x)/2, (y + z)/2, z}. As in
the previous examples, the maximality of this order is proved by verifying that
the discriminant is 352. We embed A in M2(R) by taking

x 7−→
(√

5 0

0 −
√

5

)

, y 7−→
(

0 1
7 0

)

, z 7−→
(

0
√

5

−7
√

5 0

)

.
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The elliptic invariants and genus are given by Lemmas 4.2 and 4.5 for each of
the extensions groups G with image W in N (Γ35

0 (1))/Γ35
0 (1) = 〈π̄5, π̄7〉, and

present the genus and volume data in Figure 5. Figure 6 shows a fundamental

W g e2 e3 e4 e6 |vol(F)|
〈1〉 3 0 0 0 0 4
〈π̄5〉 2 0 0 0 0 2
〈π̄7〉 1 4 0 0 0 2
〈π̄35〉 0 8 0 0 0 2

〈π̄5, π̄7〉 0 6 0 0 0 1

Figure 5: Genus and invariant data for extensions of Γ35
0 (1).

domain for Γ35
0 (1) with respect to this embedding. In much the same way as in

the previous examples, we have the following theorem:

Theorem 6.1. The group Γ35
0 (1) is generated by elements

γ1 = 7 + 2x − 2y γ3 = (11 + x − 4y)/2 γ5 = (12 + 5y + z)/2
γ2 = 7 − 2x − 2y γ4 = (11 − x − 4y)/2 γ6 = (12 + 5y − z)/2

γ7 = (3 − x)/2

and has a presentation

Γ35
0 (1) ∼= 〈γ1, γ2, γ3, γ4, γ5, γ6, γ7 | γ7γ1γ6γ2 = γ2γ5γ1γ7, γ4γ5γ3 = γ3γ6γ4〉.

This presentation corresponds to a fundamental domain F for Γ35
0 (1) given by

a region in H with vertices

{a, γ5γ1γ7a, γ5γ3b, b, γ6γ4b, γ6γ2a, γ7a, γ7γ1γ6γ2a,

γ2a, γ4b, γ3γ6γ4b, γ3b, γ1γ7a, γ1γ6γ2a} ,

where

a =
(t + 3)(21 +

√
−7)

112
, b =

21 +
√
−7

56
.

and a is the unique point in the upper half plane fixed by π35γ7γ1γ6γ2, where
π35 = z, and b = π35π7a, where π7 = (y + z)/2.

Proof. The proof of this theorem is similar to the other examples. The relations
can easily be verified, and one can check that the γi identify the edges of the
domain. Then we compute the volume and show that up to a very small error
we obtain the expected value of 4.

The elements

π5 = (5 − x)/2, π7 = (y + z)/2, π35 = z,

13
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Figure 6: Fundamental domain for Γ35
0 (1) and its normalizer.

together with 1, give the equivalence classes of N (Γ35
0 (1))/Γ35

0 (1). Projectively,
these elements satisfy the relations:

π2
35 = π2

7 = 1, π5π7 = π35, π2
5γ7 = 1

Note that these relationships only hold up to multiplication by some scalar.
The dashed lines in the diagram divide the fundamental domain into four

regions, each of which is a fundamental domain for the normalizer. Four copies
of the domain F0 form a fundamental domain for Γ35

0 (1) as shown. The vertices
of F0 are given by

{c, π−1

5 c, π35π5b, γ1γ7a, γ3b, π35b},

where c is the fixed point of π35.
In the diagram the edge identifications obtained from these elements are

indicated.

7 Algorithmic considerations

In the construction of fundamental domains, it has proved possible to find units
by ad hoc search, which can be structured by first searching for real quadratic
suborders of small discriminant, followed by a fundamental unit computation
in that order. To find a provably deterministic algorithm, one needs to design
a search algorithm which guarantees that a system of generators will be found.
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For this purpose we invert the following standard lemma (see Vignéras [13], p.
116) to compute units in hyperbolic neighborhoods.

Lemma 7.1. Let Γ be a discrete subgroup of PSL2(R) and let z be a point in
H which is not an elliptic point of Γ. Then the set

Fz = {z1 ∈ H | d(z, z1) ≤ d(z, γz1) for all γ ∈ H} ,

is a convex fundamental domain for Γ.

We invert this construction by letting Tz(γ) = γz, for fixed z, define a map
Γ → H, and searching for elements of the finite sets T−1

z (B(z, r)), where B(z, r)
is the hyperbolic disc of radius r about z. A complete set of group generators
is provided by the elements mapping Fz to an adjacent domain, so the search
region is sufficient as soon as the search radius r is sufficiently large so that
B(z, r) includes the midpoints of all adjacent domains.

We illustrate this argument for D = 6 in Figure (7). The dashed circles are
discs of various radii, centered at z = (

√
2−1)

√
−3/3, the fixed point of π6. The

circle of radius 3, for which the lower boundary is drawn, contains the domain
F = Fz and all of its neighbors. In particular, it contains points γz for γ any
of the generators γ1, γ2, γ3, or γ4 for Γ6

0(1).

−1/2 1/20

F

Figure 7: Fundamental domains for Γ6
0(1), and hyperbolic neighborhoods.

As a final computational note we sketch the following reduction algorithm
used to reduce of a new generator with respect to a current system of generators
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for a group Γ. Let z be a fixed point, which is not elliptic point for the group
Γ and fix a radius r > 0. Suppose we have found units γ1, . . . γm such that
|γiz−z| < r for each i. Then if we can find another element σ with |σz−z| < r,
we then apply the γi to minimize |γσz − z|, where γ is a product of the γi and
their inverses. To do this, construct σ0 = σ, σ1, . . . , σn = γσ as follows. Given
σi, let σi+1 = γe

j σi such that |γe
j σiz− z| is minimal among all generators γj and

e = ±1. This process either terminates with |γσiz − z| = 0, in which case σ is
not a new generator, or else at some other minimum value, in which case we set
γm+1 = γσ.

The computations involved in this work were carried out with algorithms
developed in the Magma language [2]. The authors’ packages for actions of
congruence subgroups on the upper half hyperbolic plane [12] and quaternion
algebras [8] were modified for this study.

8 Future work

The authors envisage this study as part of a program to compute invariants of
Shimura curves, extending approaches through quaternion ideals and supersin-
gular constructions (see Kohel [6] and [7]) and analogous to the undertakings
of Cremona [3]. A complementary project to that discussed here is the devel-
opment of algorithms for computing modular forms, by means of their Fourier
expansions along the minimal geodesic of a hyperbolic element. Such a study
should allow the effective determination of models for XD

0 (N). Further, by in-
tegration along paths (z, γz), one could determine the period lattice of a curve
as a step towards experimentally testing and verifying analogues of the Birch
and Swinnerton–Dyer conjectures for Shimura curves.
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