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Split group codes
Cunsheng Ding, David R. Kohel, and San Ling

Abstract— We construct a class of codes of length n such
that the minimum distance d outside of a certain subcode
is, up to a constant factor, bounded below by the square
root of n, a well-known property of quadratic residue codes.
The construction, using the group algebra of an abelian
group and a special partition or splitting of the group, yields
quadratic residue codes, duadic codes, and their general-
izations as special cases. We show that most of the spe-
cial properties of these codes have analogues for split group
codes, and present examples of new classes of codes obtained
by this construction.

Index terms: Split group codes, quadratic residue codes,
duadic codes.

I. Introduction

The codes of study in this article unify elements common
to quadratic residue codes, duadic codes, and their gen-
eralizations with a common construction. Binary duadic
codes were introduced in Leon, Masley, and Pless [7] as
a generalization of quadratic residue codes, and further
studies in Pless, Masley, and Leon. [12]. The authors ex-
ploited features particular to F2 in order to write down an
idempotent generator defining the codes. Smid [17] (for
summary see [18]) removed the base field restriction and
brought the definition in line with the constructive defini-
tion for quadratic residue codes. Under this definition, the
Q-codes of Pless [11] are duadic codes over F4. Further
aspects of these codes can be found in Rushanan [15] and
Pless [13], [14].

Previously quadratic residue codes had been generalized
in another direction in Camion [3] and in Ward [20]. In the
approach of Camion, developed further in van Lint and
MacWilliams [9], the generalized quadratic residue codes
are defined as ideals in abelian group algebras, a gener-
alization of cyclic codes. Since most of the features of
duadic codes also carry over to the abelian group alge-
bras, Rushanan [16] defines duadic codes in this setting,
but reverts to a nonconstructive idempotent definition.

In the present work we unify the various abelian group
algebra constructions. By working with the dual group
G of and abelian group A, we can view the group alge-
bra as a ring of functions on A. As a generalization of
the duadic construction we broaden the definition of par-
titions, or splittings, and show that the main theorems for
duadic codes hold in this larger setting. In particular, The-
orem IV.5, Theorem IV.10, and Theorem IV.11 are ana-
logues of the main theorems for duadic codes, which hold
in this general context as well. By example we show that
new subclasses introduced here hold good codes.

The article is structured as follows. In Section II we
introduce the abelian group rings and the family of split
group codes which form the objects of study in this work.

The main body of this section is devoted to properties of
the ideals and ideal codes in these rings. We follow in Sec-
tion III with an investigation of the problem of determining
the minimal subfield F over which a code can be defined
and describe algorithmic aspects of computing with group
algebra codes. Section IV treats duality, code extensions,
and minimum distance bounds, and Section V gives explicit
examples and computational results for select subclasses of
split group codes.

II. Split group codes

Let R be a finite commutative ring and let A be its un-
derlying abelian group. Then A is a finite abelian group,
written additively, whose exponent and order we denote by
m and n, respectively. Let K be a field containing all the
m-th roots of unity and in which n is invertible. We write
the group operation additively. Define G = Hom(A,K∗) to
be the group of homomorphisms from A to K∗, or charac-
ters, and let K[G] be the group ring over K. Since G and
A are isomorphic, albeit noncanonically, the ring K[G] is
a commutative algebra of dimension n over K. For any
character ψ in G we also denote by ψ its image in K[G].
By extending characters linearly, we interpret the elements
of K[G] as functions from A to K.

A. Abelian group rings and decompositions

The following form of the discrete Fourier transform pro-
vides the basis for the later study of ideals and ideal codes
in the ring K[G].

Theorem II.1: Evaluation at x defines a homomorphism
K[G]→ K with kernel mx = {f ∈ K[G] | f(x) = 0}, such
that the map

ε : K[G] //KA =
∏
x∈A

K

f � //(f(x))x∈A
is an isomorphism of rings with inverse defined by

λ : KA // K[G].

