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Abstract. Examples of d-perfect sequences are constructed based on
the method in Xing et al [8]. In particular examples of 1-perfect se-
quences based on genus 0 curves over binary and the ternary fields are
computed, as are 2-perfect binary sequences based on an elliptic curve.
The complexity profile of certain of the 2-perfect sequences are exper-
imentally determined to follow that of 1-perfect sequences. Based on
two algebraic reformulations of the known characterization of binary 1-
perfect sequences, these sequences are proved to be 1-perfect.

1 Introduction

In the previous articles [8] and [9] of Xing et al., several constructions of d-
perfect sequences are given based on functions on a curve over a finite field. The
freedom to choose a local parameter and a function on a curve (see Theorem 1)
allows many different d-perfect sequences to be derived from a given curve. In
this paper, we present a method to compute these d-perfect sequences, and
give examples of d-perfect sequences, for small d, by choosing functions of small
degree on a curve.

The choice of the curve as well as the functions permits great flexibility in
constructing d-perfect sequences. With the interest of considering curves which
admit functions of small degree, we will concentrate on curves of genera 0 and
1, namely, the projective line and elliptic curves. This paper is arranged in the
following way. In Section 2, some notations concerning d-perfect sequences and a
result regarding the construction of d-perfect sequences in Xing et al. [8] will be
recalled. Those 1-perfect sequences given by this construction using the curves
of genus 0 over the binary and ternary fields are completely listed in Section 3.
Section 4 is devoted to an example of sequences derived from an elliptic curve
over F2. Certain 2-perfect sequences constructed in this manner are experimen-
tally observed to be 1-perfect to a high degree of accuracy. This observation is
proved based on two algebraic reformulations of the known characterization of
binary 1-perfect sequences. The reformulations themselves give infinite families
of binary 1-perfect sequences constructed as series expansion of functions on
curves and on surfaces.



2 Background

Let us first recall some concepts regarding d-perfect sequences over a finite field
Fq of q elements. For a sequence s of finite length, we denote by ℓs the linear
complexity of s. Thus we obtain the linear complexity profile (simply denoted
by lcp) for an infinite sequence a, namely, the integer sequence

{ℓa(n)}∞n=1,

where ℓa(n) is the linear complexity of the first n terms of the sequence a. The
sequence a is called d-perfect for a positive integer d if the following condition
holds:

n + 1 − d

2
≤ ℓa(n) ≤

n + d

2
for all n.

Definition. Let X/Fq be a curve and x a function in Fq(X ). The degree of a
nonconstant x is defined to be the degree of the field extension Fq(X )/Fq(x),
and a constant function x is defined to have degree zero.

For a function x of Fq(X )−{0}, let div(x) be the principal divisor associated
with x. Put

div(x) = div0(x) − div∞(x),

where div0(x) and div∞(x) are two effective divisors and the supports of div0(x)
and div∞(x) are disjoint. Then div0(x) and div∞(x) are uniquely determined
by x and deg(div0(x)) is equal to the degree of x. Let vP denote the normalized
discrete valuation corresponding to the point P on X/Fq.

We apply the following theorem to the explicit construction of d-perfect se-
quences (see Theorem 3.1 of [8]).

Theorem 1. Let X/Fq be a curve for which there exist an Fq-rational point

P on X and a degree 2 function t in Fq(X ) such that vP (t) = 1. Let x be a

function of degree d on X such that Fq(X ) = Fq(x, t) with (x/t)(P ) = 1. Then

there exists a unique power series expansion of the form

x(t) = t + a2t
2 + a3t

3 + a4t
4 + · · ·

for x which defines an embedding of the function field Fq(X ) in Fq((t)). The

corresponding sequence (1, a2, a3, a4, . . . ) is d-perfect.

If the sequence of coefficients of a series x(t) is d-perfect we say that the
series is d-perfect. The series x(t) can be rapidly computed via the effective form
of Hensel’s lemma (see Chapter II, Proposition 2 of Lang [1]).

Theorem 2 (Hensel’s Lemma). Let x and t be as in the previous theorem,

and let x have minimal polynomial F (X) over Fq(t). Then the power series

expansion for x in Fq((t)) can be determined by setting x1(t) = t, and for all i,

xi+1 = xi −
F (xi)

F ′(xi)
,

where F ′(X) is the derivative of F (X) with respect to X, and the sequence (xi)
satisfies vP (F (xi)) ≥ 2i.



