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EXPLICIT POINT COUNTING AND CRYPTOGRAPHY

The original motivation for this talk is to understand the properties
of RM curves with a view towards cryptography. For example, in
the family considered by Tautz, Top, and Verberkmoes:

C:y?=a°—523 + 5z +1,

over A' = Spec(QJ[t]), the fibers have Jacobians with real
multiplication by Z[¢] = Z[(1 + v/5)/2]. Moreover, the real
endomorphism ¢ is explicitly computable (K. & Smith), and with
Gaudry and Smith we developed:

THEOREM (GAUDRY,K. & SMITH)

There exists an algorithm for the point counting problem in a
family of genus 2 curves with efficiently computable RM of class
number 1, whose complexity is in O((log q)°).




EXPLICIT POINT COUNTING EXAMPLE

Let ¢ = 252 41273 (prime), and consider the curve over F, from
the family C, specialized at (random)

t = 290856663337872724379982611299198017497
745330036809577622325698680737527027201
447147791988284560426970082027081672153
2434975921085316560590832659122351278.

Let 7 be the Frobenius endomorphism, and set m + ™ = m + no,
so a; = 2m +n and az = (a} — n?5)/4 = m? + mn — n?, where

x(t) = 2t —apx® — (ag + 2q)ac2 —aiqz + ¢%.

The values of m and n for this curve are

m = —337854124520269537701791313386794895966
56475470770107628408426925155470967294,
n = —377860207781982563173685700281838428004
73749792142072230993549001035093288492.



CRYPTOGRAPHIC NOTIONS OF GENERALITY

We can compute zeta functions as efficiently as for elliptic curves
(and even better — unconditionally), but can we in good faith
recommend the use of such curves for cryptographic applications?

Q1: In what way is an RM family special?

Q2: How special is the (one dimensional) family of Tautz, Top,
and Verberkmoes inside of the (two dimensional) moduli space of
genus 2 curves with RM by Z[(1 ++/5)/2]?

Motivation: Serre's talk at AGCT in Luminy, 2011, explaining and
motivating work of Kedlaya and Sutherland for higher dimensional
Sato—Tate conjectures (particularly g = 2).

First we recall some standard families of interest.



EXAMPLES OF FAMILIES OF CURVES

We consider C — .S a family of curves, such that each fiber over a
closed point x of S is a curve C'/k =F,,.

Examples. Elliptic curves.

1. £:9% =234 ax + b over S, where

1 9 il
S = SpeC(Z[a, ba @]) CA /Z[EL
a family of dimension 3.

2. £:y% +ay = 2% + ax® + b over S, where
1
S = Spec(Fs[a, b, 7]) C A? /Ty,

a family of dimension 2.

3. £:y?* =23+ 2% — 32+ 1 over S = Spec(Z[1]), a CM family
with endomorphism ring Z[v/—2]|, of dimension 1.



EXAMPLES OF FAMILIES OF GENUS 2

Examples. Genus 2 curves.

4. C:y? =25 + azx® + asx® + a1x + ag, over
1 1
S = Spec(Z][ayp, . . . ,ag][Z]) AA‘/Z[I—O],
a 5-dimensional family.
5. C:y? =254 523 + 5z + t, the RM family of Tautz, Top, and
Verberkmoes, over
1

t, ——mM8M —
"10(t2 + 4)
a 2-dimensional family with real multiplication by Z[(1 4 v/5)/2].

5 = Spec(z| ) < Al/zl),

6. C:y?>=25+1, a CM family over S = Spec(Z[%D.



NOTIONS OF GENERALITY IN CRYPTOGRAPHY
We address the question: "What is special about special curves?”
Here we distinguish certain geometric and arithmetic properties.

Geometric speciality. If C — S is a family (of genus g curves),
what is the induced image S — X in the moduli space (in M,)?

Arithmetic speciality. Here we distiguish the (local) level
structure and the (global or geometric) Galois distributions.

a. What level structure is fixed by the family? — Is there an
exceptional NV such that the Galois representation

px : Gal(Q/Q) — GLay(Z/NZ)

is smaller than expected?
b. What is the image of the Galois action on the Tate module?

pe: Gal(Q/Q) — Aut(Ty(J)) = GLay(Zy).



