A NORMAL FORM FOR ELLIPTIC CURVES in characteristic 2

David R. Kohel Institut de Mathématiques de Luminy

Arithmetic, Geometry, Cryptography et Coding Theory 2011 CIRM, Luminy, 15 March 2011

Edwards model for elliptic curves

In 2007, Edwards introduced a new model for elliptic curves, defined by the affine model

$$x^2 + y^2 = a^2(1+z^2), \ z = xy,$$

over any field k of characteristic different from 2. The complete linear system associated to the degree 4 model determines a nonsingular model in \mathbb{P}^3 with identity O = (a : 0 : 1 : 0):

$$a^{2}(X_{0}^{2} + X_{3}^{2}) = X_{1}^{2} + X_{2}^{2}, X_{0}X_{3} = X_{1}X_{2},$$

as a family of curves over k(a) = k(X(4)). Lange and Bernstein introduced a rescaling to descend to $k(d) = k(a^4) = k(X_1(4))$, and subsequently (with Joye, Birkner, and Peters) a quadratic twist by c, to define the twisted Edwards model with O = (1 : 0 : 1 : 0):

$$X_0^2 + dX_3^2 = cX_1^2 + X_2^2, \ X_0X_3 = X_1X_2.$$

Edwards model for elliptic curves

Properties:

① The divisor at infinity is equivalent to 3(O) + (T) where

$$T = (1:0:-1:0).$$

② The model admits a factorization $S \circ (\pi_1 \times \pi_2)$ through $\mathbb{P}^1 \times \mathbb{P}^1$, where

$$\begin{aligned} \pi_1(X_0:X_1:X_2:X_3) &= (X_0:X_1) = (X_2:X_3), \\ \pi_2(X_0:X_1:X_2:X_3) &= (X_0:X_2) = (X_1:X_3), \end{aligned}$$

and S is the Segre embedding

 $S((U_0:U_1), (V_0:V_1)) = (U_0V_0:U_1V_0:U_0V_1:U_1V_1).$

Remark: The inverse morphism is

$$[-1](X_0:X_1:X_2:X_3) = (X_0:-X_1:X_2:-X_3),$$

hence the embedding and the factorization are symmetric,

Edwards model for elliptic curves

The remarkable property of the Edwards model is that the symmetry of the embedding and factorization implies that the composition of the addition morphism

$$\mu: E \times E \longrightarrow E$$

with each of the projectons $\pi_i : E \to \mathbb{P}$ admits a basis of *bilinear* defining polynomials. For $\pi_1 \circ \mu$, we have

$$\left\{\begin{array}{l} (X_0Y_0 + dX_3Y_3, \ X_1Y_2 + X_2Y_1), \\ (cX_1Y_1 + X_2Y_2, \ X_0Y_3 + X_3Y_0) \end{array}\right\},\$$

and for $\pi_2 \circ \mu$, we have

$$\left\{ \begin{array}{l} (X_1Y_2 - X_2Y_1, -X_0Y_3 + X_3Y_0), \\ (X_0Y_0 - dX_3Y_3, -cX_1Y_1 + X_2Y_2) \end{array} \right\}$$

Addition laws given by polynomial maps of bidegree (2,2) are recovered by composing with the Segre embedding \mathbb{R}

A FEW LEMMAS (SYMMETRIC CONDITION)

LEMMA

 $\mathcal{L}(D)$ is symmetric if and only if $\mathcal{L}(D) \cong \mathcal{L}((d-1)(O) + (T))$ for some T in E[2].

As opposed to prior models (Weierstrass, Hessian, Jacobi), the Edwards model is symmetric but not defined by $D \sim d(O)$ — perhaps this is why it escaped description until the 21st century.

LEMMA

Let $E \subset \mathbb{P}^r$ be an embedding with respect to the complete linear system of a divisor D. Then $\mathcal{L}(D)$ is symmetric if and only if [-1] is projectively linear.

