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Explicit point counting and cryptography

The original motivation for this talk is to understand the properties
of RM curves with a view towards cryptography. For example, in
the family considered by Tautz, Top, and Verberkmoes:

C : y2 = x5 − 5x3 + 5x+ t,

over A1 = Spec(Q[t]), the fibers have Jacobians with real
multiplication by Z[φ] = Z[(1 +

√
5)/2]. Moreover, the real

endomorphism φ is explicitly computable (K. & Smith), and with
Gaudry and Smith we developed:

Theorem (Gaudry,K. & Smith)

There exists an algorithm for the point counting problem in a
family of genus 2 curves with efficiently computable RM of class
number 1, whose complexity is in Õ((log q)5).



Explicit point counting example

Let q = 2512 + 1273 (prime), and consider the curve over Fq from
the family C, specialized at (random)

t = 290856663337872724379982611299198017497
745330036809577622325698680737527027201
447147791988284560426970082027081672153
2434975921085316560590832659122351278.

Let π be the Frobenius endomorphism, and set π + π̄ = m+ nφ,
so a1 = 2m+ n and a2 = (a2

1 − n25)/4 = m2 +mn− n2, where

χ(t) = x4 − a1x
3 − (a2 + 2q)x2 − a1qx+ q2.

The values of m and n for this curve are

m = −337854124520269537701791313386794895966
56475470770107628408426925155470967294,

n = −377860207781982563173685700281838428004
73749792142072230993549001035093288492.



Cryptographic notions of generality

We can compute zeta functions as efficiently as for elliptic curves
(and even better — unconditionally), but can we in good faith
recommend the use of such curves for cryptographic applications?

Q1: In what way is an RM family special?

Q2: How special is the (one dimensional) family of Tautz, Top,
and Verberkmoes inside of the (two dimensional) moduli space of
genus 2 curves with RM by Z[(1 +

√
5)/2]?

Motivation: Serre’s talk at AGCT in Luminy, 2011, explaining and
motivating work of Kedlaya and Sutherland for higher dimensional
Sato–Tate conjectures (particularly g = 2).

First we recall some standard families of interest.



Examples of families of curves

We consider C → S a family of curves, such that each fiber over a
closed point x of S is a curve C/k = Fq.
Examples. Elliptic curves.

1. E : y2 = x3 + ax+ b over S, where

S = Spec(Z[a, b,
1

6ab
]) ⊂ A2/Z[

1
6

],

a family of dimension 3.

2. E : y2 + xy = x3 + ax2 + b over S, where

S = Spec(F2[a, b,
1
b

]) ⊂ A2/F2,

a family of dimension 2.

3. E : y2 = x3 + x2 − 3x+ 1 over S = Spec(Z[1
2 ]), a CM family

with endomorphism ring Z[
√
−2], of dimension 1.



Examples of families of genus 2

Examples. Genus 2 curves.

4. C : y2 = x5 + a3x
3 + a2x

2 + a1x+ a0, over

S = Spec(Z[a0, . . . , a3][
1
∆

]) ⊂ A4/Z[
1
10

],

a 5-dimensional family.

5. C : y2 = x5 + 5x3 + 5x+ t, the RM family of Tautz, Top, and
Verberkmoes, over

S = Spec(Z[t,
1

10(t2 + 4)
]) ⊂ A1/Z[

1
10

],

a 2-dimensional family with real multiplication by Z[(1 +
√

5)/2].

6. C : y2 = x5 + 1, a CM family over S = Spec(Z[
1
10

]).



Notions of generality in cryptography

We address the question: ”What is special about special curves?”
Here we distinguish certain geometric and arithmetic properties.

Geometric speciality. If C → S is a family (of genus g curves),
what is the induced image S → X in the moduli space (in Mg)?

Arithmetic speciality. Here we distiguish the (local) level
structure and the (global or geometric) Galois distributions.

a. What level structure is fixed by the family? — Is there an
exceptional N such that the Galois representation

ρ̄N : Gal(Q̄/Q)→ GL2g(Z/NZ)

is smaller than expected?
b. What is the image of the Galois action on the Tate module?

ρ` : Gal(Q̄/Q)→ Aut(T`(J)) ∼= GL2g(Z`).



Frobenius angles and normalized traces

Let E/Q be an elliptic curve, with discriminant ∆, viewed as a
scheme over S = Spec(Z[ 1

∆ ]). The Sato–Tate conjecture concerns
the distribution of the Frobenius angles at primes p.

