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Abstract

The problem of constructing CM invariants of higher dimensional abelian varieties presents
significant new challenges relative to CM constructions in dimension 1. Algorithms for p-adic
canonical lifts give rise to very efficient means of constructing high-precision approximations
to CM points on moduli spaces of abelian varieties. In particular, algorithms for 2-adic and
3-adic lifting of Frobenius give rise to CM constructions in dimension 2 (see [6] and [2]).
We analyse the Galois-theoretic structure of CM points in higher dimension and combine
geometric and arithmetic conditions to derive new p-adic canonical lifting algorithms using
the f-adic torsion structure of an ordinary abelian variety.

1 Introduction

The construction of CM invariants of abelian varieties holds interest from both a theoretical
point of view, with connections to class field theory, and from a cryptographic point of view,
with its application to the construction of abelian varieties over large finite fields with known
prime group order. The advancement of canonical lifting algorithms in arithmetic geometry,
following the original work of Satoh [13] on computing the zeta function of an elliptic curves,
has provided a p-adic approach to constructive CM algorithms (following [3] and in higher
dimension [6] and [2]).

In Section 2 we recall the classical theory of complex multiplication and class field the-
ory with the view of understanding the geometry and Galois theory of the zero-dimensional
schemes of CM invariants. We illustrate by examples the main pathologies which can arise in
dimension 2. In Section 3 we recall the background on canonical lifts and the indicate main
mechanism for constructing a canonical lift as the lift of an isogeny together with associated
Galois relations. In Section 4 we treat explicit algorithms for constructing canonical lifts,
in particular an approach to canonical lifting which lifts the ¢-adic torsion structure of an
abelian variety in characteristic p. We treat in detail an elementary and efficient 2-adic AGM
algorithm for genus 2 curves and the f-adic utilization of Richelot isogenies. We conclude
with discussion of the main algorithm obstacles and potential directions for resolving them.

2 Complex multiplication

The Main Theorem of Complex Multiplication gives the relation between the ideal classes of
a CM order O and abelian varieties with endomorphism ring . We recall this relationship
for elliptic curves and its generalization to higher dimension.

2.1 Complex multiplication in genus 1

In genus 1, the j-variant of an elliptic curve with CM by a maximal order O in K, generates
the Hilbert class field H = K (j)/K. More precisely, an embedding K — C gives the relation
between ideals of Ok and isomorphism classes of elliptic curves over C:

a+— Ea=C/a .

The Artin isomorphism o : Gal(H/K) = Cl(Ok), determines an action on {E.} compatible
induced isogenies
Eq — Eap ¢ E{V



The Galois action on {E;} may be determined on any model for E, over H.

A CM construction is an algorithm for the construction of invariants of an abelian variety
with complex multiplication. The traditional method for elliptic curves is to evaluate the
j-function at points 7 in the upper half Poincaré plane, which correspond to lattices with
complex multiplication. The objective of this algorithm is to determine the minimal polyno-
mial Hp(z) for j(7) over Q. Identifying the j-line A’ = Spec(Q[z]), this polynomial defines
a zero dimensional subscheme of A' C P! = X(1).

2.2 Complex multiplication in higher dimension

Suppose now that K is a CM field of degree 2g with totally real subfield F. We recall
the analogous construction of an abelian variety over C with complex multiplication by the
maximal order O (c.f. Shimura [12, §14]). Let ® = (¢1,...,¢4) be a CM-type, consisting of
a g-tuple of pairwise non-complex conjugate embeddings of K in C. Then & defines a map
K — CY by
2 (21,...,29) = (01(2), ..., Pg(2)).

The embedding ® determines a complex abelian variety A(C) = C?/®(a™") with dual abelian
variety A(C) = C9/®(a@D%"'), where D is the different {a € Ok : Trf (aOk) C Z}.