The property that D is symmetric is stronger — it implies that the automorphism inducing [-1] fixes a line $X_0 = 0$ (cutting out D).

A FEW LEMMAS (LINEAR TRANSLATIONS)

LEMMA

Let $E \subset \mathbb{P}^r$ be embedded with respect to the complete linear system of a divisor D, let T be in $E(\bar{k})$, and let τ_T be the translation-by-T morphism. The following are equivalent:

- $\tau^*_T(D) \sim D$.
- $[\deg(D)]T = O.$
- τ_T is induced by a projective linear automorphism of \mathbb{P}^r .

These lemmas motivate the study of symmetric quartic models of elliptic curves with a rational 4-torsion point T. For such a model, we obtain a 4-dimensional representation of

$$D_4 \cong \langle [-1] \rangle \ltimes \langle \tau_T \rangle,$$

induced by the action on the global sections $\Gamma(E, \mathcal{L}(D)) \cong k^4$.

Construction of a normal form in char(k) = 2

Suppose that E/k is an elliptic curve with char(k) = 2. In view of the previous lemmas and the properties of Edwards' normal form, we consider reasonable hypotheses for a characteristic 2 analog.

- The embedding of $E \to \mathbb{P}^3$ is a quadratic intersection.
- **2** E has a rational 4-torsion point T.
- The group $\langle [-1] \rangle \ltimes \langle \tau_T \rangle \cong D_4$ acts by coordinate permutation, and in particular

$$\tau_T(X_0: X_1: X_2: X_3) = (X_3: X_0: X_1: X_2).$$

• There exists a symmetric factorization of E through $\mathbb{P}^1 \times \mathbb{P}^1$. Combining conditions 3 and 4, we assume that E lies in the skew–Segre image $X_0X_2 = X_1X_3$ of $\mathbb{P}^1 \times \mathbb{P}^1$.

CONSTRUCTION OF THE NORMAL FORM...

In order for the representation of τ_T to stabilize the image of $\mathbb{P}^1\times\mathbb{P}^1,$ we have

 $\mathbb{P}^1\times\mathbb{P}^1\longrightarrow S\subset\mathbb{P}^3,$

where S is defined by $X_0X_2 = X_1X_3$ and

$$\pi_1(X_0: X_1: X_2: X_3) = (X_0: X_1) = (X_3: X_2),$$

$$\pi_2(X_0: X_1: X_2: X_3) = (X_0: X_3) = (X_1: X_2).$$

Secondly, up to isomorphism, there are *two* permutation representations of D_4 , both having the same image. The two representations are distinguished by the image of [-1]:

$$\left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right) \text{ or } \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

CONSTRUCTION OF THE NORMAL FORM...

In order for the representation of τ_T to stabilize the image of $\mathbb{P}^1\times\mathbb{P}^1,$ we have

 $\mathbb{P}^1\times\mathbb{P}^1\longrightarrow S\subset\mathbb{P}^3,$

where S is defined by $X_0X_2 = X_1X_3$ and

$$\pi_1(X_0: X_1: X_2: X_3) = (X_0: X_1) = (X_3: X_2),$$

$$\pi_2(X_0: X_1: X_2: X_3) = (X_0: X_3) = (X_1: X_2).$$

Secondly, up to isomorphism, there are *two* permutation representations of D_4 , both having the same image. The two representations are distinguished by the image of [-1]:

$$[-1](X_0:X_1:X_2:X_3) = (X_3:X_2:X_1:X_0),$$

or

$$[-1](X_0:X_1:X_2:X_3) = (X_0:X_3:X_2:X_1).$$

CONSTRUCTION OF A NORMAL FORM...