(cx)x∈A
� //

1
n

∑
ψ∈G

(∑
x∈A

cxψ(x)−1
)
ψ

The theorem is an immediate consequence of the orthog-
onality relations for characters (see Chapter VIII §4-§5 of
Lang [6]). In the special case A = Z/nZ, we have an iso-
morphism K[G] ∼= K[X]/(Xn−1) where X is the image of
a generator for G. For a primitive n-th root of unity ζ, we
suppose, under the isomorphism with K[G], that X acts
on A by X(r) = ζr. Then the evaluation map ε takes the
usual form

f(x) 7−→ (f(1), f(ζ), . . . , f(ζn−1)),
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of the discrete Fourier transform (see for instance §4.3.3 C
of Knuth [5]).

An idempotent of a ring S is a nonzero element e such
that e2 = e, and is called primitive if for every other idem-
potent f , either ef = e or ef = 0. The primitive idempo-
tents in KA are clearly the elements δx = (0, .., 1, 0, .., 0),
having a 1 in the x-position. Under the isomorphism of
rings, we obtain the following form for the primitive idem-
potents of K[G].

Corollary II.2: The primitive idempotents of K[G] are
given by

ex =
1
n

∑
ψ∈G

ψ(x)−1ψ, (1)

one for each x in A, and the maximal ideal mx is generated
by 1− ex.

We return later to the role of idempotents in decompo-
sitions of rings and their ideal codes.

B. Splittings and codes

For an element s of R we denote the corresponding endo-
morphism x 7−→ sx of A by τs. We denote the induced pull-
back map onG and onK[G] by µs, defined as µs(f) = f◦τs,
so that

µs(f)(x) = f(sx)
for all x ∈ A and all f ∈ K[G]. We define a splitting
of A over Z to be a triple (Z,X0, X1) giving a partition
A = Z ∪X0∪X1 for which there exists an element s in the
unit group R∗ of R with τs(X0) = X1 and τs(X1) = X0.
We say that such an s splits (Z,X0, X1) and we say that
an element s in R∗ such that τs(X0) = X0 and τs(X1) =
X1 stabilizes the splitting. This definition generalizes the
splittings considered in Leon, Masley, and Pless [7].

For any subset X of A we define an ideal
IX = {f ∈ K[G] | f(x) = 0 for all x ∈ X}. (2)

The split group code C0(K) over K associated to a splitting
(Z,X0, X1) is defined to be the ideal C0(K) = IX0 and
the conjugate split group code to be C1(K) = IX1 . In
a like manner, we define the subcodes CZ0 (K) = IZ∪X0 ,
CZ1 (K) = IZ∪X1 and CZ(K) = IX0∪X1 .

The code C0 is said to be split by a unit s of R if µs(C0) =
C1 and µs(C1) = C0 and stabilized by s if µs stabilizes C0

and C1. One verifies that µs acts on the set of maximal
ideals by sending mx to ms−1x, from which we obtain the
following property of splittings.

Proposition II.3: A split group code C0 is split or stabi-
lized by s if and only if s splits or stabilizes (Z,X0, X1),
respectively.

C. Idempotent decompositions

In this section we indicate how Theorem II.1 gives the
idempotent decomposition of K[G]. The following formu-
lation gives this decomposition in terms of the primitive
idempotents.

Proposition II.4: The ring K[G] decomposes as a direct
sum

⊕
x∈AKex such that fex = f(x)ex, so that f has the

form
f =

∑
x∈A

f(x)ex.

Every idempotent e in K[G] can be uniquely written in the
form

e =
∑
x∈X

ex,

for a nonempty subset X of A.

Proof: By construction of ex, under the ring isomor-
phism K[G] ∼= KA, the ideal Kex in K[G] corresponds to
the x-component in KA with the image of ex equal to the
unity in that component. By definition of the isomorphism,
the coefficient of ex in an element f of K[G] is f(x). By
definition an idempotent e satisfies e2 = e, so is either zero
or unity in each component, hence can be written as a sum
of the primitive idempotents as indicated. �

Corollary II.5: All nonzero ideals ofK[G] are of the form
IX =

⊕
x∈Xc

Kex,

generated by the idempotent e =
∑
x∈Xc ex, for a unique

proper subset X of A.

Proof: Let I be a nonzero ideal of K[G] and set
X = {x ∈ A | f(x) = 0 for all f in I}.