FROBENIUS ANGLES AND NORMALIZED TRACES

Let £/Q be an elliptic curve, with discriminant A, viewed as a
scheme over § = Spec(Z[%]). The Sato—Tate conjecture concerns
the distribution of the Frobenius angles at primes p.
For each p, let m = m, be the Frobenius endomorphism on E/F,
and

X(T)=T? —apT +p

its characteristic polynomial of Frobenius. Set t, equal to the
normalized Frobenius trace

tp = ap/\/p

and denote by 6, in [0, 7] the Frobenius angle, defined by
t, = 2cos(6,). We set j, = €% (the unit Frobenius), and

X(T) = T2 - tpT 4+ 1= (T — pp)(T" — fip)-



SATO—TATE CONJECTURE

Sato—Tate Conjecture. Suppose that £/Q is a non-CM elliptic
curve. For [o, 5] C [0, 7],

< <0, < B 2 gin2
lim {p_N\a_Gp_ﬁ}lz/ 2sin (9)d9’

N—oo {p < N} T

or equivalently for [a,b] C [—2,2],

lim
N—o0 H{p < N}

|{p§N!a§tp§b}r:/W4—t2dt
. 2w ’

The analogous distributions for CM elliptic curves is classical:

{(p<N|a<6,<B}| _ 1/5d9:ﬂ—a.

I S
Ngnoo {p < N} T T



SATO—TATE DISTRIBUTIONS

We call the distributions 1(6) on [0, 7] and pu(t) and [—2,2],
defined by

-2 — 2
T 2m

dt,

the Sato—Tate distributions for non-CM E/S.

For a CM curve E/S, the analogous Sato—Tate distributions are
classical:

1 /do 1 dt
() = B (W + 5w/2> and p(t) = 5 <m + 50)'

where 0, is the Dirac distribution. Restricting to the 50% of
ordinary primes, we have distributions
db dt
/‘LO( ) T an :U’O() ﬂ_m
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(FALOIS REPRESENTATION GROUPS

Where do these come from?

The CM case is easy: the ordinary Frobenius endomorphisms , lie
in a CM field K and their unit normalizations 1, in K ® R = R?
are uniformly distributed around the unit circle

B cos(f) sin(0) ~ ol
S0(2) = {<— sin(f) cos(0) =5
The supersingular Frobenius endomorphisms lie in a coset of the
normalizer in USp(2) = SU(2):

i 0\ icos(f) isin(0)
S0(2) <0 —i) - {( isin() —icos(0)
The ordinary distribution df /7 arises from the uniform distribution

on the unit circle (hence of 6 € [0, 7]); the supersingular coset has
uniform trace zero.



(FALOIS REPRESENTATION GROUPS

The generic normalized Frobenius representations lie in

USp@) =su@) =4 ( ¢ 7 ‘ a4+ 8P =1}
-3 &
This group is isomorphic to the unit quaternions:
(H*)l :{a+b2+(0+d2)] |a2+b2+02+d2 _ 1} %Sg

on identifying o = a + bi and § = ¢+ di. The Sato—Tate
distribution arises from the Haar measure on SU(2). Setting

a = a+ bi = cos(p)(cos(o) + isin(0)),
B = ¢+ di = sin(p)(cos(r) + isin(7)),

the conjugacy class (on which trace is a class function) is

a [ e? 0
ERNEEN

with trace 2 cos(f) = 2 cos(p) cos(o).



ALTERNATIVE SATO—TATE DOMAINS

Noting that D = azzj — 4p is the discriminant of the ring Z[rx], in
the case that £/Q has CM by an order O, we have D = n?Dg for
some integer n.

In order to study the distribution of Frobenius discriminants, this
motivates setting

2
u2:D:t2_4<:nDO>
p p

and considering the Frobenius distribution in terms of w.

In the non-CM case, the coordinate u = /D /p measures the
distribution of normalized square root discriminants (of Z[r]).

In the CM case, v/ Do remains fixed, and u gives information
about the normalized conductors n/\/p = [O : Z[x]]/\/p at
ordinary primes.



