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The Main Theorem of Complex Multiplication gives the relation
between ideal classes and abelian varieties. For example, in
genus 1, the j-variant of an elliptic curve with CM by a maximal
order Ok in K, generates the Hilbert class field H = K(j)/K.

More precisely, an embedding K — C gives the relation between
ideals of Ok and isomorphism classes of elliptic curves over C :

a— E,=C/a™L.

The Artin isomorphism o : Gal(H/K) = Cl(Ok), determines an
action on {E4} compatible induced isogenies

Ea— Eup =c £

N.B. The Galois action on {E,} is determined on any model E,/H.
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A CM construction is an algorithm for the construction of
invariants of an abelian variety with complex multiplication.

In genus 1, the traditional method is to evaluate the j-function at
points 7 in the upper half Poincaré plane, which correspond to
lattices with complex multiplication.

The objective of this algorithm is to determine the minimal
polynomial Hp(x) for j(7) over Q. This polynomial defines a zero
dimensional subscheme of Al C P! = X(1).

We may choose, instead, a function f on a modular curve
X = X(N) or X = Xo(N) such that

f

x Pt x(1),

in order to determine a class polynomial Fp(x), as the minimal
polynomial of (7).
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For example, the class polynomial F_23(x) = x3 — x?> 41, is
defined in terms of the Weber function f : X(48) — X = P!, where

(F%* —16)°
N

This polynomial generates the same class field as the Hilbert class
polynomial : x3 4 3491750x% — 5151296875x + 12771880859375.

The complete decomposition of H_»3(j) in Z[f, f~1] is given by
the factoration :

H,23 ((f‘24 _ 16)3/f24) f72
=(FP—F24+1)-(F+R2-1) (FP++2f2+1)-
(FO — 4 F*—2F3 24+ 1) - (FO+ AP+ FH+2F3 42 41)-
(F12 — F10 8 1 3F% —2F2 1 1) (F12 —3F8 1 2f* 1 1)-
Goa(f) - Gas(f) - Gog(f).

Thus there are multiple components over H_»3(j) on X.



Complex Multiplication in Genus 2

In genus 2 (i.e. Jacobian surfaces), a generic CM field K is
non-Galois over @, and its normal closure is a degree 2 extension
L/K with Galois group D4 over Q.



Complex Multiplication in Genus 2

In genus 2 (i.e. Jacobian surfaces), a generic CM field K is
non-Galois over @, and its normal closure is a degree 2 extension
L/K with Galois group D over Q. There exist a triple of invariants
(j1,J2,J3) of any maximal order Ok (with associated CM type @),
contained in the Hilbert class field H" of the reflex field K" :



Complex Multiplication in Genus 2

In genus 2 (i.e. Jacobian surfaces), a generic CM field K is
non-Galois over @, and its normal closure is a degree 2 extension
L/K with Galois group D over Q. There exist a triple of invariants
(j1,J2,J3) of any maximal order Ok (with associated CM type @),
contained in the Hilbert class field H" of the reflex field K" :

SN
L]
N
Q

The field K" is constructed in terms of the CM type ®.

H" 2 Kr(j17j27.j3)
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The abelian surfaces (with fixed polarization type) correspond to
pairs (a, ) such that ad = (a) for (o) = (1) in C1T(OF). The set
of pairs (a, o) forms a groupe €(Ok) with identity (Ok, 1).

The class group Cl(Okr) acts on the group €(Ok) by means of
the homomorphism :

Gal(H /K") = Cl(Oxr) —— €(Ok)
c— (No(c), Ngr(c))

where No(c¢) = Nk (cO/). Composing with multiplication in
¢(Ok), we obtain the Galois action :

Gal(Hr/Kr) X Q:(OK) - @(OK).

N.B. The above homomorphism can fail to be injective (hence
{j1,J2,/3} does not generate H") or fail to be surjective (in which
case there are multiple Galois orbits of invariants).



Complex Multiplication in Genus 2

An analytic construction for dimension 2 uses theta functions on
Siegel to determine points (j1, j2,/3) in M>2(C), the moduli space
of curves of genus 2



Complex Multiplication in Genus 2

An analytic construction for dimension 2 uses theta functions on
Siegel to determine points (j1, j2,/3) in M>2(C), the moduli space
of curves of genus 2 (which we identify with its image in the
moduli space A>(C) of principally polarized abelian surfaces).