Considering the form of the projection morphisms from $X_0X_2 = X_1X_3$:

$$\pi_1(X_0:X_1:X_2:X_3) = (X_0:X_1) = (X_3:X_2),\\ \pi_2(X_0:X_1:X_2:X_3) = (X_0:X_3) = (X_1:X_2),$$

we see that only the first of the possible actions of [-1]:

$$[-1](X_0:X_1:X_2:X_3) = (X_3:X_2:X_1:X_0), [-1](X_0:X_1:X_2:X_3) = (X_0:X_3:X_2:X_1),$$

stabilizes π_1 and π_2 (the second exchanges them). It remains to consider the forms of degree 2 which are D_4 -invariant modulo the relation $X_0X_2 = X_1X_3$, which is spanned by

$$\{ (X_0 + X_1 + X_2 + X_3)^2, (X_0 + X_2)(X_1 + X_3), X_0X_2 \}.$$

CONSTRUCTION OF A NORMAL FORM...

It follows that an elliptic curve satisfying the hypotheses must be the intersection of $X_0X_2 = X_1X_3$ with a form

$$a (X_0 + X_1 + X_2 + X_3)^2 + b (X_0 + X_2)(X_1 + X_3) + c X_0 X_2 = 0.$$

Moreover, in order to be invariant under [-1], the identity lies on the line $X_0 = X_3, X_1 = X_2$, hence

$$b(X_0 + X_1)^2 + cX_0X_1 = 0.$$

If c = 0, we obtain O = (1 : 1 : 1 : 1), which is fixed by τ_T , a contradiction. If b = 0, we may take

$$O = (1:0:0:1), S = (0:1:1:0) = 2T.$$

For any other nonzero b and c we can transform the model to such a normal form with b = 0.

A NORMAL FORM IN CHARACTERISTIC 2

This construction determines a normal form in \mathbb{P}^3 for elliptic curves E/k with rational 4-torsion point T:

 $(X_0 + X_1 + X_2 + X_3)^2 = cX_0X_2 = cX_1X_3.$

• The identity is O = (1:0:0:1) and T = (1:1:0:0).

2 The translation-by-T morphism is given by:

$$\tau_T(X_0: X_1: X_2: X_3) = (X_3: X_0: X_1: X_2).$$

The inverse morphism is defined by:

$$[-1](X_0:X_1:X_2:X_3) = (X_3:X_2:X_1:X_0).$$

(1) E admits a factorization through $\mathbb{P}^1 \times \mathbb{P}^1$, where

$$\pi_1(X_0: X_1: X_2: X_3) = (X_0: X_1) = (X_3: X_2), \pi_2(X_0: X_1: X_2: X_3) = (X_0: X_3) = (X_1: X_2),$$

Remark: $X_0 + X_1 + X_2 + X_3 = 0$ cuts out $\mathbb{Z}/4\mathbb{Z} \cong \langle T \rangle$.

AN ALTERNATIVE NORMAL FORM

What happens if we drop the symmetry of the factorization?

The alternative permutation representation for [-1] is given by

$$[-1](X_0:X_1:X_2:X_3) = (X_0:X_3:X_2:X_1),$$

and on $X_0X_2 = X_1X_3$ an elliptic curve must still be the intersection with an invariant form:

 $a (X_0 + X_1 + X_2 + X_3)^2 + b (X_0 + X_2)(X_1 + X_3) + c X_0 X_2 = 0.$ The new condition for O to be fixed by [-1] is that it lies on $X_1 = X_3$, hence

$$a \left(X_0 + X_2 \right)^2 + c \, X_0 X_2 = 0.$$

Analogously, we find a=0, with $\mathbf{O}=(1:0:0:0),$ giving the normal form

$$(X_0 + X_2)(X_1 + X_3) = c X_0 X_2 = c X_1 X_3.$$

AN ALTERNATIVE NORMAL FORM

This above form lacks the symmetric projections π_1 and π_2 ; and the divisor class defining the embedding is equivalent to 4(O). A transformation of the ambient space:

$$\iota(X_0, X_1, X_2, X_3) = \begin{array}{c} (c X_0 + X_1 + X_3, X_0 + c X_1 + X_2, \\ X_1 + c X_2 + X_3, X_0 + X_2 + c X_3 \end{array})$$

yields a new normal form with identity O = (c : 1 : 0 : 1):

$$(X_0 + X_2)^2 = c^2 X_1 X_3, (X_1 + X_3)^2 = c^2 X_0 X_2.$$

Remark: The hyperplane $X_2 = 0$ cuts out 4(O).