Generic curve

CM curve




(GENERALIZED SATO—TATE FRAMEWORK

Conjecturally, there exists a compact subgroup H of USp(2g),
with connected component Hy,

Ho< H C USp(2g),
such that the unit Frobenius elements are equidistributed in H.

Remark. The partition into the cosets in G = H/Hj is explained
by the Chebotarev density theorem. In general one has a

decomposition
_ 1G] |C1] G |

e et e

where Cy, C1, ... C, are the conjugacy classes of G.

Here we focus on the distribution © = pg in the principle coset Hy
(a vast simplification), and the case g = 2 (see work of Kedlaya &
Sutherland). We also simplify (experimentally and theoretically) by
averaging over fibres over a base scheme.



SATO—TATE DOMAINS

Let C'/F, be a curve and x(T') its Frobenius characteristic
polynomial

X(T) =T —ayT?97 + - — a7 1T + ¢,

and define the unit Frobenius characteristic polynomial by

T
X(T)—X(\(]{?)—TQQ—&TZQ1+-~~—31T+1

g
[T -7 +0).
j=1

By the Weil conjectures, the roots a; of x(T') satisfy |oy;| = Vv

SO we write
oy

,J/ =
TVa

and ty=pj+ [y = 2(305(9]'), where Wifhy = 1.

_ i
=e",



DOMAINS FOR SATO—TATE DISTRIBUTIONS

Rather than defining s; to be the j-th coefficient of X(T'), we let
the s; be the normalized symmetric products not including any
terms (as factors of summands) of the form p;fi;j(= 1). These are
the coefficients of the real Weil polynomial. Thus for g = 2

X(T)=T* — ;T3 + (s2 +2)T? — 5.7 + 1,
and for g = 3:
X(T) = TO — 5175 + (s9 + 3)T* — (53 + 251)T° + - --

A naive application of the Weil bounds gives bounds on the
symmetric sums and s;, equal to their respective number of
monomials:

i[9 _ _ 29
‘Sj‘ < 2/ <]> VS. ‘Symj({ula,ulv'"7”97”5}})‘ < <]>



DOMAINS FOR SATO—TATE DISTRIBUTIONS
In higher dimension, the real subring Z[r + 7] is a nontrivial
subring of Z[r, 7], and hence
disc(Z[r,7]) = D3 D_,
where D = disc(Z[r + 7]), and for g = 2 we have
D, =a? —4ag and D_ = —((az — 4q)? — 4q(a? — 4ay)).
where D_ is the norm of the relative discriminant Z[r, 7| /Z[r, 7].

For a family with fixed RM order R, we have Z[r + 7] C R of
finite index (on any fiber of simple ordinary reduction), hence

D, =n? Dg,
and additionally for a subfamily with CM by O/R we have
D_ =n?Dy,

where Dy is the norm of the relative discriminant of O/R.



DOMAINS FOR SATO—TATE DISTRIBUTIONS

Generic: Hy = H = USp(4)
~ 8(cos(61) — cos(f2))? sin?(61) sin? ()

3 df1db
T
RM: Hy =SU(2) x SU(2)
2 <2
o = 4 sin (9;)25111 (02)d91d92
CM: Hp =8S0(2) x SO(2)
df1dbs
o=~
T

These induced well-defined distributions in terms of the spaces
o (s1,82),
("] (81,D+ = 8% — 482),
o (s1,/s9 —4s2) graphical representations follow . ..



EXPERIMENTAL SATO—TATE: GENERIC FAMILY

Generic:




EXPERIMENTAL SATO-TATE: RM FAMILY

RM:




EXPERIMENTAL SATO-TATE: CM FAMILY

CM:




CONJECTURAL SATO—TATE DISTRIBUTIONS

What are these distributions?

Note: the real and relative unit discriminants are:
D, = s% —4s9 and D_ = (4 — s1 + s2)(4 + s1 + s2).

Generic: (up to constant scalars)

\/(S% - 452)(4 — 81+ 52)(4 + 51+ 82) ds1dss

RM:
\/(4 — 51+ 52)(4 + 51+ s2) ds1dss
(s7 — 4s2)
CM:
dSldSQ

V(57 —4s2)(4 — 51+ 52) (4 + 51 + 52)



