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Edwards model for elliptic curves

In 2007, Edwards introduced a new model for elliptic curves,
defined by the affine model

x2 + y2 = a2(1 + z2), z = xy,

over any field k of characteristic different from 2. The complete
linear system associated to the degree 4 model determines a
nonsingular model in P3 with identity O = (a : 0 : 1 : 0):

a2(X2
0 +X2

3 ) = X2
1 +X2

2 , X0X3 = X1X2,

as a family of curves over k(a) = k(X(4)). Lange and Bernstein
introduced a rescaling to descend to k(d) = k(a4) = k(X1(4)),
and subsequently (with Joye, Birkner, and Peters) a quadratic twist
by c, to define the twisted Edwards model with O = (1 : 0 : 1 : 0):

X2
0 + dX2

3 = cX2
1 +X2

2 , X0X3 = X1X2.
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Edwards model for elliptic curves

Properties:
1 The divisor at infinity is equivalent to 3(O) + (T ) where

T = (1 : 0 : −1 : 0).

2 The model admits a factorization S ◦ (π1 × π2) through
P1 × P1, where

π1(X0 : X1 : X2 : X3) = (X0 : X1) = (X2 : X3),
π2(X0 : X1 : X2 : X3) = (X0 : X2) = (X1 : X3),

and S is the Segre embedding

S((U0 : U1), (V0 : V1)) = (U0V0 : U1V0 : U0V1 : U1V1).

Remark: The inverse morphism is

[−1](X0 : X1 : X2 : X3) = (X0 : −X1 : X2 : −X3),

hence the embedding and the factorization are symmetric.
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Edwards model for elliptic curves

The remarkable property of the Edwards model is that the
symmetry of the embedding and factorization implies that the
composition of the addition morphism

µ : E × E −→ E

with each of the projectons πi : E → P admits a basis of bilinear
defining polynomials. For π1 ◦ µ, we have{

(X0Y0 + dX3Y3, X1Y2 +X2Y1),
(cX1Y1 +X2Y2, X0Y3 +X3Y0)

}
,

and for π2 ◦ µ, we have{
(X1Y2 −X2Y1, −X0Y3 +X3Y0),
(X0Y0 − dX3Y3, −cX1Y1 +X2Y2)

}
.

Addition laws given by polynomial maps of bidegree (2, 2) are
recovered by composing with the Segre embedding.
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A few lemmas (symmetric condition)

Lemma

L(D) is symmetric if and only if L(D) ∼= L((d− 1)(O) + (T )) for
some T in E[2].

As opposed to prior models (Weierstrass, Hessian, Jacobi), the
Edwards model is symmetric but not defined by D ∼ d(O) —
perhaps this is why it escaped description until the 21st century.

Lemma

Let E ⊂ Pr be an embedding with respect to the complete linear
system of a divisor D. Then L(D) is symmetric if and only if [−1]
is projectively linear.

The property that D is symmetric is stronger — it implies that the
automorphism inducing [−1] fixes a line X0 = 0 (cutting out D).
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A few lemmas (linear translations)

Lemma

Let E ⊂ Pr be embedded with respect to the complete linear
system of a divisor D, let T be in E(k̄), and let τT be the
translation-by-T morphism. The following are equivalent:

τ∗T (D) ∼ D.

[deg(D)]T = O.

τT is induced by a projective linear automorphism of Pr.

These lemmas motivate the study of symmetric quartic models of
elliptic curves with a rational 4-torsion point T . For such a model,
we obtain a 4-dimensional representation of

D4
∼= 〈[−1]〉n 〈τT 〉,

induced by the action on the global sections Γ(E,L(D)) ∼= k4.
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Construction of a normal form in char(k) = 2

Suppose that E/k is an elliptic curve with char(k) = 2. In view of
the previous lemmas and the properties of Edwards’ normal form,
we consider reasonable hypotheses for a characteristic 2 analog.

1 The embedding of E → P3 is a quadratic intersection.

2 E has a rational 4-torsion point T .

3 The group 〈[−1]〉n 〈τT 〉 ∼= D4 acts by coordinate
permutation, and in particular

τT (X0 : X1 : X2 : X3) = (X3 : X0 : X1 : X2).

4 There exists a symmetric factorization of E through P1 × P1.

Combining conditions 3 and 4, we assume that E lies in the
skew–Segre image X0X2 = X1X3 of P1 × P1.
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Construction of the normal form. . .

In order for the representation of τT to stabilize the image of
P1 × P1, we have

P1 × P1 −→ S ⊂ P3,

where S is defined by X0X2 = X1X3 and

π1(X0 : X1 : X2 : X3) = (X0 : X1) = (X3 : X2),

π2(X0 : X1 : X2 : X3) = (X0 : X3) = (X1 : X2).

Secondly, up to isomorphism, there are two permutation
representations of D4, both having the same image. The two
representations are distinguished by the image of [−1]:

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 or


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


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Construction of the normal form. . .

In order for the representation of τT to stabilize the image of
P1 × P1, we have

P1 × P1 −→ S ⊂ P3,

where S is defined by X0X2 = X1X3 and

π1(X0 : X1 : X2 : X3) = (X0 : X1) = (X3 : X2),

π2(X0 : X1 : X2 : X3) = (X0 : X3) = (X1 : X2).