For any purely imaginary element ¢ in K such that (Dx C aa, with Im(¢;(¢)) > 0 for all
j, we have a polarization of abelian varieties:

®(¢) : A(C) = C?/@(a™") — A(C) = C?/2(aD),

given by z — ®(¢)z = ($1({)z1,...,04({)zg). The polarization is said to be principal if
®(¢) is an isomorphism, which holds if and only if (Dx = aa. This motivates the following
definition.

Definition. An ideal a in Ok is principally polarizable if there exists a purely imaginary
element ¢ in O with Im(¢;(¢)) > 0 for all j, and such that (Dx = aa.

The property of being principally polarizable is a property of the ideal class, hence we
may refer to a principally polarizable ideal class in Og. In general the polarization class is
defined to be an ideal ¢ of O such that ¢(®x = ada, well-defined in C1*(Or) for any purely
imaginary ¢ as above.

The set of polarized abelian varieties with polarization class ¢ are acted on by pairs (a, &)
such that aa = («) for totally positive @ in Op. The existence of « is equivalent to a being
in the kernel of the homomorphism

7 : Cl(Ok) — CIT (OF),

where 7(a) = OF Naa. The set of pairs (a,«) forms a group €(Ok) with identity (Ox,1),
which is an extension of ker(r) by the group of totally positive units (O3)T modulo NF (O})
(either trivial or of exponent 2).

In general the maximal order may not be in the principally polarizable class but the
following lemma asserts the existence of some polarized abelian variety in each polarization
class ¢ in C1T (OF). Tt then follows that the isomorphism classes of polarized abelian varieties
with CM by Ok are partioned into polarization classes by Cl*(Or), each of which is acted
on faithfully and transitively by €(Ox).

Lemma 2.1. Let K be a CM field such that K/F is not unramified. Then for every class ¢
in C1T(OFr) there exists a in Cl(Ok) with polarization class c. Moreover there exists an ideal
class 0 in C1T(OF) such that 7=(0) consists of the set of principally polarizable ideal classes
in Cl(Ok).

Proof. Since Dk is generated by elements of the form z — z, both aa and (Dx (for any
purely imaginary () are generated by ideals of Op. Since K/F is not unramified, by class

field theory C1(OF) injects into Cl(Ok ), so we can find a and ¢ such that aa is in the class as
CCQK‘ [}

We now seek a description for the Galois action on the invariants of principally polarized
CM abelian varieties. We specialize to CM abelian surfaces, for which the endomorphism
algebra is a quartic CM field K. Generically such a field is non-Galois over @, and its normal



closure is a degree 2 extension L/K with Galois group D4 over Q. There exist a triple of
absolute Igusa invariants (j1, je, j3) associated to an ideal class in a maximal order Ox with
principal polarization and CM-type @, contained in the Hilbert class field H" of the reflex
field K":

H" D K"(j1,jz2, js)

NS
L]
N

The field K™ may be constructed in terms of the CM-type ® but is unique up to isomorphism.
The class group Cl(Ogr) acts on the group €(Ox) by means of the homomorphism:

Gal(H"/K") = Cl(Ogr) —— €(Ok) (1)
¢ ———— (Na(c), N&'(0))

where Ng(c) = N (cOr). Composing with multiplication in €(Ok), we obtain the Galois
action:

Gal(H"/K") x ¢(Ox) = ¢(Ox).

The homomorphism (1) can fail to be injective (hence {j1,j2,73} does not generate H") or
fail to be surjective (in which case the Galois action is not transitive, so there are multiple
Galois orbits of invariants).

As an example, failure of injectivity occurs for the CM field K = Q[x]/(z* + 4622 +257) of
class number 1 and €(Ox) = {(Ox,1)}. The reflex field K" = Q[z]/(x* + 2322 + 68), on the
other hand, has class number 3, so Gal(H"/K") maps to the unique trivial class in €(Ok).
Note, however, that €(Ogr) is also the trivial group since C1T(Opr) is a group of order 3, so
that the Galois action is trivially transitive on both groups. The reflex field also provides an
example where the maximal order does not admit a principal polarization since the different
is not in the principal ideal class.