3 Genus zero curves

3.1 General theory

To obtain 1-perfect sequences using the above construction, we require a curve
X/Fq which has a degree one function x. Such a curve has function field Fq(x)
and it is immediately seen that it is of genus zero. Thus we begin with a pair
of a genus zero curve X/Fq and a function x generating Fq(X ). Let P be the
zero of x, and let t be a degree two function on X such that vP (t) = 1 and
(x/t)(P ) = 1. The form of t is described by means of the following proposition.

Proposition 1. Let X/Fq be a genus zero curve with Fq(X ) = Fq(x), and let

P be the zero of x. A degree two function t ∈ Fq(x) satisfying (x/t)(P ) = 1 has

the form

t =
x + ax2

1 + bx + cx2

for some a, b, and c in Fq, and where a or c is nonzero, and gcd(1 + ax, 1 +
bx + cx2) = 1.

Every generator x1 for the rational function field Fq(x) is of the form

x1 =
ax + b

cx + d
,

where a, b, c, and d are elements of the base field Fq with ad − bc 6= 0. Given
any x1 in Fq(x) and a point P on X , we may replace it with x1 − x1(P ). Thus
by scaling we may assume that

vP (x1) = 1, and (x1/x)(P ) = 1.

Then x1(P ) = b/d = 0, and (x1/x)(P ) = a/d = 1. Thus any degree one function
x1 can be normalized such that it is of the form

x1 =
x

1 + cx
.

By Theorem 1, the corresponding power series expansion for x1 in t is also
1-perfect, which proves the following proposition.

Proposition 2. Suppose x0 and x1 are degree one functions on a curve X and

t is a degree two uniformizing parameter at a point P . Suppose moreover that

vP (x0) = vP (x1) = 1 and (x1/x0)(P ) = 1. Then x1 is of the form

x1 =
x0

1 + cx0
,

and the series x0(t) and x1(t) are both 1-perfect.



3.2 1-Perfect sequences over F2

From Proposition 1, we see that there are four possible choices for the degree
two local parameter t over the binary field. These are:

(0.0) t = x + x2, (1.0) t =
x + x2

1 + x + x2
,

(0.1) t =
x

1 + x2
, (1.1) t =

x

1 + x + x2
.

In this case Hensel’s lemma construction for a power series solution x = x(t)
to one of the above equations is a special case of a reversion formula for power
series. That is, if we take equation (i.j) to define the power series t(x) in F2[x],
then t(x(t)) = t and x(t(x)) = x.

We note that the linear fractional transformation A(u) = u/(1 + u) deter-
mines an automorphism of order two of the projective line P1(F2). If we denote
by xij(t) the power series which is a root of equation (i.j), and set x(t) = x00(t),
then

xij(t) = Aj(x(Ai(t))).

We find the following sequences associated to the t-expansions of x in the four
cases.

(0.0) (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .),
(0.1) (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, . . .),
(1.0) (1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, . . .),
(1.1) (1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, . . .).

These initial segments can be verified to follow the linear complexity of 1-perfect
sequences.

The sequence (0.0) is the well-known 1-perfect sequence of the power series
(see [2–5, 7]).

∞∑

i=0

t2
i

= t + t2 + t4 + t8 + t16 + · · · ,

and the sequence (0.1) is that of the power series

∞∑

i=1

t2
i
−1 = t + t3 + t7 + t15 + t31 + · · · .

By making the substitution t 7→ t/(1+ t), the corresponding sequences (1.0) and
(1.1) can be seen to have the forms

∞∑

m=1

∞∑

i=0

tm2i

and

∞∑

m=1

∞∑

i=0

tm(2i
−1),

respectively.



3.3 1-Perfect sequences over F3

From Proposition 1 we see that there are 18 possible choices of degree 2 local
parameters t over F3, which we subdivide into a block of nine functions:

(0.0) t =
x

1 + x + x2
, (1.0) t =

x

1 − x + x2
, (2.0) t =

x

1 + x2
,

(0.1) t = x + x2, (1.1) t =
x + x2

1 + x + x2
, (2.1) t =

x + x2

1 − x − x2
,

(0.2) t =
x − x2

1 − x + x2
, (1.2) t = x − x2, (2.2) t =

x − x2

1 + x − x2
.

and a second block of nine functions:

(0.0) t =
x

1 − x2
, (1.0) t =

x

1 + x − x2
, (2.0) t =

x

1 − x − x2
,

(0.1) t =
x + x2

1 − x
, (1.1) t =

x + x2

1 + x2
, (2.1) t =

x + x2

1 + x − x2
,

(0.2) t =
x − x2

1 + x
, (1.2) t =

x − x2

1 − x − x2
, (2.2) t =

x − x2

1 + x2
.