From Proposition II.4 it is clear that if x is in Xc then I
contains Iex = Kex and that conversely I ∩Kex = Iex =
(0) for all x in X. Thus I is the ideal IX , having the
indicated form. Representing I as the product

∏
x∈X mx

(see for instance Proposition 1.10 of Atiyah and MacDon-
ald [1]), Corollary II.2 implies that I is generated by the
idempotent e =

∏
x∈X(1− ex). Expanding e as a product,

we find
e =

∏
x∈X

(1− ex) = 1−
∑
x∈X

ex =
∑
x∈Xc

ex,

proving the form of the generator. �

Theorem II.6: Let (Z,X0, X1) be a splitting and let
C0(K) be the associated split group code. Then the fol-
lowing results hold.

1. The codes C0(K) and C1(K) are generated by the idem-
potents

e =
∑
x∈Xc

0

ex and f =
∑
x∈Xc

1

ex.

Likewise the codes CZ0 (K), CZ1 (K), and CZ(K) are gener-
ated by ∑

x∈X1

ex,
∑
x∈X0

ex, and
∑
z∈Z

ez.

2. If the splitting is given by s, then µs induces an equiv-
alence of C0(K) with its conjugate C1(K), and of the sub-
code CZ0 (K) with CZ1 (K).

3. K[G] decomposes as a direct sum CZ(K) ⊕ CZ0 (K) ⊕
CZ1 (K).

Proof: The first statement follows from Corollary II.5
and the respective definitions of the codes. The second
statement then follows by noting that µs(ex) = es−1x,
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which implies that µs exchanges the idempotents e and
f . Since µs also permutes the code basis G, this is an
equivalence of codes. The decomposition of K[G] follows
by Proposition II.4 and the grouping

K[G] =
(⊕
x∈Z

Kex
)
⊕
(⊕
x∈X1

Kex
)
⊕
(⊕
x∈X0

Kex
)
,

according to the partition A = Z ∪X0 ∪X1. �

The next corollary is an elementary consequence of the
theorem.

Corollary II.7: The codes C0(K) and C1(K) have di-
mension (n+|Z|)/2; the subcodes CZ0 (K) and CZ1 (K) have
dimension (n− |Z|)/2; and the dimension of CZ(K) is |Z|.

III. Descending the base field

The field K was defined to contain the m-th roots of
unity. However, we generally want to define codes over
fields on which we place no such requirement. Indeed the
principal field of interest is F2, which contains no nontrivial
roots of unity at all!

In this section we let F be a subfield of K of q elements,
and extend the definition of split group codes to F . The
main goal of the section is to give necessary and sufficient
conditions for split group codes to be defined over F , and
to describe constructive methods for producing such codes.

For any vector subspace V = V (K) in Kn we define the
descent problem as follows. Define V (F ) = V ∩ Fn, and
note that

dimF (V (F )) ≤ dimK(V (K)).

If equality holds we say that V is defined over the field F .
For fixed field F , over which the vector space C0(K) of
Kn = K[G] is defined, we write C0 = C0(F ), and refer to
C0 as the split group code over F . Similarly we write C1,
CZ0 , CZ1 , and CZ for the subcodes in Fn = F [G] defined
over F .

A. Defining fields of codes

The following split group code provides an example for
the descent problem, namely, reducing to a minimal field F
over which a code is defined. Implicit in this example and
the following one, is the principle that the vector space
of an ideal is defined over F if and only if it contains a
generator in F [G]. The role of 〈τq〉-orbit decompositions
should also be apparent to the reader familiar with the
cyclotomic coset decompositions and cyclic codes, but we
leave the proofs of these result for the next section.

Example III.1: Let F = F2 and set R = Z/15Z. The
15th cyclotomic polynomial has a factor p(X) = X4+X+1
over F2. SettingK = F2[T ]/(p(T )), the image of T is a 15th
root of unity, which we denote ζ.