The first examples of multiple orbits occur with class number 2. In particular, the CM
invariants associated to the maximal order of the quartic CM field K = Q[z]/(2* +72%+5) and
its reflex field K" = Q[z]/(z* + 1122 4-29) have trivial action by Gal(H"/K") and Gal(H/K),
respectively. The maximal orders of K and K" each determine two subschemes of degree 2
over QQ, which split over their totally real subfields — the Galois conjugate pairs determine
distinct CM-types on the associated CM lattices.

The action of the absolute Galois group Gal(Q/Q), is more a subtle question, but relevant
for determining the degree of the corresponding zero-dimensional schemes of CM points. The
action of Gal(H"/F") may be determined from the action of complex conjugation on ideal
classes, and in general any automorphism of Q/Q which acts nontrivially on F" will change
the CM-type of a lattice. Thus the scheme over Q will represent Galois orbits from each of
the possible CM-types.

Constructive CM

An analytic construction for dimension 2 uses theta functions on Siegel upper half space to
determine points (j1, j2, j3) in M2(C), the moduli space of curves of genus 2 (which we identify
with its image in the moduli space A2 (C) of principally polarized abelian surfaces). The result
of a CM construction is an ideal in Q[j1, j2,j3] defining the zero dimensional scheme over Q
whose defining relations vanish on the Galois orbit of the point (j1, j2,53). In Section 4 we
describe analogous algorithms for constructing these ideals, using p-adic canonical lifts.

Example. The curves y? = z° + 1 and y? = 2° + 1 have absolute Igusa invariants (J1, Jo, Ja)
equal to
(0,0,0) and (6400000/3,440000/9, —32000/81).



Thus their respective defining ideals are
(j1, ja, j3) and (371 — 6400000, 952 — 440000, 8155 + 32000).

There are 19 such CM curve invariants known to exist over the rationals [14], each of which
arises from an order in a cyclic quartic CM field.

In general the set of CM invariants forms a zero-dimensional subscheme of the moduli
space Mz of genus two curves. To take an example of a non-normal quartic CM field of class
number one, K = Q[z]/(z* 4+ 13z% + 41), the set of absolute Igusa invariants (j1, j2,j4) for a
curve whose Jacobian has endormorphism ring Ok vanishes on the ideal of relations:

(452 + 1153226975, — 10896201253125,
6473 + 263424155 + 74733890625,
102457 — 1309162554 + 4408171875,

8541 — 897352 — 9720054,
2571 — 29202 — 3801654 -+ 2460375).

This ideal describes a subscheme of M3 of degree 2, which splits over the real quadratic
subfield Q(+/41) of the reflex field of K. Here we prefer to work with

(. -)_<L25 J3 s JaJs
J1,72,74) = J107 Tio ’ T1o ’

with j3 = J3Js/Jio replaced by js = (53 — j2%/41)/4, which provides local invariants for
ordinary curves in characteristic 2!

3 Canonical lifts

Let A be an ordinary, simple abelian variety over a finite field k of characteristic p, and let
R = W(k) be its Witt ring. Then R is an extension of Z, such that [R : Z,] = [k : Fp]
equipped with a surjective homomorphism R — k. Then the Frobenius automorphism of &
given by o(z) = P lifts uniquely to a Frobenius automorphism o : R — R.

A canonical lift is an abelian variety A/R such that

A/R xp k= A/k and End(A) = End(A).

By the theory of Serre and Tate (see [11]), we know that an ordinary abelian variety over a
finite field admits a unique canonical lift to R.