Complex Multiplication in Genus 2

An analytic construction for dimension 2 uses theta functions on
Siegel to determine points (j1, j2,/3) in M>2(C), the moduli space
of curves of genus 2 (which we identify with its image in the
moduli space A>(C) of principally polarized abelian surfaces).

The result of a CM construction is an ideal in Q[x1, x2, x3] defining
the zero dimensional scheme over Q of the Galois orbit of the
point (j1,/2,/3)-



Complex Multiplication in Genus 2

An analytic construction for dimension 2 uses theta functions on
Siegel to determine points (j1, j2,/3) in M>2(C), the moduli space
of curves of genus 2 (which we identify with its image in the
moduli space A>(C) of principally polarized abelian surfaces).

The result of a CM construction is an ideal in Q[x1, x2, x3] defining
the zero dimensional scheme over Q of the Galois orbit of the

pOint (j17j27.j3)'
Examples. The curves y? = x> 4+ 1 and y? = x% + 1 have Igusa
invariants

(0,0,0) and (64000003, 440000/9, —32000/81).



Complex Multiplication in Genus 2

An analytic construction for dimension 2 uses theta functions on
Siegel to determine points (j1, j2,/3) in M>2(C), the moduli space
of curves of genus 2 (which we identify with its image in the
moduli space A>(C) of principally polarized abelian surfaces).

The result of a CM construction is an ideal in Q[x1, x2, x3] defining
the zero dimensional scheme over Q of the Galois orbit of the
pOint (j17j27.j3)'

Examples. The curves y? = x> 4+ 1 and y? = x% + 1 have Igusa
invariants

(0,0,0) and (6400000/3,440000/9, —32000/81).
Thus their respective defining ideals are

(x1,%2,x3) and (3x; — 6400000, 9x, — 440000, 81x3 + 32000).



Complex Multiplication in Genus 2

An analytic construction for dimension 2 uses theta functions on
Siegel to determine points (j1, j2,/3) in M>2(C), the moduli space
of curves of genus 2 (which we identify with its image in the
moduli space A>(C) of principally polarized abelian surfaces).

The result of a CM construction is an ideal in Q[x1, x2, x3] defining
the zero dimensional scheme over Q of the Galois orbit of the

pOint (j17j27.j3)'

Examples. The curves y? = x> 4+ 1 and y? = x% + 1 have Igusa
invariants

(0,0,0) and (6400000/3,440000/9, —32000/81).
Thus their respective defining ideals are
(x1, x2,x3) and (3x3 — 6400000, 9x, — 440000, 81x3 + 32000).

We now describe a p-adic algorithm for the construction of ideals.
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Suppose that A/k is an ordinary, simple abelian variety over a
finite field of characteristic p, and let R be its Witt ring, i.e. an
extension of Z, such that [R: Zp| = [k : Fp] and 7 : R — k. A
canonical lift is an abelian variety A/R such that

A/R xg k = A/k and End(A) = End(A).

An abelian variety Al/R is a canonical lift if there exists an isogeny
@ Ay — A, for A1 = A, such that A; xg k = A and for some ¢

Aol] = ker(p)” @ (A1[0]).

We construct the canonical lifted invariants, given x in Az(k), by
solving for X in Ag(R) such that (X,X?) lies on a subscheme of
Ag x Ag defined by isogenies with kernel of type (Z/(Z)8.
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Canonical Lifts

An algorithm pour the construction of the p-adic canonical lift of
an elliptic curve was introduced by Satoh in 1999, to determine the
number of points on a given E/F, (in small characteristic p). The
algorithm constructs the canonically lifted 7 of an given ordinary
J-invariant j in Fg, as the unique point (3,77) on

Xo(p) — X(1) x X(1).

An algorithm of Mestre, in 2000, introduced the use of theta
functions and the AGM. This algorithm determines canonically
lifted invariants (X, X7) on Xp(8) (in residue characteristic 2).

Couveignes and Henocq in 2002 introduced the idea of p-adic
lifting as a CM construction, to determine a high precision
approximation to the Hilbert class polynomial on X(1).
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7=20+453-594+0-5924+57-59%+9.59* +3.59° 45.59% 1 ...
By lifting to sufficient precision we verify that j is a root of
x3 + 3491750x% — 5151296875x + 12771880859375.

In general, a p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and

> recognize an algebraic number from its approximation.



Reléevements canoniques

In general, a p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and

> recognize an algebraic number from its approximation.