Set Z = 3Z/15Z ∪ 5Z/15Z. Its complement splits into
〈τ2〉-orbits X0 = {1, 2, 4, 8} and X1 = {7, 13, 14, 11}, giving

a splitting (Z,X0, X1) by −1. The polynomials
g0(X) = (X − ζ)(X − ζ2)(X − ζ4)(X − ζ8)

= X4 +X + 1,

g1(X) = (X − ζ7)(X − ζ13)(X − ζ14)(X − ζ11)

= X4 +X3 + 1.
are then the generator polynomials of split group codes C0

and C1 defined over F2. Raising gi(X) in F2[X]/(X15 − 1)
to the power 24−1 = 15 (see Proposition III.12), we obtain
the idempotent generators
e0 = X12 +X9 +X8 +X6 +X4 +X3 +X2 +X + 1,

e1 = X14 +X13 +X12 +X11 +X9

+X7 +X6 +X3 + 1,
over F2 for the split group code C0 and its conjugate. �

The above shows how split group codes generalize the
duadic codes of Leon, Masley, and Pless [7] – the latter be-
ing binary split group codes for splittings of A = Z/nZ over
the set Z = {0} in the present terminology. Smid [17] ex-
tended the definition to arbitrary finite fields via generator
polynomials, modelled on the standard one for quadratic
residue codes. We summarize this correspondence in the
present language as the following theorem. The proof is
omitted, as it is a direct analogue of Theorem 6.9.3 of van
Lint [10] for quadratic residue codes, and both theorem
and proof can be extracted from the proof and discussion
following Theorem 2 of Pless [13].

Theorem III.2: Let ({0}, S0, S1) be a splitting of Z/nZ,
split by s in Z/nZ∗ and stabilized by τ2. Then the element

e0 = ((n+ 1)/2) +
∑
a∈S0

Xa ∈ F2[X]/(Xn − 1)

is an idempotent. Let G be the dual group of Z/nZ and
fix a primitive n-th root of unity ζ. Then the isomorphism
of rings

F2[X]/(Xn − 1) −→ F2[G]
given by X 7→ χ, where χ(a) = ζa, maps the ideal gener-
ated by e0 to a split group code C0 defined with respect to
a splitting ({0}, X0, X1) of Z/nZ by s.

Remark III.3: Note that the set X0 can be effectively
recovered as

X0 = {a ∈ Z/nZ | e0(ζa) = 0}.
Except for the quadratic residue splitting, the map send-
ing S0 to X0 is generally not the identity for any choice of
root of unity. Thus the idempotent construction of The-
orem III.2, used as the definition of duadic codes in Leon
et al. [7], gives an entirely different construction for binary
cyclic duadic codes. As seen in Example III.1, this spe-
cial construction does not generalize to binary cyclic split
group codes. Moreover, definitions via idempotent rela-
tions as employed in Pless [11] and [12] are nonconstruc-
tive so are deduced here only as consequences of split group
code constructions. �

To emphasize that not all codes covered by this work
are binary, we conclude this section with a pair of duadic
codes over the field F3. It has been noted [17] that there
exist splittings of Z/nZ over {0} stabilized by τq if and only
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if q is a square modulo n. For binary codes, this implies
that every prime divisor ` of n is congruent to ±1 mod 8
(Theorem 2 of Leon et al. [7]). For ternary codes, each `
must be congruent to±1 mod 12. For n = 11 there are only
two orbits of 〈τ3〉 in Z/11Z∗, so the only ternary duadic
code of this length is the [11, 6, 5]-quadratic residue code.
The first new example occurs for block length 13.

Example III.4: Let F = F3 let R = Z/13Z. Since 3
generates the biquadratic residues in R∗, there exist two
nonequivalent splittings over Z = {0}. These give the
quadratic residue code and a distinct duadic code respec-
tively. First consider the quadratic residue code Q0 of
length 13, a [13, 7, 5]-code over F3. Its subcode QZ0 of
functions vanishing on Z is a [13, 6, 6]-code with weight
enumerator polynomial

1+104X6 + 78X7 + 156X8 + 130X9

+ 156X10 + 78X11 + 26X12.

Both codes are best possible for this length and their di-
mensions. For comparison, now consider the non-quadratic
residue duadic code C0. It is a [13, 7, 4]-code, but has sub-
code CZ0 also of minimum distance 6. We find the weight
enumerator polynomial to be

1 + 156X6 + 494X9 + 78X12,

so that the two subcodes QZ0 and CZ0 are clearly nonequiv-
alent codes with the same optimal minimum distance. �

B. Descent by Galois action

Let G = Gal(K/F ) be the Galois group of the extension
K/F , and let σ be the Frobenius automorphism c 7→ cq

which generates G. Then G acts on K[G] by the natural
action on the coefficients, with F [G] equal to the set of
elements fixed under the action of G. In this section we are
interested in the action of this group on the collection of
ideals in K[G] in order to determine those ideals which are
defined, as vector spaces, over F .