3.1 Canonical lifting conditions

We describe the general idea for construction of a canonical lift in terms of isogenies induced
by a decomposition of the modules of ¢-torsion before passing to explicit algorithms in the
next section. We assume that a modular correspondence for (4, ...,¢)-isogenies has been
precomputed as a subvariety X" in the product A x A of moduli spaces of principally polarized
abelian varieties (with prescribed torsion or theta structure). Such correspondences have been
used for constructing the canonical lift as a lift of the Frobenius isogeny of ordinary abelian
varieties in characteristic p = £. This makes use of the canonical decomposition

Alp] = Alp]"* & Alp]*,

induced by the kernels of Frobenius and Verschiebung, respectively.
Suppose now that A is ordinary over a finite field of characteristic p # ¢ and that O = aa
where O = End(A). Then we have an analogous decomposition

All] = Ala] & Alal,

determined by the ideal factorization. Moreover A[a](k) is isomorphic to (Z/¢Z)9 and there
exists an (¢,...,¢)-isogeny ¢ : A — B with ker ¢ = Afa] and End(A4) = End(B). Suppose

LA curve over a field of characteristic 2 is ordinary if and only if Jo # 0, and the equality 4Js = JaJs — JZ
implies that ji1j3 is congruent to jg at 2.



moreover that B is a Galois image of A (as happens when the image of a under the Artin map
is in the group generated by Frobenius at p). The canonical lift 121/ R of A/k is determined
by a lifting of isogenies: ,

$:A— B=A",

preserving A[¢] = ker(p) @ @(A[p])° " for some 7.

3.2 Canonical lifts as CM constructions

An algorithm for the construction of the p-adic canonical lift of an elliptic curve was introduced
by Satoh [13], to determine the number of points on a given E/F, (in small characteristic p).
The algorithm constructs the canonically lifted 7 of an given ordinary j-invariant j in Fy, as
the unique point (7,77) on
Xo(p) = X (1) x X(1).

An algorithm of Mestre, in 2000, introduced the use of theta functions and the AGM. This
algorithm determines canonically lifted invariants (£, Z7) in Xo(8) x Xo(8) (and residue char-
acteristic 2). The latter method extends naturally to higher dimension.

The idea to apply canonical lifting techniques to CM constructions was introduced in 2002
by Couveignes and Henocq [3], by determining a high precision approximation to moduli of
the canonical lift as a means of computing the Hilbert class polynomial on X (1). This idea was
extended to abelian surfaces (Jacobians of genus 2 curves) by Gaudry et al. [6] in characteristic
2 and (extending Mestre’s AGM to (3, 3)-isogenies) by Carls et al. [2] in characteristic 3.

Example. The j-invariant j of the canonical lift of E//F,, whose endomorphism ring is the
maximal order of K = End(F) ® Q, is an element of Z,. Nevertheless, it is algebraic and
integral over Z and generates the Hilbert class field of K. For instance

E/Fsg : y2 =234+ 31z 4+ 54
has j-invariant 20, but its canonical lift in Zsg is
7=20+53-5940-59% +57-59° +9-59" +3-59° +5.59° ...
By lifting to sufficient precision we verify that j is a root of the Hilbert class polynomial

2 + 34917502% — 5151296875z + 12771880859375.

4 Constructive CM algorithms

In general, a p-adic algorithm for constructive CM must
e construct the lifted invariant (to some finite precision), and
e recognize an algebraic number from its approximation.

The first step replaces the p-adic numbers with complex numbers in analogous analytic con-
structions. Rather than a period lattice, the input is a suitable curve which we lift p-adically.
The second step uses an LLL reconstruction, from one or multiple points on the CM sub-
scheme. Finding suitable input curves, whose Jacobian has endomorphism ring which is a
maximal order of low class number, is the primary difficulty in the first step. The height of
the moduli points (hence the resulting output size) presents the major challenge to the LLL
phase. Currently several constructive CM algorithms for genus 2 CM moduli exist:

e 2-adic lifting of (2, 2)-isogenies (Gaudry, Houtmann, K., Ritzenthaler, Weng [6]), and
e 3-adic lifting of (3, 3)-isogenies (Carls, K., Lubicz [2]).
We first describe an AGM recursion for 2-adic lifting, which provides a simplified yet efficient
algorithm for carrying out Mestre’s AGM lift in characteristic 2 (c.f. Lercier and Lubicz’s
treatment [10] and the construction in terms of Richelot isogenies in [6]). Then we introduce

a new p-adic lifting of (2, 2)-isogenies, by adapting the modular Richelot correspondences used
in [6] to any odd characteristic p.



