On Shimura Curve Invariants

David R. Kohel Mathematical Sciences Research Institute and University of Sydney Computational Algebra Group

Shimura Curve Invariants

- 1. Shimura Curve Definition.
- 2. Quaternion Method of Graphs.
- 3. Character Groups of $J_0^D(m)$.
- 4. Examples and Computations.
- 5. Further Directions and Vistas.

Terminology

Definition. A quaternion algebra \mathbf{H} over a field K is a central simple K-algebra of dimension 4. An *Eichler order* \mathcal{O} of \mathbf{H} is a \mathbf{Z}_{K} -order of \mathbf{H} which is the intersection of two maximal \mathbf{Z}_{K} -orders.

Example. $\mathbf{H} = \mathbf{M}_2(\mathbf{Q})$ is a quaternion algebra over \mathbf{Q} and $\mathcal{O} = \mathbf{M}_r(\mathbf{Z})$ is a maximal order of \mathbf{H} .

Definition. Let **H** be a quaternion algebra over K. A place v of K is said to *split* (respectively *ramify*) in **H** if the quaternion algebra $\mathbf{H} \otimes_K K_v$ is isomorphic to $\mathbf{M}_2(K_v)$ (respectively to a division algebra over K_v).

Shimura Curve Definition

Let \mathcal{O} be an order in an indefinite quaternion algebra \mathbf{H} over \mathbf{Q} , and fix an isomorphism $\mathbf{H} \otimes_{\mathbf{Q}} \mathbf{R} \cong \mathbf{M}_2(\mathbf{R})$. Under this isomorphism, the group

$$U^{1}(\mathcal{O}) = \{ x \in O^* \mid \mathcal{N}(x) = 1 \} \subset \mathrm{SL}_2(\mathbf{R})$$

acts discretely on the upper half plane \mathfrak{H} . If **H** is a division algebra, then the quotient $U^1(O) \setminus \mathfrak{H}$ is a compact Riemann surface.

If the discriminant of **H** is D and \mathcal{O} is an Eichler order of index m in a maximal order, then the resulting algebraic curve is the *Shimura curve* $X_0^D(m)$.

N.B. The curve $X_0^D(m)$ is a moduli space for abelian surfaces A/\mathbf{C} with an embedding $\mathcal{O} \to \operatorname{End}(A)$, where \mathcal{O} is an Eichler order of index m in a maximal order in the indefinite **Q**-quaternion algebra of discriminant D.

Example. Consider the indefinite quaternion algebra over \mathbf{Q} defined by

$$\mathbf{H} = \frac{\mathbf{Q}\langle i, j \rangle}{(i^2 - 2, j^2 + 13, ij + ji)}.$$

We can embed **H** in the matrix algebra $\mathbf{M}_2(\mathbf{R})$ by means of the homomorphism:

$$i \longmapsto \begin{pmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix} \quad j \longmapsto \begin{pmatrix} 0 & -1 \\ 13 & 0 \end{pmatrix}$$

The algebra **H** is ramified at 2 and 13. If we set t = (1+i+j)/2and u = (1+j+k)/2, then $\{1, i, t, u\}$ is a basis for a maximal order \mathcal{O} of **H**. We can easily write down units of \mathcal{O} ,

$$1+i, \ 5+k=5+i-2t+2u, \ 1+u, \ 8+3(t-u),$$

each of which is a fundamental unit of the corresponding real quadratic subring of \mathcal{O} which it generates.

Question. How do we compute a fundamental domain, or generators and relations for $U^1(\mathcal{O})$? N.B. The approach to Shimura curve invariants taken here bypasses the action on \mathfrak{H} .

Quaternion Method of Graphs

Let R be an Eichler order in a definite quaternion algebra **H** ramified at Dp and of index m in a maximal order of **H**. Let I_1, \ldots, I_h be representatives for the left ideal classes of R, and define

$$\mathcal{X}(Dp,m) = \langle [I_i] - [I_{i+1}] | 1 \le i < h \rangle$$

$$\subset M(Dp,m) = \bigoplus_i \mathbf{Z}[I_i].$$

For a prime ℓ we define I_j to be ℓ -isogenous to I_i if there exists a homomorphism $\varphi: I_i \to I_j$ such that $I_j/\varphi(I_i) \cong \mathbf{Z}/\ell\mathbf{Z} \times \mathbf{Z}/\ell\mathbf{Z}$.

We define a collection of commuting *Hecke operators* T_{ℓ} as the linear operator defined on ideals classes by

$$T_{\ell}([I]) = \sum_{\varphi: I \to J} [J],$$

where the sum is over ℓ -isogenies of I, up to isomorphism of J, and define an inner product by $\langle [I], [J] \rangle = |\text{Isom}(I, J)|/2$.