Reléevements canoniques

In general, a p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and
> recognize an algebraic number from its approximation.

The first step replaces the p-adic numbers with complex numbers
in analogous analytic constructions. Rather than a period lattice,
the input is a suitable curve which we lift p-adically.



Reléevements canoniques

In general, a p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and
> recognize an algebraic number from its approximation.

The first step replaces the p-adic numbers with complex numbers
in analogous analytic constructions. Rather than a period lattice,
the input is a suitable curve which we lift p-adically.

The second step uses an LLL reconstruction, from one or multiple
points on the CM subscheme.



Reléevements canoniques

In general, a p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and
> recognize an algebraic number from its approximation.

The first step replaces the p-adic numbers with complex numbers
in analogous analytic constructions. Rather than a period lattice,
the input is a suitable curve which we lift p-adically.

The second step uses an LLL reconstruction, from one or multiple
points on the CM subscheme.

Currently several constructive CM algorithms for genus 2 CM
moduli exist :



Reléevements canoniques

In general, a p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and
> recognize an algebraic number from its approximation.

The first step replaces the p-adic numbers with complex numbers
in analogous analytic constructions. Rather than a period lattice,
the input is a suitable curve which we lift p-adically.

The second step uses an LLL reconstruction, from one or multiple
points on the CM subscheme.

Currently several constructive CM algorithms for genus 2 CM
moduli exist :

» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).



Reléevements canoniques

In general, a p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and
> recognize an algebraic number from its approximation.

The first step replaces the p-adic numbers with complex numbers
in analogous analytic constructions. Rather than a period lattice,
the input is a suitable curve which we lift p-adically.

The second step uses an LLL reconstruction, from one or multiple
points on the CM subscheme.

Currently several constructive CM algorithms for genus 2 CM
moduli exist :

» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).

» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),



Reléevements canoniques

In general, a p-adic algorithm for constructive CM must
» construct the lifted invariant (to some finite precision), and
> recognize an algebraic number from its approximation.

The first step replaces the p-adic numbers with complex numbers
in analogous analytic constructions. Rather than a period lattice,
the input is a suitable curve which we lift p-adically.

The second step uses an LLL reconstruction, from one or multiple
points on the CM subscheme.

Currently several constructive CM algorithms for genus 2 CM
moduli exist :

» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).

» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),
» p-adic lifting of (¢, £)-isogenies (K., adapting above to p # ¢).



Constructive CM algorithms for genus 2

Currently several constructive CM algorithms for genus 2 CM
moduli exist :

» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).

» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),
» p-adic lifting of (¢, ¢)-isogenies (K., adapting above to ¢ # p).



Constructive CM algorithms for genus 2

Currently several constructive CM algorithms for genus 2 CM
moduli exist :

» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).

» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),
» p-adic lifting of (¢, ¢)-isogenies (K., adapting above to ¢ # p).

The first uses Richelot isogenies between Jacobians of curves in
Rosenhain form : y? = x(x — 1)(x — A1)(x — X2)(x — A3).



Constructive CM algorithms for genus 2

Currently several constructive CM algorithms for genus 2 CM
moduli exist :

» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).
» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),
» p-adic lifting of (¢, ¢)-isogenies (K., adapting above to ¢ # p).
The first uses Richelot isogenies between Jacobians of curves in
Rosenhain form : y? = x(x — 1)(x — A1)(x — X2)(x — A3).

The 3-adic algorithm makes use of correspondence equations of
algebraic theta functions.



Constructive CM algorithms for genus 2

Currently several constructive CM algorithms for genus 2 CM
moduli exist :

» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,
Ritzenthaler, Weng).

» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),

» p-adic lifting of (¢, ¢)-isogenies (K., adapting above to ¢ # p).
The first uses Richelot isogenies between Jacobians of curves in
Rosenhain form : y? = x(x — 1)(x — A1)(x — X2)(x — A3).

The 3-adic algorithm makes use of correspondence equations of
algebraic theta functions.

Finding suitable input curves, whose Jacobian has endomorphism
ring which is a maximal order of low class number, is the primary
difficulty in the first step.
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Currently several constructive CM algorithms for genus 2 CM
moduli exist :

» 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K.,

Ritzenthaler, Weng).

» 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz),

» p-adic lifting of (¢, ¢)-isogenies (K., adapting above to ¢ # p).
The first uses Richelot isogenies between Jacobians of curves in
Rosenhain form : y? = x(x — 1)(x — A1)(x — X2)(x — A3).