4.1 Canonical 2-adic AGM algorithm

We give an elementary version of the AGM recursion for ordinary curves of genus 2, by finding
an explicit parametrisation of theta null points in terms of invariants of curves. We differ from
the standard parametrisation of 2-theta null points in a neighborhood of a point (1:1:1:1)
which yields a less natural parametrisation? The simplicity and elegance of the equations
justify giving particular treatment of the AGM algorithm relevant to the point (1:0:0:0).

Rosenhain invariants in characteristic 2.

Over an extension splitting the Weierstrass points, a genus 2 curve C over a field k of char-
acteristic 2 takes the form:

y> +a(x+ 1)y = z(z + u(x)

where u(z) is a polynomial of degree 3, divisible by a linear factor x + x¢ for zo not in {0, 1}.
We set
a1 = u(0), a2 = u(l), az = u(c0),

where u(00) is defined to be the leading coefficient of u(x). The geometric isomorphism class
of the curve is determined by the triple (a1, a2, as), independent of the value of z¢ (# 0, 1),
and provides a characteristic 2 analogue of the Rosenhain invariants (A1, A2, A3) of a curve

y2 =z(z—1)(x — M)(z— X2)(z — A3)

over any field of characteristic different from 2. Indeed, if R = W (k) is the Witt ring of k,
the curve
y? =x(x — 1)(z — 4a1)(x — 1 — 4a9)(—4aszz + 1).

gives a lift of C' to K = R® Q for arbitrary lifts of a; to @; in R. Thus (a1, az,as) is a local
system of coordinates at 2 for the Rosenhain invariants (4ai, 1 + 4as, 1/(4as)).
Theta null points.

We refer to a theta null point with respect to a (Z/2Z)%-theta structure as a 2-theta null
point. We consider a projective embedding provided by the system of 2-theta null constants:

(zoo : o1 : w10 : w11) = (I[00] (0, 7) = I[35] (0,7) : ¥[36] (0,7) : I[30] (0,7)).

Given a genus 2 curve C/k over a finite field k of characteristic 2 with Witt ring R = W (k),
the canonical lift of Jac(C) to R admits a canonical (Z/2Z)?-theta null structure over R in
the neighborhood of (1:0: 0 : 0), parametrised by (x1,x2,x3), where

x1 = v/aza3, x2 = +/aias, x3 = +/aiaz,

by means of the map

(x1, @2, 23) —> (1 : 221 : 229 : 2x3).
Here 2x; is well-defined as an element of 2R/4R = R/2R = k from z; in k. Conversely we
recover the curve from affine parameters (z1,z2,z3), by setting

a; = ~T2$3/$1, a2 = .T1LB3/£IZ’2, a3z = LB1$2/33’3.

This gives an initialisation of 2-theta null points, from which we derive a modular correspon-
dence for 2-theta null points.

2In the neighborhood of (1:1: 1 : 1) suggested in Lercier and Lubicz [10] one obtains an affine parametrisation
(1:1+44¢t1 : 144t : 14+ 4(—t1 — t2 + 2t3) which lacks the symmetry and smoothness properties described here for
the neighborhood of (1:0:0:0). The use of a neighborhood of the latter point was suggested by Carls [1].



Duplication formulae.