By assumption the integer q is relatively prime to m, so
that as an element of the finite ring R, it is invertible, and
τq is a well-defined automorphism of A. In this section we
relate the action of τq to the Galois group G. This lets us
reduce the study of the Galois action on ideals in K[G] to
the action of the group 〈τq〉 on subsets in A. The action of
the Frobenius automorphism is described by the following
elementary lemma.

Lemma III.5: The Frobenius automorphism σ acts on
the primitive idempotents of K[G] by eσx = eqx and simi-
larly on the maximal ideals by mσ

x = mqx.

Proposition III.6: The idempotents of F [G] are those e
in K[G] of the form

e =
∑
x∈Y

ex,

for which Y can be written as a union of orbits of 〈τq〉 in
A, and e is primitive if and only if Y = 〈τq〉x for some x in
A. Let {e1, . . . , er} be the set of primitive idempotents of
F [G] with corresponding orbits {Y1, . . . , Yr}. Then in the

local decomposition

F [G] =
r⊕
i=1

F [G]ei,

each Fi = F [G]ei is a field extension of degree |Yi| over
Fei ∼= F .

Proof: The form of the idempotents of K[G] follows
from Proposition II.4. The idempotents of F [G] are then
the idempotents of K[G] which are invariant under the Ga-
lois group G. By Lemma III.5 these must be the idempo-
tents for which the index set Y is invariant under τq, that
is, Y decomposes into a union of orbits of the group 〈τq〉.

To show that F [G] is isomorphic to a product of fields is
to show that each local Artin factor Fi contains no nilpo-
tents. But this is clear since K[G] is a product of fields,
hence contains no nilpotents.

To prove the statement about the degree of the extension
Fi/Fei, it suffices to show that dimF (Fi) = |Yi|. Equiva-
lently, we show that K[G]ei = Fi ⊗F K has dimension |Yi|
over K. But K[G] decomposes over K into one dimensional
factors, so we have:

dimK(K[G]ei) = dimK(
⊕
x∈Yi

Kex) = |Yi|,

and the statement follows. �

Corollary III.7: Every nonzero ideal I of F [G] is of the
form

⊕
i∈T F [G]ei and generated by the idempotent e =∑

i∈T ei, where {e1, . . . , er} is the set of primitive idempo-
tents and T is a nonempty subset of {1, . . . , r}. Moreover
there exists a unique ideal J in F [G] such that I⊕J = F [G].

Proof: Let I be an ideal of F [G] and set
T = {i ∈ {1, . . . , r} | fei 6= 0 for some f in I}.

Then for all i in {1, . . . , r} and all f in I such that fei is
nonzero, Fi = Fif is contained in I and Iej = {0} for j not
in T . Thus I =

⊕
i∈T F [G]ei, which is generated by the

idempotent e =
∑
i∈T ei. By Proposition III.6 it is clear

that the ideal J =
⊕

i∈T c F [G]ei, where T c is the comple-
ment of T in {1, . . . , r}, is the unique ideal complementing
I in F [G]. �

Theorem III.8: Let I be an ideal in K[G]. Then the
following conditions are equivalent.

1. The ideal I is defined over F .

2. The set X = {x ∈ A | f(x) = 0 for all f in I} is a union
of 〈τq〉-orbits.

3. The idempotent of I lies in F [G].

Moreover there exists a unique minimal subfield of K over
which I is defined.

Proof: Suppose that I is defined over F . By Corol-
lary II.5 we have I = IX , where X is as defined in the
theorem. Since I has a basis in F [G], it must be stabilized
by the Galois group. By Lemma III.5 we then have

IX = I σX =
⊕
x∈Xc

Keqx =
⊕
x∈qXc

Kex.

