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Terminology

Definition. A quaternion algebra H over a field K is a central

simple K-algebra of dimension 4. An Eichler order O of H is a

ZK-order of H which is the intersection of two maximal ZK-orders.

Example. H = M2(Q) is a quaternion algebra over Q and

O = Mr(Z) is a maximal order of H.

Definition. Let H be a quaternion algebra over K. A place v of

K is said to split (respectively ramify) in H if the quaternion alge-

bra H⊗K Kv is isomorphic to M2(Kv) (respectively to a division

algebra over Kv).



Shimura Curve Definition

Let O be an order in an indefinite quaternion algebra H over Q,

and fix an isomorphism H ⊗Q R ∼= M2(R). Under this isomor-

phism, the group

U 1(O) = {x ∈ O∗ | N(x) = 1} ⊂ SL2(R)

acts discretely on the upper half plane H. If H is a division algebra,

then the quotient U 1(O)\H is a compact Riemann surface.

If the discriminant of H is D and O is an Eichler order of index

m in a maximal order, then the resulting algebraic curve is the

Shimura curve XD
0 (m).

N.B. The curve XD
0 (m) is a moduli space for abelian surfaces

A/C with an embedding O → End(A), where O is an Eichler

order of index m in a maximal order in the indefinite Q-quaternion

algebra of discriminant D.



Example. Consider the indefinite quaternion algebra over Q

defined by

H =
Q〈i, j〉

(i2 − 2, j2 + 13, ij + ji)
.

We can embed H in the matrix algebra M2(R) by means of the

homomorphism:

i 7−→
( √

2 0

0 −
√

2

)
j 7−→

(
0 −1

13 0

)
The algebra H is ramified at 2 and 13. If we set t = (1+ i+j)/2

and u = (1 + j + k)/2, then {1, i, t, u} is a basis for a maximal

order O of H. We can easily write down units of O,

1 + i, 5 + k = 5 + i− 2t + 2u, 1 + u, 8 + 3(t− u),

each of which is a fundamental unit of the corresponding real

quadratic subring of O which it generates.

Question. How do we compute a fundamental domain, or gen-

erators and relations for U 1(O)? N.B. The approach to Shimura

curve invariants taken here bypasses the action on H.



Quaternion Method of Graphs

Let R be an Eichler order in a definite quaternion algebra H

ramified at Dp and of index m in a maximal order of H. Let

I1, . . . , Ih be representatives for the left ideal classes of R, and

define
X (Dp,m) = 〈 [Ii]− [Ii+1] | 1 ≤ i < h 〉

⊂ M(Dp,m) =
⊕

i Z[Ii].

For a prime ` we define Ij to be `-isogenous to Ii if there exists a

homomorphism ϕ : Ii → Ij such that Ij/ϕ(Ii) ∼= Z/`Z× Z/`Z.

We define a collection of commuting Hecke operators T` as the

linear operator defined on ideals classes by

T`([I ]) =
∑
ϕ:I→J

[J ],

where the sum is over `-isogenies of I , up to isomorphism of J ,

and define an inner product by 〈[I ], [J ]〉 = |Isom(I, J)|/2.

N.B. This construction generalizes the method of graphs of Mestre

and Oesterlé, defined in terms of supersingular elliptic curves.



Character Groups of JD0 (m)

Let A be an abelian variety A over Q with semistable reduction

at a prime p. Let T /Fp be the toric part of the reduction of a

Néron model for A, and set

X (A, p) = HomFp
(T ,Gm).

There exists a canonical nondegenerate monodromy pairing

〈 , 〉 : X (A, p)×X (A∨, p) −→ Z,

where A∨ is the dual of A. If A is principally polarized (A ∼= A∨),

and in particular if A is a Jacobian, then we obtain a positive

definite inner product on X (A, p).



Theorem 1 With the notation as above, there exists a canon-

ical isomorphism X (Dp,m) ∼= X (JD0 (mp), p), which is com-

patible with the action of Hecke operators and the monodromy

pairing.

Corollary 2 We can effectively compute X (JD0 (m), p) for p|m.

Theorem 3 Let D be a product of an even number of primes,

and let p and q be distinct primes coprime to D. Then there

exists a canonical exact sequence

0 −→ X (A′, p)
ι−→ X (A, q) −→ X (A′′, q)×X (A′′, q) −→ 0

where A′ = JDpq0 (m), A = JD0 (mpq), and A′′ = JD0 (mq).

The sequence is compatible with the Hecke operators T` for

all primes ` relatively prime to Dpqm, and the map ι defines

an isometry with its image, with respect to the monodromy

pairings on X (A′, p) and X (A, q).

Corollary 4 We can effectively compute X (JD0 (m), p) for p|D.



Notation. For an abelian variety A/Q we denote the component

group of a Néron model at p by Φ(A, p).