The linear fractional transformation A(u) = u/(1 + u) determines an auto-
morphism of P1(F3) of order three. As in Section 3.2, it is easy to verify that
roots of any two equations in the same block can be exchanged by action of the
group 〈A〉. Since A generates the group of automorphisms of P1(F3) which fix
the point P = (0 : 1) and the residue of functions at P , we may think of each
of the two blocks of equations as comprising an equivalence class over F3. The
corresponding sequences for the first block are:

(0.0) (1, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 1, . . .),
(0.1) (1, 2, 2, 1, 2, 0, 0, 0, 2, 1, 2, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 1, . . .),
(0.2) (1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, . . .),

(1.0) (1, 2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, . . .),
(1.1) (1, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 1, . . .),
(1.2) (1, 1, 2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, . . .),

(2.0) (1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, . . .),
(2.1) (1, 1, 2, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 2, 1, 1, 2, 0, 0, 0, 0, . . .),
(2.2) (1, 2, 2, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0, . . .),

and for the second block:

(0.0) (1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, . . .),
(0.1) (1, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, . . .),
(0.2) (1, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, . . .),



(1.0) (1, 1, 0, 1, 0, 1, 2, 0, 2, 1, 1, 0, 1, 0, 1, 2, 2, 0, 2, 2, 0, 2, 0, 2, 1, 1, 0, 1, 1, 0, 1, . . .),
(1.1) (1, 2, 0, 0, 1, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 1, 0, 2, 2, 1, 0, 0, 2, 2, 1, 2, 0, 0, 1, 2, 2, . . .),
(1.2) (1, 0, 2, 2, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 2, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 0, 2, 2, 1, 0, 0, . . .),

(2.0) (1, 2, 0, 2, 0, 2, 2, 0, 2, 2, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 0, 1, . . .),
(2.1) (1, 0, 2, 1, 1, 2, 0, 2, 1, 1, 1, 0, 0, 1, 2, 2, 2, 0, 0, 2, 2, 1, 0, 0, 1, 0, 2, 1, 1, 0, 0, . . .),
(2.2) (1, 1, 0, 0, 1, 2, 2, 2, 1, 0, 1, 1, 2, 0, 0, 2, 0, 1, 2, 2, 0, 0, 2, 1, 1, 1, 0, 0, 1, 1, 2, . . .).

4 Genus one curves

In this section we consider the sequences derived from series expansion for func-
tions on the elliptic curve

y2 + xy = x3 + x

over the field F2 of two elements. Since every point on an elliptic curve can be
translated to any other, we consider only expansions around the fixed point O
at infinity.

On an elliptic curve there exist no degree one functions, so Theorem 1 pro-
vides no means of constructing sequences from functions on the curve which are
provably 1-perfect. However, at the end of this section we prove that certain 2-
perfect sequences obtained from functions on this curve are in fact 1-perfect. In
the interest of minimizing d we consider only the series expansions of non-linearly
dependent functions of degree two and local parameters for O. We classify these
functions as follows.

The set of rational points on E over F2 consists of the four points O, (0, 0),
(1, 0), and (1, 1). Since the 2-torsion group contains only two elements, E(F2)
must be isomorphic to the group Z/4Z.

The automorphism [−1] on E is the map (x, y) 7→ (x, x+ y), which stabilizes
(0, 0), so we identify (0, 0) as the 2-torsion point. Any degree two function on E
which has a zero of order one at O has exactly one other zero on E, which must
be one of the rational points (0, 0), (1, 0), or (1, 1).

The zeros and poles of functions on E satisfy an additional relation. Let
div(f) be the divisor of the function f , and let Div0(E,F2) be the degree zero
divisors defined over an algebraic closure of F2. Then there exists an exact
sequence

1 −→ F2(E)∗ −→ Div0(E,F2) −→ E(F2) −→ 0,

where the first map is to take a function to its principal divisor, and the second
map is the group homomorphism which takes a point divisor [P ] to the point P .
From the exact sequence we may classify functions in F2(E) by their divisors.
Precisely they correspond to divisors in the kernel of the second map which are
invariant under the Galois group Gal(F2/F2).