N.B. This construction generalizes the method of graphs of Mestre and Oesterlé, defined in terms of supersingular elliptic curves.

Character Groups of $J_0^D(m)$

Let A be an abelian variety A over \mathbf{Q} with semistable reduction at a prime p. Let \mathcal{T}/\mathbf{F}_p be the toric part of the reduction of a Néron model for A, and set

$$\mathcal{X}(A,p) = \operatorname{Hom}_{\overline{\mathbf{F}}_p}(\mathcal{T},\mathbf{G}_m).$$

There exists a canonical nondegenerate monodromy pairing

$$\langle , \rangle : \mathcal{X}(A,p) \times \mathcal{X}(A^{\vee},p) \longrightarrow \mathbf{Z},$$

where A^{\vee} is the dual of A. If A is principally polarized $(A \cong A^{\vee})$, and in particular if A is a Jacobian, then we obtain a positive definite inner product on $\mathcal{X}(A, p)$. **Theorem 1** With the notation as above, there exists a canonical isomorphism $\mathcal{X}(Dp,m) \cong \mathcal{X}(J_0^D(mp),p)$, which is compatible with the action of Hecke operators and the monodromy pairing.

Corollary 2 We can effectively compute $\mathcal{X}(J_0^D(m), p)$ for p|m.

Theorem 3 Let D be a product of an even number of primes, and let p and q be distinct primes coprime to D. Then there exists a canonical exact sequence

 $0 \longrightarrow \mathcal{X}(A', p) \stackrel{\iota}{\longrightarrow} \mathcal{X}(A, q) \longrightarrow \mathcal{X}(A'', q) \times \mathcal{X}(A'', q) \longrightarrow 0$ where $A' = J_0^{Dpq}(m)$, $A = J_0^D(mpq)$, and $A'' = J_0^D(mq)$. The sequence is compatible with the Hecke operators T_ℓ for all primes ℓ relatively prime to Dpqm, and the map ι defines an isometry with its image, with respect to the monodromy pairings on $\mathcal{X}(A', p)$ and $\mathcal{X}(A, q)$.

Corollary 4 We can effectively compute $\mathcal{X}(J_0^D(m), p)$ for p|D.

Notation. For an abelian variety A/\mathbf{Q} we denote the component group of a Néron model at p by $\Phi(A, p)$.

Theorem 5 Let A/\mathbf{Q} be an abelian variety with semistable reduction at p with a principle polarization $\xi : A \to A^{\vee}$. There exists a natural exact sequence

 $0 \longrightarrow \mathcal{X}(A, p) \longrightarrow \operatorname{Hom}(\mathcal{X}(A, p), \mathbf{Z}) \longrightarrow \Phi(A, p) \longrightarrow 0,$ taking $x \in \mathcal{X}(A, p)$ to $\langle -, \xi(x) \rangle$.

Corollary 6 We can effectively compute $\Phi(J_0^D(m), p)$.

Examples and Computations

- 1. L-functions of simple factors $J_0^D(m) \to A$.
- 2. Homomorphisms $\mathcal{X}(J_0^D(m), p) \to S_2(\Gamma_0(Dm)).$
- 3. Comparison of isogeny factors of $J_0^D(m)$ and $J_0^1(Dm)$.
- 4. Component groups $\Phi(A, p)$ and modular degrees m_A of optimal quotients.

Example. We have canonically that $\mathcal{X}(13,2) \cong \mathcal{X}(J_0(26),13)$, and that $\mathcal{X}(J_0^{26}(1),2)$ is the kernel of the homomorphism

 $\mathcal{X}(J_0(26), 13) \to \mathcal{X}(J_0(13), 13) \times \mathcal{X}(J_0(13), 13) = 0.$