Let 2. = 9[5](0,7) and y. = V[5](0,27) be 2-theta null constants. Then the classical
duplication formulae give the relations between 2-theta null points x = (zoo : To1 : 10 : T11)
and y = (Yoo : Yo1 : Y10 : y11). Precisely the Riemann duplication formulas [4] are

2 z :
Ye = Lele+6-

5€F2

This yields the following defining relations for the modular correspondence defining 2-theta
null points with (Z/27)%-isogenies

B(x,y) = ((%03302 + T20222) o (2o + a8y + 3o + w%z)y2

00 015
2 2 , 4, 2
(xoox20 + To2T22) 2 (x50 + 252 + 220 + T22) 2
00 — Yo
2 2 s 4, 2
(zoo22 + To2x20) 2 (xdo + o2 + 20 + X22) 2\ _
B Yoo — 1 Y1) = (07070)'

In terms of our affine parametrisations x = (1 : 2z1 : 2z2 : 2z3) and y = (1: 2y1 : 2y2 : 2y3),
this gives the system of local equations:

O(x,y) = (y1 + 2yays — 27u(y), Y2 + 213 — z5u(y), ¥s + 2y1y2 — z3u(y)) = (0,0,0), (2)
where u(y) = 1+ 4(y7 + y3 + y3).

T 0 0
Dy®(x,y) = —2u(y) [ 022 0 | =0mod 2

and ) ) ,
1 —8x7y1 2ys — 8x3y1 2y2 — 8x311
Dy®(x,y) = | 2ys — 8z3y2 1 —8x3y> 2y1 — 8x3y2 | =1 mod 2.
2y — 8z2ys 2y1 — Sxdyz 1 — Szriys

Moreover one sees from equations (2) that (y1,%2,y3) = (21, 23, 2%) mod 2. The simultaneous

solution of a root ®(x,y) = (0,0,0) by Newton-Raphson iteration, satisfying y = x7, yields
an Artin-Schreier equation as described in Lercier and Lubicz [10].

Example. Let C/F2 be the curve
VA (@ 2+ Dy =+ 1)+ 2%+ 1).

By naive point counting we find the characteristic polynomial of Frobenius z*+x3 +z2+2x+4,
which generates a quartic CM field of class number 1. Over the extension Fg = Fo[w]/(w® +
w + 1), we obtain a model

v 4zl + 1)y = z(z+ 1) (0’2 + 0w’ + vz + w?),
whence (ao, a1,az2) = (w?*, w®, w®). By means of the above canonical lifting algorithm, we de-
termine the lifted invariants and compute the absolute Igusa invariants (J1, j2, j4) to sufficient
precision to recover the ideal of relations:

457 + 821801741 + 146211169851,
3272 4 13941995 + 12065509143,
204872 — 28077454 + 615519801,
64471 — 456152 — 48492854 + 267501,
77751 — 5505952 — 58451254 — 576156.

The group €(Ok) has order 1, and the resulting scheme splits into two rational points over
the totally real subfield Q(+/17) of the reflex field, representing the two CM-types on Of.



4.2 Canonical /-adic Richelot lifting algorithm

We show how the principles of this analytic parametrization can be applied to yield a canonical
lifting algorithm where a correspondence is only implicitly defined in the product of rational
spaces. The method applies to the above AGM correspondence, but uses the Richelot corre-
spondences of Rosenhain invariants, as in Gaudry et al [6], which in general can be defined
over a smaller degree extension of F, (and Zj).

Let Ct/k be the genus 2 curve y* = x(z — 1)(z — to)(x — t1)(x — t2) over a finite field k of
odd characteristic. A Richelot isogeny of the Jacobian of Cy is determined by a splitting

z(z — 1)(z — to)(z — t1)(z — t2) = Go(z)G1(z)G2(x)

where Go(z) = z(z — o), G2(x) = (z — 1)(z — t1), Ga2(z) = © — t2.
The codomain is the Jacobian of the curve Cf : y* = §Ho(z)H;(x)H2(z) where § is an
explicit constant, and over some splitting field of the H;(x) we have:

Ho(ib) =% - 2tox + tito — t1 +to = (x — U())(x — 1)0),
H1(.II) = —£E2 — 2t21} =+ totz = (ZL‘ — Ul)(l‘ — Ul),
HQ(ZE) = (to —t1 — 1)ZE2 + 2t1x — tot1 = (to —t1 — 1)(1‘ — UQ)(Q} — Ug).