Therefore Xc = qXc and so also X = qX. Suppose now
that X is stabilized by τq, and let e be the idempotent of
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I. Then also by Lemma III.5,
eσ =

∑
x∈Xc

eqx =
∑
x∈Xc

ex = e,

so e lies in F [G]. To complete the cycle, assume that I =
K[G]e for e in F [G]. Then since F [G]e is contained in
I(F ) = F [G] ∩ I, we have

dimF (I(F )) ≥ dim(F [G]e).
But K[G]e = K ⊗F F [G]e, so the dimensions of vector
spaces are preserved:

dimF (F [G]e) = dimK(K[G]e) = dimK(I).
Thus by definition I is defined over F . �

Corollary III.9: If C0(K) is defined over F then so is
C1(K), and F [G] has the decomposition

F [G] = CZ(F )⊕ CZ0 (F )⊕ CZ1 (F ).
If s gives the splitting, then µs determines an equivalence
of C0 with C1 and of CZ0 with CZ1 .

Proof: Since q lies in the center of R, the automor-
phisms τs and τq commute, hence τs permutes the 〈τq〉-
orbits. In particular, as the image of X0, the set X1 must
also be the union of 〈τq〉-orbits, hence C1(K) is defined over
F . By Corollary III.7, the ideals CZ1 (F ) and CZ0 (F ), as the
complementary ideals to C0(F ) and C1(F ), are defined over
F . Moreover, either as the complement to CZ0 (F )⊕CZ1 (F ),
or as the intersection of C0(F ) and C1(F ), we find that
CZ(F ) is defined over F . the decomposition of F [G] and
the equivalence of codes follow from the corresponding re-
sults of Theorem II.6 over K. �

Theorem III.10: The block length, dimension, and min-
imum distance are well-defined invariants of C0, indepen-
dent of the field F over which C0 is defined.

Proof: The block length and dimension are invariant
by definition. Let F be the minimal field of definition for
C0. Consider an extension L/F , and let σ be the Frobenius
automorphism. For any element g =

∑
ψ∈G aψψ in C0(L)

of minimum nonzero weight, we choose φ in Supp(g). Then
Supp(g) = Supp(gσ) and Supp(aσφg − aφg

σ) is a proper
subset, since it does not contain φ. Since g has minimal
nonzero weight in C0(L), we must have aσφg − aφgσ = 0.
Setting h = g/aφ = gσ/aσφ, it follows that h is defined over
F , so the minimum distance of C0(F ) equals that of C0(L).
�

We note that the proof makes no use of special properties
of the code C0; in fact the theorem holds for any linear
code.

C. Explicit constructions

Every finite abelian group A of exponent m is isomorphic
to a unique product of the form

Z/m1Z× · · · × Z/mrZ,
where mi divides mi+1 and mr = m. We set M equal
to Hom(A,Z/mZ). Then for such a decomposition of A,
we choose generators x1, . . . , xr of the factors, and take
π1, . . . , πr in M defined by

πi(xj) =
{
ni ifj = i,
0 otherwise,

where nimi = m. One readily verifies that {π1, . . . , πr} is
a basis for M .

Suppose χ is a fixed primitive character of Z/mZ. For
any v in M we define χv = χ ◦ v, and in particular set
χi = χπi for 1 ≤ i ≤ r. Then χ1, . . . , χr generate G and
we fix an isomophism

F [G] = F [χ1, . . . , χr] ∼=
F [X1, . . . , Xr]

(Xm1
1 − 1, . . . , Xmr

r − 1)
,

sending χi to Xi. Any v in M can be written as c1π1 +
· · · + crπr, so χv = χc11 · · ·χcr

r which is represented by the
monomial Xc1

1 · · ·Xcr
r under the above isomorphism. We

denote this element Xv when we want to think of it as a
monomial in the quotient polynomial ring and as χv when
we view it as a function.

For any subset Y of A stabilized by 〈τq〉 we construct the
ideal IY as follows. For Y = Y1 ∪ Y2, we have IY = IY1IY2 ,
so it suffices to determine the maximal ideals mY = IY .
For Y = 〈τq〉z, we define MY = {v ∈ M | v(z) = 0}, and
let BY be a basis.

Let δ be the largest divisor of m such that Y ⊆ δA. We
find a1, . . . , ar ∈ Z/mZ such that

∑r
i=1 aiπi(z) = δ, and

define π =
∑r
i=1 aiπi. With this notation we can write

down a collection of generators for mY .

Proposition III.11: The maximal ideal mY is generated
by the set
S =

{
gπ =

∏
y∈Y

(
Xπ − χπ(y)

)}
∪
{
Xv − 1 | v ∈ BY

}
.