The 3-adic algorithm makes use of correspondence equations of
algebraic theta functions.

Finding suitable input curves, whose Jacobian has endomorphism
ring which is a maximal order of low class number, is the primary
difficulty in the first step. The height of the moduli points (hence
the resulting output size) presents the major challenge to the LLL
phase.
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Algorithmic Problems

As the size of the input field grows, the following problems present
themselves :

» The determination of the exact endomorphism ring
O = End(J), where Z[r, 7] C O C Ok.
Idea : determine and use (¢, ¢)-modular correspondences in
Ag x Ag in order to determine Cl(Ok), or rather €(Ok).
» The reconstruction of the ideal of relations for (j1,/2,/3).

Idea : Determine H, by algebraic algorithms, then identify
each ji as an integral element of in terms of a basis for Oyr.
This avoids reconstructing relations between powers of the
elements ji of large height.
The combined algebraic and analytic methods has potential to
improve both algorithms when the exponent of Cl(Okr) contains
large a prime power divisor.
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Cryptographic applications

Example. Let C be the curve y2 + h(x)y = f(x) over
Fg = Fa[t] /(¢ + t + 1),

with h(x) = x(x + 1) and f(x) = x(x + 1)(x3 + x? + t2x + £3).
The curve is ordinary and has complex multiplication by the

maximal order of K = Q(i\/23 + 41/5). The maximal order has
class number is 3, and there exist 6 isomorphism classes of
principally polarized abelian varieties.

We construct the ideal of relations in Igusa invariants (1,2, 3)
from the canonical lift of the Jacobian of C. For example, the
invariant ji satisfies a minimal polynomial :

Hy(x) = 218536724 ,6
— 11187730399273689774009740470140169672902905436515808105468750000 x°
+ 501512527690591679504420832767471421512684501403834547644662988263671875000 x*
— 10112409242787391786676284633730575047614543135572025667468221432704263857808262923 x
+ 118287000250588667564540744739406154308135978447792771928535541240797386992091828213521875 x2
— 213%0510111131531701' 163191 69938793494948953560198870004032131926868578084899317 x
+3%05152354095179364113°
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determine that the Jacobian of some curve over F, with CM by
Ok will have prime order

910288986956988885753118558284481029\
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Cryptographic applications
Choosing the 120-bit prime

p = 954090659715830612807582649452910809,

and solving a norm equation in the endomorphism ring Ok, we
determine that the Jacobian of some curve over F, with CM by
Ok will have prime order

910288986956988885753118558284481029\
311411128276048027584310525408884449.

Solving for a solution to the system of equations over [F,,, we find a
corresponding curve

C : y? = x5 4 827864728926129278937584622188769650 x*
+102877610579816483342116736180407060 x>
+335099510136640078379392471445640199 x>
+351831044709132324687022261714141411 x
+ 274535330436225557527308493450553085.
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Cryptographic applications

We solve for the curve

C : y? = x5+ 827864728926129278937584622188769650 x*
+102877610579816483342116736180407060 x>
+335099510136640078379392471445640199 x>
+351831044709132324687022261714141411 x
+ 274535330436225557527308493450553085.

A test of a random point on the Jacobian verifies the group order.

A comprehensive database for CM invariants in genera 1 and 2 is

being developed :
http://echidna.maths.usyd.edu.au/ kohel/dbs/

providing an interface for the interrelated invariants of CM fields K,
their Hilbert class fields, and CM moduli of abelian varieties.



FIN
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Un relevement canonique 2-adique

Soit C/F3 la courbe :
Y403+ + )y =+ 1)+ 2 +1),

alors le relevement arbitraire
Y2 = 2y+ (P +x2+1))? = (P +x2+1)2+4(x° + 1) (3 +x2+1)

vers Zy nous donne une courbe initiale pour la relevement
canonique (sur une extension de degré 3 qui nous donne tous les
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Un relevement canonique 2-adique
Soit C/F3 la courbe :

Y403+ + )y =+ 1)+ 2 +1),
alors le relevement arbitraire
Y2 = 2y+ (P +x2+1))? = (P +x2+1)2+4(x° + 1) (3 +x2+1)

vers Zy nous donne une courbe initiale pour la relevement
canonique (sur une extension de degré 3 qui nous donne tous les
points de Weierstrass).