Secondly, up to isomorphism, there are two permutation
representations of D4, both having the same image. The two
representations are distinguished by the image of [−1]:

[−1](X0 : X1 : X2 : X3) = (X3 : X2 : X1 : X0),
or

[−1](X0 : X1 : X2 : X3) = (X0 : X3 : X2 : X1).
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Construction of a normal form. . .

Considering the form of the projection morphisms from
X0X2 = X1X3:

π1(X0 : X1 : X2 : X3) = (X0 : X1) = (X3 : X2),
π2(X0 : X1 : X2 : X3) = (X0 : X3) = (X1 : X2),

we see that only the first of the possible actions of [−1]:

[−1](X0 : X1 : X2 : X3) = (X3 : X2 : X1 : X0),
[−1](X0 : X1 : X2 : X3) = (X0 : X3 : X2 : X1),

stabilizes π1 and π2 (the second exchanges them).
It remains to consider the forms of degree 2 which are D4-invariant
modulo the relation X0X2 = X1X3, which is spanned by{

(X0 +X1 +X2 +X3)2, (X0 +X2)(X1 +X3), X0X2

}
.
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Construction of a normal form. . .

It follows that an elliptic curve satisfying the hypotheses must be
the intersection of X0X2 = X1X3 with a form

a (X0 +X1 +X2 +X3)2 + b (X0 +X2)(X1 +X3) + cX0X2 = 0.

Moreover, in order to be invariant under [−1], the identity lies on
the line X0 = X3, X1 = X2, hence

b (X0 +X1)2 + cX0X1 = 0.

If c = 0, we obtain O = (1 : 1 : 1 : 1), which is fixed by τT , a
contradiction. If b = 0, we may take

O = (1 : 0 : 0 : 1), S = (0 : 1 : 1 : 0) = 2T.

For any other nonzero b and c we can transform the model to such
a normal form with b = 0.
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A normal form in characteristic 2

This construction determines a normal form in P3 for elliptic curves
E/k with rational 4-torsion point T :

(X0 +X1 +X2 +X3)2 = cX0X2 = cX1X3.

1 The identity is O = (1 : 0 : 0 : 1) and T = (1 : 1 : 0 : 0).
2 The translation–by–T morphism is given by:

τT (X0 : X1 : X2 : X3) = (X3 : X0 : X1 : X2).

3 The inverse morphism is defined by:

[−1](X0 : X1 : X2 : X3) = (X3 : X2 : X1 : X0).

4 E admits a factorization through P1 × P1, where

π1(X0 : X1 : X2 : X3) = (X0 : X1) = (X3 : X2),
π2(X0 : X1 : X2 : X3) = (X0 : X3) = (X1 : X2),

Remark: X0 +X1 +X2 +X3 = 0 cuts out Z/4Z ∼= 〈T 〉.
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An alternative normal form

What happens if we drop the symmetry of the factorization?

The alternative permutation representation for [−1] is given by

[−1](X0 : X1 : X2 : X3) = (X0 : X3 : X2 : X1),

and on X0X2 = X1X3 an elliptic curve must still be the
intersection with an invariant form:

a (X0 +X1 +X2 +X3)2 + b (X0 +X2)(X1 +X3) + cX0X2 = 0.

The new condition for O to be fixed by [−1] is that it lies on
X1 = X3, hence

a (X0 +X2)2 + cX0X2 = 0.

Analogously, we find a = 0, with O = (1 : 0 : 0 : 0), giving the
normal form

(X0 +X2)(X1 +X3) = cX0X2 = cX1X3.
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An alternative normal form

This above form lacks the symmetric projections π1 and π2; and
the divisor class defining the embedding is equivalent to 4(O). A
transformation of the ambient space:

ι(X0, X1, X2, X3) =
( cX0 +X1 +X3, X0 + cX1 +X2,
X1 + cX2 +X3, X0 +X2 + cX3 )

yields a new normal form with identity O = (c : 1 : 0 : 1):

(X0 +X2)2 = c2X1X3,
(X1 +X3)2 = c2X0X2.

Remark: The hyperplane X2 = 0 cuts out 4(O).

We refer to this as the (split) µµ4-normal form for an elliptic curve,
and the prior model as Z/4Z-normal form.
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Construction of the µµ4-normal form

The simplest addition on elliptic curves are obtained as
eigenvectors for the action of a torsion subgroup on elliptic curve
models (Edwards excluded) for which a cyclic torsion subgroup
acts as a coordinate scaling by µµn. In the case of the Edwards
model, we twist the constant subgroup scheme Z/4Z by −1 in
order to have a µµ4, and diagonalize the torsion action. This gives
an isomorphism E → C, where E is the twisted Edwards curve

X2
0 +X2

1 = X2
2 − 16rX2

3 , X0X3 = X1X2,

and C is the µµ4-normal form:

C : X2
0 − rX2

2 = X1X3, X
2
1 −X2

3 = X0X2.