For any such triple u = (uo, u1, u2), the conjugates v; are determined from t = (to, ¢1,t2). By
a choice of ordering for {uo, u1,us2,vo,v1,v2} we obtain an isomorphism

Ct=Cs:y® =a(x—1)(x — so)(x + 51)(x + s2).

This gives a space X with two finite morphisms to M2(2):

X
M2(2/ \M2(2)
t = (to, {1, 2) s = (s0, 51, 52)

such that s = (i(t,u)). Then X is determined in A® x A® x A® by the polynomial equations

<I>(t,u) = (Ho(uo),Hl(u1),H2(uQ)) = (O,O7 0)
P(t,u,s) = (Yo(t,u,s),V1(t,u, s), ¥a(t,u,s)) = (0,0,0)

where U; is the numerator of the rational function s; — v¢;(t,u). We want to solve for t in
A*(R) to high precision, with auxillary point u, such that (t,u,s) = (t, u,t"r) satisfy these
equations, given only the image of t in AB(k), Assuming we have already determined t in
A®(R/p*™R) such that its image in A*(R/p™R) is the canonical lift, we set

t' =t +p"A¢, and s’ =s+p"As =t7 +p"AY

where t’ is the canonical lift to A*(R/p*™R). We find u in A*(R/p*™R) by Hensel lifting
such that ®(t,u) = (0,0, 0), and suppose that

u =u+p"Ay
satisfies ®(t',u’) = (0,0,0). This gives the vector-matrix equation
(0,0,0) = ®(t,u) + p" A D@ (t,u) + p" AuDud(t, u)
=" (AcDe®(t,0) + AuDu(t, u)).
Hence we have Ay = —A¢ D@ (t, u) Dy D(t, u)fl. Similarly, we solve for At such that
(0,0,0) = U(t,u,8) + p" AeDeW(t, 0, t7 ) + p" AuDuW(t, u, t7 ) + p™ A7 DU (t,u, t7 ).
Dividing by p™ and eliminating Ay, we obtain a vector-matrix equation

AL A+ A¢B +c = (0,0,0) (3)



Unlike in the case of Frobenius lifts, the vector-matrix equations so obtained in general do not
satisfy B = 0 mod p, thus is not in the form of an Artin—Schreier equation. This means that
there generally exist multiple solutions modulo p to equation (3), and one must test whether
each extends to the unique solution.

Example. Let Fo7 = F3[w]/(w® — w + 1), and let C be the curve
y* = (e~ 1)(z — to)(z — ta)(z — ta),

where t = (to,t1,t2) = (w'*,w®,2). The point s = (so, 51, s2) = (w'®, w?*,2) is the image of t
by Frobenius and defines a second curve

y? = ol - 1)@ - s0)(@ - 51)(x — s2),

connected to the first by a Richelot correspondence (after renormalization). Applying the
above lifting algorithm, we obtain a high precision lift of t = (to,t1,%¢2), and compute the
absolute Igusa invariants (ji, j2,j4) in R/p™ R, and use LLL lattice reduction to recover the
algebraic relations among them. This yields the following polynomials for which (j1, j2, j4)
are zeros:

104603532035 — 258057577437153921055 +
2476246724132382920312783151 —
113152741542913622518874207616931 55 —
116142832015721679346443498802911666288% —
7078277648013508851493784913308602224514073651 —
6231730470807703596640272877955131187683246723072,

2824295364815 — 101720638067873841055+
248812304560167623924547 75 —
935699011133114796109020340735 +
21637107789746630425279273638830742 —
112721460352929137586975806252985141388j2+
22265377293416386582386758988724792363081576,