For each p, let π = πp be the Frobenius endomorphism on Ē/Fp
and

χ(T ) = T 2 − apT + p

its characteristic polynomial of Frobenius. Set tp equal to the
normalized Frobenius trace

tp = ap/
√
p,

and denote by θp in [0, π] the Frobenius angle, defined by
tp = 2 cos(θp). We set µp = eiθp (the unit Frobenius), and

χ̃(T ) = T 2 − tpT + 1 = (T − µp)(T − µ̄p).



Sato–Tate Conjecture

Sato–Tate Conjecture. Suppose that E/Q is a non-CM elliptic
curve. For [α, β] ⊂ [0, π],

lim
N→∞

|{p ≤ N | α ≤ θp ≤ β}|
|{p ≤ N}|

=
∫ β

α

2 sin2(θ)
π

dθ,

or equivalently for [a, b] ⊂ [−2, 2],

lim
N→∞

|{p ≤ N | a ≤ tp ≤ b}|
|{p ≤ N}|

=
∫ b

a

√
4− t2
2π

dt.

The analogous distributions for CM elliptic curves is classical:

lim
N→∞

|{p ≤ N | α ≤ θp ≤ β}|
|{p ≤ N}|

=
1
π

∫ β

α
dθ =

β − α
π
·



Sato–Tate distributions

We call the distributions µ(θ) on [0, π] and µ(t) and [−2, 2],
defined by

µ(θ) =
2 sin2(θ)

π
dθ and µ(t) =

√
4− t2
2π

dt,

the Sato–Tate distributions for non-CM E/S.

For a CM curve E/S, the analogous Sato–Tate distributions are
classical:

µ(θ) =
1
2

(
dθ

π
+ δπ/2

)
and µ(t) =

1
2

(
dt

π
√

4− t2
+ δ0

)
,

where δx is the Dirac distribution. Restricting to the 50% of
ordinary primes, we have distributions

µ0(θ) =
dθ

π
and µ0(t) =

dt

π
√

4− t2
·



Sato–Tate plots

Generic curve CM curve
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Galois representation groups

Where do these come from?

The CM case is easy: the ordinary Frobenius endomorphisms πp lie
in a CM field K and their unit normalizations µp in K ⊗ R ∼= R2

are uniformly distributed around the unit circle

SO(2) =
{(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)}
∼= S1.

The supersingular Frobenius endomorphisms lie in a coset of the
normalizer in USp(2) = SU(2):

SO(2)
(
i 0
0 −i

)
=
{(

i cos(θ) i sin(θ)
i sin(θ) −i cos(θ)

)}
·

The ordinary distribution dθ/π arises from the uniform distribution
on the unit circle (hence of θ ∈ [0, π]); the supersingular coset has
uniform trace zero.



Galois representation groups

The generic normalized Frobenius representations lie in

USp(2) = SU(2) =
{(

α β
−β̄ ᾱ

) ∣∣∣ |α|2 + |β|2 = 1
}
·

This group is isomorphic to the unit quaternions:

(H∗)1 = {a+ bi+ (c+ di)j | a2 + b2 + c2 + d2 = 1} ∼= S3

on identifying α = a+ bi and β = c+ di. The Sato–Tate
distribution arises from the Haar measure on SU(2). Setting

α = a+ bi = cos(ρ)(cos(σ) + i sin(σ)),
β = c+ di = sin(ρ)(cos(τ) + i sin(τ)),

the conjugacy class (on which trace is a class function) is(
α β
−β̄ ᾱ

)
∼
(
eiθ 0
0 e−iθ

)
with trace 2 cos(θ) = 2 cos(ρ) cos(σ).



Alternative Sato–Tate domains

Noting that D = a2
p − 4p is the discriminant of the ring Z[π], in

the case that E/Q has CM by an order O, we have D = n2DO for
some integer n.

In order to study the distribution of Frobenius discriminants, this
motivates setting

u2 =
D

p
= t2 − 4

(
=
n2DO
p

)
and considering the Frobenius distribution in terms of u.

In the non-CM case, the coordinate u =
√
D/p measures the

distribution of normalized square root discriminants (of Z[π]).

In the CM case,
√
DO remains fixed, and u gives information

about the normalized conductors n/
√
p = [O : Z[π]]/

√
p at

ordinary primes.