We refer to this as the (split) μ_4 -normal form for an elliptic curve, and the prior model as $\mathbb{Z}/4\mathbb{Z}$ -normal form.

- ロ ト - 4 回 ト - 4 □

Construction of the μ_4 -normal form

The simplest addition on elliptic curves are obtained as eigenvectors for the action of a torsion subgroup on elliptic curve models (Edwards excluded) for which a cyclic torsion subgroup acts as a coordinate scaling by μ_n . In the case of the Edwards model, we twist the constant subgroup scheme $\mathbb{Z}/4\mathbb{Z}$ by -1 in order to have a μ_4 , and diagonalize the torsion action. This gives an isomorphism $E \to C$, where E is the twisted Edwards curve

$$X_0^2 + X_1^2 = X_2^2 - 16rX_3^2, \ X_0X_3 = X_1X_2,$$

and C is the μ_4 -normal form:

$$C: X_0^2 - rX_2^2 = X_1X_3, \ X_1^2 - X_3^2 = X_0X_2.$$
$$(X_0: X_1: X_2: X_3) \longmapsto (X_0: X_1 + X_2: X_3: -X_1 + X_2).$$

The hierarchy of μ_4 -normal forms

Noting that $k(r) = k(X_1(4))$, we consider normal forms for this family under the base extensions

$$k(r) = k(X_0(4)) \to k(s) = k(X(\Gamma(2) \cap \Gamma_0(4))) \to k(t) = k(X(4))$$

Let C_0 be the elliptic curve in μ_4 -normal form described above:

$$X_0^2 - rX_2^2 = X_1X_3, \ X_1^2 - X_3^2 = X_0X_2,$$

If $s = 1/r^2$, then renormalization of X_2 gives the curve C_1 :

$$X_0^2 - X_2^2 = X_1 X_3, \ X_1^2 - X_3^2 = s X_0 X_2.$$

Finally if $s = t^4$, a rescaling of X_0 and X_2 gives the elliptic curve C_2 with identity (t : 1 : 0 : 1) and full level 4 structure:

$$X_0^2 - X_2^2 = t^2 X_1 X_3, \ X_1^2 - X_3^2 = t^2 X_0 X_2.$$

THE SPLIT 14-NORMAL FORM

Let k be a field, and consider the elliptic curve C_2 in split μ_4 -normal form

$$X_0^2 - X_2^2 = t^2 X_1 X_3, \ X_1^2 - X_3^2 = t^2 X_0 X_2,$$

with identity O = (t : 1 : 0 : 1). The inverse morphism is given by

$$(X_0, X_1, X_2, X_3) \mapsto (X_0, X_3, -X_2, X_1),$$

the with

$$C_2[2](k) = \{ O, (-e:1:0:1), (0:1:e:-1), (0:-1:e:1) \}.$$

The divisor $X_2 = 0$ defines a subgroup $\mu_4 \subset E[4]$, with rational points in $k[i] = k[x]/(x^2 + 1)$:

 $\boldsymbol{\mu}_4(k) = \{ 0, (it:1:0:1), (-t:1:0:1), (-it:1:0:1) \},$ and a constant subgroup $\mathbb{Z}/4\mathbb{Z} \subset E[4]$ is given by $\mathbb{Z}/4\mathbb{Z}(k) = \{ \mathbf{O}, \ (1:-t:1:0), \ (0:1:t:-1), \ (-1:0:1:t) \}.$