In the following table we enumerate the possible divisors of degree two func-
tions and the function to which they correspond. In addition to the divisors of
points in E(F2) the two degree two divisors P and Q corresponding to the Galois
invariant pairs of points in E(F4) disappearing on the ideals (x2 + x + 1, y + 1)
and (x2 + x + 1, y + x + 1) may appear.



First we determine the divisors of certain “building block” functions on E.
We denote div(f) = div0(f) − div∞(f).

f div0(f) div∞(f)
x 2[(0, 0)] 2[O]

x + 1 [(1, 0)] + [(1, 1)] 2[O]
y [(0, 0)] + 2[(1, 0)] 3[O]

y + x [(0, 0)] + 2[(1, 1)] 3[O]
y + 1 [(1, 1)] + [P ] 3[O]

y + x + 1 [(1, 0)] + [Q] 3[O]

By enumerating all possible degree two divisors which can occur as div∞(f),
we obtain the classification below of all degree two functions on E over F2,
expressed as quotients of the functions in the previous table.

f div0(f) div∞(f)
(1) x/y [O] + [(0, 0)] 2[(0, 1)]
(2) x/(y + x) [O] + [(0, 0)] 2[(1, 1)]
(3) y/(x2 + x) [O] + [(1, 0)] [(0, 0)] + [(1, 1)]
(4) (x + 1)/(y + 1) [O] + [(1, 0)] [P ]
(5) (y + x)/(x2 + x) [O] + [(1, 1)] [(0, 0)] + [(1, 0)]
(6) (x + 1)/(y + x + 1) [O] + [(1, 1)] [Q]

On the following page we give the minimal polynomial for the function f over
the field F2(t), where f and t are one of the above six degree two functions on
E/F2. The entry (i.j) corresponds to the pair (f, t), where f is entry (i) in the
above table, and t is entry (j).

The sequence of coefficients for the series expansion of f with respect to t at
O is proven to be 2-perfect by Theorem 1. For a given pair, the functions may
in fact be 1-perfect. We give the experimentally determined value d0 such that
the series expansion is believed to be d0-perfect, however this value is provably
only a lower bound. The functions (1) through (6) fall in three classes which are
equivalent under a linear fractional transformation. For such a pair we set d0

equal to 0 in the table, to indicate that the corresponding sequence is periodic.



F (X) d0

(1.1) X + t 0
(1.2) (1 + t)X + t 0
(1.3) (t + t2)X2 + (1 + t)X + t 1
(1.4) (1 + t + t2)X2 + (1 + t)X + t 1
(1.5) tX2 + (1 + t)X + t + t2 1
(1.6) (1 + t + t2)X2 + (1 + t)X + t + t2 1

F (X) d0

(2.1) (1 + t)X + t 0
(2.2) X + t 0
(2.3) tX2 + (1 + t)X + t + t2 1
(2.4) (1 + t + t2)X2 + (1 + t)X + t + t2 1
(2.5) (t + t2)X2 + (1 + t)X + t 1
(2.6) (1 + t + t2)X2 + (1 + t)X + t 1

F (X) d0

(3.1) t2X2 + (1 + t + t2)X + t 2
(3.2) X2 + (1 + t + t2)X + t 2
(3.3) X + t 0
(3.4) (1 + t)X + t 0
(3.5) tX2 + (1 + t + t2)X + t 2
(3.6) (1 + t + t2)X2 + (1 + t + t2)X + t 2

F (X) d0

(4.1) t2X2 + (1 + t + t2)X + t + t2 2
(4.2) (1 + t2)X2 + (1 + t + t2)X + t + t2 2
(4.3) (1 + t)X + t 0
(4.4) X + t 0
(4.5) (t + t2)X2 + (1 + t + t2)X + t + t2 2
(4.6) (1 + t + t2)X2 + (1 + t + t2)X + t + t2 2

F (X) d0

(5.1) X2 + (1 + t + t2)X + t 2
(5.2) t2X2 + (1 + t + t2)X + t 2
(5.3) tX2 + (1 + t + t2)X + t 2
(5.4) (1 + t + t2)X2 + (1 + t + t2)X + t 2
(5.5) X + t 0
(5.6) (1 + t)X + t 0