(X0 : X1 : X2 : X3) 7−→ (X0 : X1 +X2 : X3 : −X1 +X2).
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The hierarchy of µµ4-normal forms

Noting that k(r) = k(X1(4)), we consider normal forms for this
family under the base extensions

k(r) = k(X0(4))→ k(s) = k(X(Γ(2)∩Γ0(4)))→ k(t) = k(X(4))

Let C0 be the elliptic curve in µµ4-normal form described above:

X2
0 − rX2

2 = X1X3, X
2
1 −X2

3 = X0X2,

If s = 1/r2, then renormalization of X2 gives the curve C1:

X2
0 −X2

2 = X1X3, X
2
1 −X2

3 = sX0X2.

Finally if s = t4, a rescaling of X0 and X2 gives the elliptic curve
C2 with identity (t : 1 : 0 : 1) and full level 4 structure:

X2
0 −X2

2 = t2X1X3, X
2
1 −X2

3 = t2X0X2.
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The split µµ4-normal form

Let k be a field, and consider the elliptic curve C2 in split
µµ4-normal form

X2
0 −X2

2 = t2X1X3, X
2
1 −X2

3 = t2X0X2,

with identity O = (t : 1 : 0 : 1). The inverse morphism is given by

(X0, X1, X2, X3) 7→ (X0, X3,−X2, X1),

the with

C2[2](k) = {O, (−e : 1 : 0 : 1), (0 : 1 : e : −1), (0 : −1 : e : 1)}.
The divisor X2 = 0 defines a subgroup µµ4 ⊂ E[4], with rational
points in k[i] = k[x]/(x2 + 1):

µµ4(k) = {O, (it : 1 : 0 : 1), (−t : 1 : 0 : 1), (−it : 1 : 0 : 1)},
and a constant subgroup Z/4Z ⊂ E[4] is given by

Z/4Z(k) = {O, (1 : −t : 1 : 0), (0 : 1 : t : −1), (−1 : 0 : 1 : t)}.
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Construction of the Z/4Z-normal form

On the Edwards model, the automorphism τT acts by

τT (X0 : X1 : X2 : X3) = (X0 : X2 : −X1 : −X3),

as a result, τT induces a cyclic permutation of the forms

U0 = X0 +X1 +X2 +X3,
U1 = X0 +X1 −X2 −X3,
U2 = X0 −X1 −X2 +X3,
U3 = X0 −X1 +X2 −X3.

which transforms the Edwards curve (with identity (1 : 0 : 1 : 0))

X2
0 + (16u+ 1)X2

3 = X2
1 −X2

2 , X0X3 = X1X2

to the elliptic curve (with identity (1 : 0 : 0 : 1))

(U0 − U1 + U2 − U3)2 = 1/uU0U2 = 1/uU1U3.
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Addition law structure for µµ4-normal form

The interest in alternative models of elliptic curves has been driven
by the simple form of addition laws — the polynomial maps which
define the addition morphism µ : E × E → E as rational maps.

Theorem

Let E/k, char(k) = 2, be an elliptic curve in µµ4-normal form:

(X0 +X2)2 + c2X1X3,
(X1 +X3)2 + c2X0X2.

A basis for bidegree (2, 2)-addition laws is
(
X2

3Y
2
1 +X2

1Y
2
3 , c (X0X3Y1Y2 +X1X2Y0Y3), X2

2Y
2
0 +X2

0Y
2
2 , c (X2X3Y0Y1 +X0X1Y2Y3)

)
,(

X2
0Y

2
0 +X2

2Y
2
2 , c (X0X1Y0Y1 +X2X3Y2Y3), X2

1Y
2
1 +X2

3Y
2
3 , c (X1X2Y1Y2 +X0X3Y0Y3)

)
,(

X2X3Y1Y2 +X0X1Y0Y3, c (X0X2Y
2
2 +X2

1Y1Y3), X1X2Y0Y1 +X0X3Y2Y3, c (X2
2Y0Y2 +X1X3Y

2
3 )
)
,(

X0X3Y0Y1 +X1X2Y2Y3, c (X1X3Y
2
1 +X2

2Y0Y2), X0X1Y1Y2 +X2X3Y0Y3, c (X0X2Y
2
2 +X2

3Y1Y3)
)


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Addition law structure for Z/4Z-normal form

Theorem

Let E/k, char(k) = 2, be an elliptic curve in Z/4Z-normal form:
(X0 +X1 +X2 +X3)2 = cX0X2 = cX1X3.

A basis for the bilinear addition law projections for π1 ◦ µ is{
(X0Y3 +X2Y1, X1Y0 +X3Y2),
(X1Y2 +X3Y0, X0Y1 +X2Y3)

}
,

and for π2 ◦ µ is:{
(X0Y0 +X2Y2, X1Y1 +X3Y3),
(X1Y3 +X3Y1, X0Y2 +X2Y0)

}
·

Addition laws of bidegree (2, 2) are recovered by composition with
the skew-Segre embedding:

S((U0 : U1), (V0 : V1)) = (U0V0 : U1V0 : U1V1 : U1V0).

The addition laws are independent of the curve parameters!
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