84333007705968230455 — 6992819818057777014604855 —
1402674787133819267135991845 1 +
3332227448066362419923315146997 53+
194317558062962659254203520174821482 —
32480753189175363543835184657189382877j4+
34295760875987608803808408216247577819433

5 Conclusion

Several algorithmic obstacles present themselves when applying a p-adic CM construction.
Since these algorithms take as input a curve over a small finite field, finding suitable in-
put curves such that the endomorphism ring of the Jacobian is a maximal order of small
class number is crucial to their application. For this reason, the determination of the exact
endomorphism ring O = End(J), with

Z[ﬂ—vﬁ-] coc OK?

is necessary in order to determine suitability of a chosen input curve. Recent work of Freeman
and Lauter [5] addresses this problem by analysing the Frobenius action on ¢-torsion points,
when only small primes ¢ divide the index [Ok : Z[m, 7]]. A general method for constructing
the graphs of (¢, £)-isogenies is still needed to differentiate the orders between Z[r, 7] and Og
when the index [Ox : Z[r,7]] is divisible by a large prime (applying the same algorithmic
approach as for elliptic curves [8]).

Once a suitable input curve has been found, the LLL reconstruction of algebraic relations
(over Q) for the invariants remains the limiting step of p-adic CM constructions. Combining
the knowledge of the Galois action on CM points with explicit class field constructions has
the potential to minimise this phase of the algorithm.

One of the motivations for CM constructions is the cryptographic application to producing
abelian varieties whose number of points is prime or nearly prime over a large prime field Fy,.
Currently, the performance of algorithms for determining the zeta function of genus 2 curves



over prime fields place limitations on the use of random genus 2 curves over F,, in cryptography.
Instead curve generation by CM construction is typically used, which we demonstrate in the
folowing example.

Example. Let C be the curve y* +x(z+1)y = z(z+1)(2* + 2% +w?z+w®) over the finite field
Fs = Fa[w]/(w® + w + 1). By naive point counting, we find the characteristic polynomial of
Frobenius is * 4423 4+ 152 + 322+ 64. The curve is ordinary and has complex multiplication
by the maximal order of K = Q[z]/(z* 4 262* + 449). The maximal order has class number
3, and there exist 6 isomorphism classes of principally polarized abelian varieties.

We construct the ideal of relations in Igusa invariants (j1, j2, j4) from the canonical lift of
the Jacobian of C. For example, the invariant j; satisfies a minimal polynomial:

Hy (o) = 218536724 ;6
— 11187730399273689774009740470140169672902905436515808105468750000 °
+ 501512527690591679504420832767471421512684501403834547644662988263671875000 =4
— 10112409242787391786676284633730575047614543135572025667468221432704263857808262923 =3
+ 118287000250588667564540744739406154398135978447792771928535541240797386992091828213521875 2
—213505101114131531701116319169938793494948953569198870004032131926868578084899317 =
+3605152354095179364113%

Choosing the 120-bit prime
p = 954090659715830612807582649452910809,

and solving a norm equation in the endomorphism ring Ok, we determine that the Jacobian
of some curve over F,, with CM by Ok will have prime order

910288986956988885753118558284481029311411128276048027584310525408884449.
Solving for a solution to the system of equations over ), we find a corresponding curve

C : y* = 28 + 827864728926129278937584622188769650 x*
+102877610579816483342116736180407060 >
+335099510136640078379392471445640199 2>
+ 351831044709132324687022261714141411 =
4 274535330436225557527308493450553085.

A test of a random point on the Jacobian verifies the group order.

Cryptographic CM database. A comprehensive database for CM invariants in genera
1 and 2 is being developed to provide a relational interface to CM fields K, their Hilbert
class fields, and moduli of CM abelian varieties [9]. This database includes the output of
CM constructions using the p-adic algorithms of Gaudry et al. [6], Carls et al. [2], the ¢-adic
variants described in this work, and complex analytic algorithms of Houtmann [7].
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