Therefore also $\mathcal{X}(13,2) \cong \mathcal{X}(J_0^{26}(1),2).$

```
> M := BrandtModule(2,13);
> M;
Brandt module of level (2,13), dimension 3, and degree 3 over Integer..
> [ qExpansionBasis(N,20) : N in Decomposition(M,13) ];
Γ
[
7 + 12*q + 12*q<sup>2</sup> + 48*q<sup>3</sup> + 12*q<sup>4</sup> + 72*q<sup>5</sup> + 48*q<sup>6</sup> + 96*q<sup>7</sup>
 + 12*q<sup>8</sup> + 156*q<sup>9</sup> + 72*q<sup>10</sup> + 144*q<sup>11</sup> + 48*q<sup>12</sup> + 324*q<sup>13</sup>
 + 96*q<sup>14</sup> + 288*q<sup>15</sup> + 12*q<sup>16</sup> + 216*q<sup>17</sup> + 156*q<sup>18</sup> + 240*q<sup>19</sup>
+ 72*q^20 + 0(q^21)
],
Γ
q - q^2 + q^3 + q^4 - 3*q^5 - q^6 - q^7 - q^8 - 2*q^9 + 3*q^{10}
 + 6*q<sup>11</sup> + q<sup>12</sup> + q<sup>13</sup> + q<sup>14</sup> - 3*q<sup>15</sup> + q<sup>16</sup> - 3*q<sup>17</sup> + 2*q<sup>18</sup>
+ 2*q^{19} - 3*q^{20} + 0(q^{21})
],
Γ
q + q^2 - 3*q^3 + q^4 - q^5 - 3*q^6 + q^7 + q^8 + 6*q^9 - q^{10}
 - 2*q^11 - 3*q^12 - q^13 + q^14 + 3*q^15 + q^16 - 3*q^17 + 6*q^18
 + 6*q^{19} - q^{20} + 0(q^{21})
]
]
```

Component groups...

Notation. Let p be a fixed prime. We denote by $\mathcal{X} = \mathcal{X}_J$ the character group of a Jacobian J/\mathbf{Q} at p, and associated to any A/\mathbf{Q} we define Φ_A to be the component group at p. Suppose that \mathcal{L} be a primitive, Hecke irreducible sublattice of \mathcal{X} and hereafter let A be the associated optimal quotient of J.

Define $\Phi_{\mathcal{L}} = \operatorname{Hom}(\mathcal{L}, \mathbf{Z})/\mathcal{L}$ and let α be the map of the commuting diagram:

from which we define

$$\Psi_{\mathcal{X},\mathcal{L}} = \alpha(\mathcal{X})/\alpha(\mathcal{L})$$

$$\Phi_{\mathcal{X},\mathcal{L}} = \operatorname{Hom}(\mathcal{L}, \mathbf{Z})/\alpha(\mathcal{X}) = \operatorname{coker}(\alpha).$$

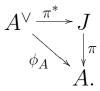
Therefore we have an exact sequence of abelian groups

$$0 \to \Psi_{\mathcal{X},\mathcal{L}} \to \Phi_{\mathcal{L}} \to \Phi_{\mathcal{X},\mathcal{L}} \to 0$$

each of whose terms we can effectively compute.

...and modular degrees

For any optimal quotient $\pi : J \to A$, we define the *modular* degree $m_A = \sqrt{\deg(\phi_A)}$, where ϕ_A is defined by the following commutative diagram



and define the congruence modulus $m_{\mathcal{X},\mathcal{L}} = |\Psi_{\mathcal{X},\mathcal{L}}|$.

Theorem 7 (Stein) The component group Φ_A at p and the modular degree m_A are related to the above quantities by

$$\Phi_{\mathcal{X},\mathcal{L}} \subseteq \Phi_A, \quad m_{\mathcal{X},\mathcal{L}} \mid m_A,$$

and

$$|\Phi_A| = \frac{m_A}{m_{\mathcal{X},\mathcal{L}}} |\Phi_{\mathcal{X},\mathcal{L}}|.$$

Experimental Results

$\begin{array}{ c c } & J_0^D(m) \\ \hline & J_0^{26}(1) \\ \hline \end{array}$	A	g	р	$ \Phi_{\mathcal{X},\mathcal{L}} $	$m_{\mathcal{X},\mathcal{L}}$
$J_0^{26}(1)$	J	2	2	21	1
	A1	1	"	1	2
	A2	1	"	3	2
$J_0^{26}(1)$	J	2	13	21	1
	A1	1	"	7	2
	A2	1	"	3	2
$J_0^{26}(31)$	J	29	31	30	1
		1	"	1	16
		1	"	1	16
		1	"	1	8
		1	"	3	56
		1	"	5	104
		1	"	1	8
		2	"	1	64
		2	"	1	64
		3	"	1	5824
		5	"	1	4096
		5	"	1	4096
		6	"	2	4096

Further Directions and Vistas

1. Higher weight Brandt modules $M_k(Dp, m) \supset \mathcal{X}_k(Dp, m)$.

2. Models for Shimura curves?

Does there exist a natural ring structure $\bigoplus_{r=0}^{\infty} \mathcal{X}_{2r}(Dp,m) \to \bigoplus_{r=0}^{\infty} S_{2r}(\Gamma(Dpm)),$ giving $X_0^D(m)$ by projective embedding?

Analytic coverings

 $U^1(\mathcal{O})\backslash\mathfrak{H}\cong X^D_0(m),$

or analysis of ramification (see Elkies in ANTS III).