Theorem 5 Let A/Q be an abelian variety with semistable

reduction at p with a principle polarization ξ : A→ A∨. There

exists a natural exact sequence

0 −→ X (A, p) −→ Hom(X (A, p),Z) −→ Φ(A, p) −→ 0,

taking x ∈ X (A, p) to 〈−, ξ(x)〉.

Corollary 6 We can effectively compute Φ(JD0 (m), p).



Examples and Computations

1. L-functions of simple factors JD0 (m)→ A.

2. Homomorphisms X (JD0 (m), p)→ S2(Γ0(Dm)).

3. Comparison of isogeny factors of JD0 (m) and J1
0 (Dm).

4. Component groups Φ(A, p) and modular degrees mA

of optimal quotients.

Example. We have canonically that X (13, 2) ∼= X (J0(26), 13),

and that X (J26
0 (1), 2) is the kernel of the homomorphism

X (J0(26), 13)→ X (J0(13), 13)×X (J0(13), 13) = 0.

Therefore also X (13, 2) ∼= X (J26
0 (1), 2).



> M := BrandtModule(2,13);

> M;

Brandt module of level (2,13), dimension 3, and degree 3 over Integer..

> [ qExpansionBasis(N,20) : N in Decomposition(M,13) ];

[

[

7 + 12*q + 12*q^2 + 48*q^3 + 12*q^4 + 72*q^5 + 48*q^6 + 96*q^7

+ 12*q^8 + 156*q^9 + 72*q^10 + 144*q^11 + 48*q^12 + 324*q^13

+ 96*q^14 + 288*q^15 + 12*q^16 + 216*q^17 + 156*q^18 + 240*q^19

+ 72*q^20 + O(q^21)

],

[

q - q^2 + q^3 + q^4 - 3*q^5 - q^6 - q^7 - q^8 - 2*q^9 + 3*q^10

+ 6*q^11 + q^12 + q^13 + q^14 - 3*q^15 + q^16 - 3*q^17 + 2*q^18

+ 2*q^19 - 3*q^20 + O(q^21)

],

[

q + q^2 - 3*q^3 + q^4 - q^5 - 3*q^6 + q^7 + q^8 + 6*q^9 - q^10

- 2*q^11 - 3*q^12 - q^13 + q^14 + 3*q^15 + q^16 - 3*q^17 + 6*q^18

+ 6*q^19 - q^20 + O(q^21)

]

]



Component groups...

Notation. Let p be a fixed prime. We denote by X = XJ the

character group of a Jacobian J/Q at p, and associated to any

A/Q we define ΦA to be the component group at p. Suppose that

L be a primitive, Hecke irreducible sublattice of X and hereafter

let A be the associated optimal quotient of J .

Define ΦL = Hom(L,Z)/L and let α be the map of the com-

muting diagram:

0 //XJ //

α
&&LLLLLLLLLLL Hom(X ,Z)

����

// ΦJ

����

// 0

0 //L //
� ?

OO

Hom(L,Z) // ΦL // 0

from which we define

ΨX ,L = α(X )/α(L)

ΦX ,L = Hom(L,Z)/α(X ) = coker(α).

Therefore we have an exact sequence of abelian groups

0→ ΨX ,L → ΦL → ΦX ,L → 0

each of whose terms we can effectively compute.



...and modular degrees

For any optimal quotient π : J → A, we define the modular

degree mA =
√

deg(φA), where φA is defined by the following

commutative diagram

A∨
π∗ //

φA !!DD
DD

DD
DD

J
π

��

A.

and define the congruence modulus mX ,L = |ΨX ,L|.

Theorem 7 (Stein) The component group ΦA at p and the

modular degree mA are related to the above quantities by

ΦX ,L ⊆ ΦA, mX ,L | mA,

and

|ΦA| =
mA

mX ,L
|ΦX ,L|.



Experimental Results

JD
0 (m) A g p |ΦX ,L| mX ,L

J26
0 (1) J 2 2 21 1

A1 1 ” 1 2
A2 1 ” 3 2

J26
0 (1) J 2 13 21 1

A1 1 ” 7 2
A2 1 ” 3 2

J26
0 (31) J 29 31 30 1

1 ” 1 16
1 ” 1 16
1 ” 1 8
1 ” 3 56
1 ” 5 104
1 ” 1 8
2 ” 1 64
2 ” 1 64
3 ” 1 5824
5 ” 1 4096
5 ” 1 4096
6 ” 2 4096



Further Directions and Vistas

1. Higher weight Brandt modules Mk(Dp,m) ⊃ Xk(Dp,m).

2. Models for Shimura curves?

Does there exist a natural ring structure⊕∞
r=0X2r(Dp,m)→

⊕∞
r=0 S2r(Γ(Dpm)),

giving XD
0 (m) by projective embedding?

Analytic coverings

U 1(O)\H ∼= XD
0 (m),

or analysis of ramification (see Elkies in ANTS III).