Un comptage de points naif nous donne le polynéme de Frobenius,
TP+ T3+ T2 427 + 4.
Le corps CM engendré par le Frobenius m,

K=Q(m) = QITI/(T*+ T° + T? + 2T + 4).



Un relevement canonique 2-adique
Le corps CM engendré par le Frobenius ,
K=Q(r)=ZQ[T]/(T*+ T>+ T? +2T +4),

est une extension de degré 2 de Q(v/13) avec discriminant 13217.



Un relevement canonique 2-adique
Le corps CM engendré par le Frobenius ,
K=Q(r)=Q[T]/(T*+ T3+ T? +2T +4),

est une extension de degré 2 de Q(v/13) avec discriminant 13217.
L'ordre maximal O est égal a Z[n, 7], ou 7 € End(J) est le

Verschiebung n7 = q.
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Le corps CM engendré par le Frobenius ,
K=Q(r)=ZQ[T]/(T*+ T>+ T? +2T +4),

est une extension de degré 2 de Q(v/13) avec discriminant 13217.
L'ordre maximal O est égal a Z[n, 7], ou 7 € End(J) est le
Verschiebung 77 = q. Le nombre des classes de K est 1, et le
relevement 2-adique des invariants de C nous donne des invariants
d'lgusa (J1,j2,/3), qui sont des racines de I'idéal engendré par les
polynémes :

42 + 8218017y + 146211169851,
Jj3 41008855, — 342014432400,
Jj3 + 13683873 — 240090131376,
4480j; + 7499j, — 122553,

716/ + 1212j> — 19713 — 1666737



Un relevement canonique 2-adique

Le corps CM engendré par le Frobenius ,
K=Q(r)=ZQ[T]/(T*+ T>+ T? +2T +4),

est une extension de degré 2 de Q(v/13) avec discriminant 13217.
L'ordre maximal O est égal a Z[n, 7], ou 7 € End(J) est le
Verschiebung 77 = q. Le nombre des classes de K est 1, et le
relevement 2-adique des invariants de C nous donne des invariants
d'lgusa (J1,j2,/3), qui sont des racines de I'idéal engendré par les
polynémes :

42 + 8218017y + 146211169851,
Jj3 + 1008855/, — 342014432400,
j2 4 13683873 — 240090131376,
4480, + 7499j> — 122553,

716/, + 1212j, — 1971j3 — 1666737

qui definissent un sous-schéma de M5 de dimension 0 et degré 2.



Un relevement canonique 3-adique

Soit o7 = F3[w]/(w3 — w + 1), et soit C le courbe

y2 =x(x —1)(x — t1)(x — t2)(x — t3),
ou
(t17 t27 t3) = (W14a W8’ 2)
Le point
(Ula uz, U3) = (W167 W24a 2)

est I'image de (t1, to, t3) par le Frobenius et définit une seconde
courbe

y? = x(x = 1)(x = n)(x — 1) (x — w3),

reliée a la premiere par une correspondance de Richelot.



Un relevement canonique 3-adique

Soit o7 = F3[w]/(w3 — w + 1), et soit C le courbe

y? = x(x = 1)(x = t1)(x — ) (x — t3),

(t1, t, t3) = (w*, w? 2).
Le point
(uy, up, uz) = (w18 w?* 2)
est I'image de (t1, to, t3) par le Frobenius et définit une seconde
courbe
y? = x(x = 1)(x — u1)(x — n)(x — u3),
reliée a la premiere par une correspondance de Richelot. Alors les

relevements 3-adiques de ces invariants s'envoient sur un triplet
d’'invariants d'lgusa absolus (j1,/2,/3), qui satisfont :



Un relevement canonique 3-adique

10460353203/ — 20644606194972313680;5+
1584797903444725069000181184,4 —
57934203669971774729663594299868672,3 —
475721039936395998603032571096726185115648,2—
2319410019701066580457483440392962776928771637248; —
1633610752539414651637667693318669910064037028972986368,

106838 — 3154427913690;5 + 130184582847056421754 —
9011847196705020909893875;3 —
46912922512338152998837057320000,2+
13719344346806722534193757175744000000,
42517234157035811590789580667261104128000000,

5314418 — 80079819760854,3 + 681652231356458824713 5 —
1621537231026449336569333993;3 —
1566137192004297839675972173376896,3 —
1479377322341359891148215922582439772160,3—
939937021370655707607384087330217698726510592.