Construction of the $\mathbb{Z}/4\mathbb{Z}$ -normal form

On the Edwards model, the automorphism au_T acts by

$$\tau_T(X_0: X_1: X_2: X_3) = (X_0: X_2: -X_1: -X_3),$$

as a result, au_T induces a cyclic permutation of the forms

$$\begin{split} U_0 &= X_0 + X_1 + X_2 + X_3, \\ U_1 &= X_0 + X_1 - X_2 - X_3, \\ U_2 &= X_0 - X_1 - X_2 + X_3, \\ U_3 &= X_0 - X_1 + X_2 - X_3. \end{split}$$

which transforms the Edwards curve (with identity (1:0:1:0))

$$X_0^2 + (16u+1)X_3^2 = X_1^2 - X_2^2, \ X_0X_3 = X_1X_2$$

to the elliptic curve (with identity (1:0:0:1))

$$(U_0 - U_1 + U_2 - U_3)^2 = 1/u U_0 U_2 = 1/u U_1 U_3.$$

Addition law structure for μ_4 -normal form

The interest in alternative models of elliptic curves has been driven by the simple form of *addition laws* — the polynomial maps which define the addition morphism $\mu : E \times E \rightarrow E$ as rational maps.

THEOREM

Let E/k, char(k) = 2, be an elliptic curve in μ_4 -normal form:

$$(X_0 + X_2)^2 + c^2 X_1 X_3,(X_1 + X_3)^2 + c^2 X_0 X_2.$$

A basis for bidegree (2,2)-addition laws is

 $\begin{pmatrix} \left(X_3^2Y_1^2 + X_1^2Y_3^2, \ c\left(X_0X_3Y_1Y_2 + X_1X_2Y_0Y_3\right), \ X_2^2Y_0^2 + X_0^2Y_2^2, \ c\left(X_2X_3Y_0Y_1 + X_0X_1Y_2Y_3\right)\right), \\ \left(X_0^2Y_0^2 + X_2^2Y_2^2, \ c\left(X_0X_1Y_0Y_1 + X_2X_3Y_2Y_3\right), \ X_1^2Y_1^2 + X_3^2Y_3^2, \ c\left(X_1X_2Y_1Y_2 + X_0X_3Y_0Y_3\right)\right), \\ \left(X_2X_3Y_1Y_2 + X_0X_1Y_0Y_3, \ c\left(X_0X_2Y_2^2 + X_1^2Y_1Y_3\right), \ X_1X_2Y_0Y_1 + X_0X_3Y_2Y_3, \ c\left(X_2^2Y_0Y_2 + X_1X_3Y_3^2\right)\right), \\ \left(X_0X_3Y_0Y_1 + X_1X_2Y_2Y_3, \ c\left(X_1X_3Y_1^2 + X_2^2Y_0Y_2\right), \ X_0X_1Y_1Y_2 + X_2X_3Y_0Y_3, \ c\left(X_0X_2Y_2^2 + X_3^2Y_1Y_3\right)\right) \end{pmatrix} \right)$

Addition law structure for $\mathbb{Z}/4\mathbb{Z}$ -normal form

THEOREM

Let E/k, char(k) = 2, be an elliptic curve in $\mathbb{Z}/4\mathbb{Z}$ -normal form: $(X_0 + X_1 + X_2 + X_3)^2 = cX_0X_2 = cX_1X_3.$ A basis for the bilinear addition law projections for $\pi_1 \circ \mu$ is $\begin{cases} (X_0Y_3 + X_2Y_1, X_1Y_0 + X_3Y_2), \\ (X_1Y_2 + X_3Y_0, X_0Y_1 + X_2Y_3) \end{cases}$, and for $\pi_2 \circ \mu$ is: $\begin{cases} (X_0Y_0 + X_2Y_2, X_1Y_1 + X_3Y_3), \\ (X_1Y_3 + X_3Y_1, X_0Y_2 + X_2Y_0) \end{cases}$.

Addition laws of bidegree (2,2) are recovered by composition with the skew-Segre embedding:

 $S((U_0:U_1),(V_0:V_1)) = (U_0V_0:U_1V_0:U_1V_1:U_1V_0).$

The addition laws are independent of the curve parameters!