F (X) d0

(6.1) (1 + t2)X2 + (1 + t + t2)X + t + t2 2
(6.2) t2X2 + (1 + t + t2)X + t + t2 2
(6.3) (t + t2)X2 + (1 + t + t2)X + t + t2 2
(6.4) (1 + t + t2)X2 + (1 + t + t2)X + t + t2 2
(6.5) (1 + t)X + t 0
(6.6) X + t 0



We note that due to the automorphism [−1] of the curve, the nontrivial
minimal polynomials appear in pairs, corresponding to function pairs which are
exchanged under the automorphism induced by [−1].

From the above table we note that the sequence associated to the root f(t)
of valuation 1 in F2((t)) to any of the four exceptional polynomials

(1) F (X) = (t + t2)X2 + (1 + t)X + t
(2) F (X) = (1 + t + t2)X2 + (1 + t)X + t
(3) F (X) = tX2 + (1 + t)X + t + t2

(4) F (X) = (1 + t + t2)X2 + (1 + t)X + t + t2

over F2(t), were observed to exhibit a 1-perfect complexity profile. The sequences
associated with the roots of above four polynomials are:

(1) (1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, . . .),
(2) (1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, . . .),
(3) (1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, . . .),
(4) (1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, . . .).

In particular we note that the above four sequences are different from the 1-
perfect binary sequences in Section 3.

The following theorem of Wang and Massey [7] (see Niederreiter [2]) charac-
terizes all binary perfect sequences.

Theorem 3. A sequence (1, a2, a3 . . . ) over the binary field is 1-perfect if and

only if an + a2n + a2n+1 = 0.

In terms of a series f(t) = t + a2t
2 + a3t

3 + · · · we easily check that the
coefficient of t2n+1 in

t f(t)2 + (1 + t)f(t) + t

is an + a2n + a2n+1 for all n ≥ 1. Taking the derivative with respect to t, gives
the following corollary.

Corollary 1. A series f(t) = t + a2t
2 + a3t

3 + · · · is 1-perfect if and only if it

satisfies the differential equation

(1 + t)
df

dt
(t) = f(t)2 + f(t) + 1.

By Corollary 1, it follows immediately that roots f(t) of the four exceptional
polynomials are 1-perfect. For the first polynomial, we have

F (f(t)) = (t + t2)f(t)2 + (1 + t)f(t) + t = 0.

Taking the first derivative, we obtain the characterizing differential equation for
binary perfect sequences. For each of the other polynomials we obtain the same
derivative, proving that the corresponding series are 1-perfect as experimentally
observed.

The preceeding corollary allows us to determine whether a function f(t) is
1-perfect by differentiating its minimal polynomial over F2((t)). The following
corollary gives an alternative algebraic characterization of f(t).



Corollary 2. Every binary 1-perfect series f(t) = t + a2t
2 + a3t

3 + · · · can be

uniquely written in the form f(t) = v2 + t u2 where u lies in 1 + tF2[[t]] and v
is the root of

v2 + v = 1 + u + t u2,

lying in tF[[t]]. The series u and v are uniquely defined by f(t) and conversely

every u in 1 + tF2[[t]] gives rise to a unique solution v in tF2[[t]] such that

f(t) = v2 + t u2 is 1-perfect.

Proof. Every f(t) in F2[[t]] can be written in the form f(t) = v2 + t u2. The
leading term is t if and only if u lies in 1 + tF2[[t]] and v in tF2[[t]], and one
verifies that df/dt = u2. By Corollary 1, the series f(t) is 1-perfect if and only if

(1 + t)
df

dt
= f2 + f + 1.

After a substitution and rearrangement, this is equivalent to (v2 + v + 1 + u +
t u2)2 = 0. Since F2((t)) is a field, the results follows. �

A binary 1-perfect sequence f(t) arises as the series expansion with respect to
t of a function on a curve X if and only if u is algebraic over F2(t). The function
t has degree 2 on X as in Theorem 1 if and only if exactly one of u or v is a
rational function in t. If u is transcendental over F2(t) then the F2(u, t) is the
function field of the projective plane, and f(t) gives a function on a quadratic
surface covering the plane.
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