Sato–Tate plots
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Generalized Sato–Tate framework

Conjecturally, there exists a compact subgroup H of USp(2g),
with connected component H0,

H0 / H ⊆ USp(2g),

such that the unit Frobenius elements are equidistributed in H.

Remark. The partition into the cosets in G = H/H0 is explained
by the Chebotarev density theorem. In general one has a
decomposition

µ =
|C0|
|G|

µ0 +
|C1|
|G|

µ1 + · · · |Cr|
|G|

µr,

where C0, C1, . . . Cr are the conjugacy classes of G.

Here we focus on the distribution µ = µ0 in the principle coset H0

(a vast simplification), and the case g = 2 (see work of Kedlaya &
Sutherland). We also simplify (experimentally and theoretically) by
averaging over fibres over a base scheme.



Sato–Tate domains

Let C/Fq be a curve and χ(T ) its Frobenius characteristic
polynomial

χ(T ) = T 2g − a1T
2g−1 + · · · − a1q

g−1T + qg.

and define the unit Frobenius characteristic polynomial by

χ̃(T ) =
χ(
√
qT )
qg

= T 2g − s1T
2g−1 + · · · − s1T + 1

=
g∏
j=1

(T 2 − tjT + 1).

By the Weil conjectures, the roots αj of χ(T ) satisfy |αj | =
√
q,

so we write
µj =

αj√
q

= eiθj ,

and tj = µj + µ̄j = 2 cos(θj), where µjµ̄j = 1.



Domains for Sato–Tate distributions

Rather than defining sj to be the j-th coefficient of χ̃(T ), we let
the sj be the normalized symmetric products not including any
terms (as factors of summands) of the form µjµ̄j(= 1). These are
the coefficients of the real Weil polynomial. Thus for g = 2

χ̃(T ) = T 4 − s1T
3 + (s2 + 2)T 2 − s1T + 1,

and for g = 3:

χ̃(T ) = T 6 − s1T
5 + (s2 + 3)T 4 − (s3 + 2s1)T 3 + · · ·

A näıve application of the Weil bounds gives bounds on the
symmetric sums and sj , equal to their respective number of
monomials:

|sj | ≤ 2j
(
g

j

)
vs. |symj({µ1, µ̄1, . . . , µg, µ̄g})| ≤

(
2g
j

)
·



Domains for Sato–Tate distributions

In higher dimension, the real subring Z[π + π̄] is a nontrivial
subring of Z[π, π̄], and hence

disc(Z[π, π̄]) = D2
+D−,

where D+ = disc(Z[π + π̄]), and for g = 2 we have

D+ = a2
1 − 4a2 and D− = −((a2 − 4q)2 − 4q(a2

1 − 4a2)).

where D− is the norm of the relative discriminant Z[π, π̄]/Z[π, π̄].

For a family with fixed RM order R, we have Z[π + π̄] ⊂ R of
finite index (on any fiber of simple ordinary reduction), hence

D+ = n2
+DR,

and additionally for a subfamily with CM by O/R we have

D− = n2
−D1,

where D1 is the norm of the relative discriminant of O/R.



Domains for Sato–Tate distributions

Generic: H0 = H = USp(4)

µ0 =
8(cos(θ1)− cos(θ2))2 sin2(θ1) sin2(θ2)

π2
dθ1dθ2

RM: H0 = SU(2)× SU(2)

µ0 =
4 sin2(θ1) sin2(θ2)

π2
dθ1dθ2

CM: H0 = SO(2)× SO(2)

µ0 =
dθ1dθ2

π2

These induced well-defined distributions in terms of the spaces

(s1, s2),

(s1, D+ = s2
1 − 4s2),

(s1,
√
s2

1 − 4s2) graphical representations follow . . .



Experimental Sato–Tate: generic family

Generic:



Experimental Sato–Tate: RM family

RM:



Experimental Sato–Tate: CM family

CM:



Conjectural Sato–Tate distributions

What are these distributions?

Note: the real and relative unit discriminants are:

D+ = s2
1 − 4s2 and D− = (4− s1 + s2)(4 + s1 + s2).

Generic: (up to constant scalars)√
(s2

1 − 4s2)(4− s1 + s2)(4 + s1 + s2) ds1ds2

RM: √
(4− s1 + s2)(4 + s1 + s2) ds1ds2√

(s2
1 − 4s2)

CM:
ds1ds2√

(s2
1 − 4s2)(4− s1 + s2)(4 + s1 + s2)