Proof: By definition, for any y in Y and v in BY we
have

Xv(y) = χ(v(y)) = χ(0) = 1.
Likewise it is clear that gπ(y) = 0, so S is contained in mY .
It suffices to show the converse: if y is a root of all functions
in S, then y lies in Y . Let φ : Z/mZ → A be a splitting
of π, i.e. φ : Z/mZ → A so that πφ is the identity on
Z/mZ. Suppose that y is in A such that χv(y) = 1 for all v
in BY . Then y lies in the subgroup Z/mZ z of Z/mZφ(1)
generated by Y . Since Y is in bijection with π(Y ), in order
to show that a root of gπ in Z/mZφ(1) actually lies in Y ,
we show that g = (gπ)φ in F [χ] has roots only in π(Y ).
But by definition g equals∏

y∈Y

(
Xπφ − χπ(y)

)
=
∏
y∈Y

(
χ− χπ(y)

)
.

So the roots of g in Z/mZ are precisely those in π(Y ). �

A set of generators for an ideal I may be reduced to the
single idempotent generator by the following proposition.

Proposition III.12: Let g be a nonzero element in F [G],
let d be the order of the group 〈τq〉, and set ` = qd − 1.
Then e = g` is an idempotent. For any collection of genera-
tors g1, . . . , gt of an ideal I with corresponding idempotents
e1 = g`1, . . . , et = g`t , the element

e =
t∑
i=1

ei
∏
j<i

(1− ej),

is the idempotent generator for I.

Proof: By Proposition III.6, the group algebra F [G]
is isomorphic to a product of field extensions of F , each of
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degree dividing d over F . In particular e = g` is congruent
to one or zero in every quotient, hence is an idempotent.
To prove the main statement, we note that a collection of
elements f1, . . . , ft generates the ideal I = IY if and only
if the intersection of the zero sets Yi of fi equals Y . It is
clear that each ei has the same zeros as the corresponding
gi. Suppose that e1 and e2 are idempotents whose zero sets
are subsets Y1 and Y2 of A. Then it is immediately verified
that e = e1 +e2−e1e2 is an idempotent, and by evaluating
at each x in A, we check that e has zero set Y1 ∩ Y2. By
induction on t, it follows that the idempotent of I has the
indicated form. �

In the above construction we have omitted the issue of
constructing the character χ. The definition of χ requires
only that we construct an extension field of F with a pre-
scribed nth root of unity. This reduces to a standard poly-
nomial factorization problem over finite fields, as already
seen in Example III.1. The following provides a complete
worked example of the idempotent construction.

Example III.13: Let F = F2 and set R = Z/7Z× Z/7Z.
Define K = F2[ζ] and χ(1) = ζ where ζ satisfies the irre-
ducible factor X3+X+1 of the 7th cyclotomic polynomial.
If Y is the orbit generated by (1, 2), then the group MY

has basis {v} where v((x1, x2)) = x1 + 3x2. We can take
π to be the homomorphism defined by π((x1, x2)) = x1.
By Proposition III.11 this gives generators X1X

3
2 + 1 and

X3
1 +X1 + 1, so we find a generating set of idempotents:

e0 =(X3
1 +X1 + 1)7 = X4

1 +X2
1 +X1,

e1 =(X1X
3
2 + 1)7 = X2

1X
6
2 +X4

1X
5
2 +X6

1X
4
2

+X1X
3
2 +X3

1X
2
2 +X5

1X2.
The idempotent generator e = e0 +e1−e0 e1 of mY is then:

(X6
1 +X4

1 +X3
1 +X2

1 )X6
2 + (X6

1 +X5
1 +X4

1 +X1)X5
2

+ (X6
1 +X3

1 +X1 + 1)X4
2 + (X5

1 +X3
1 +X2

1 +X1)X3
2

+ (X5
1 +X4

1 +X3
1 + 1)X2

2 + (X6
1 +X5

1 +X2
1 + 1)X2

+X4
1 +X2

1 +X1.

In terms of the basis {1, X1, . . . , X
6
1 , X2, . . . , X

6
1X

6
2}, the

idempotent is the weight 27 vector
(0110100101001110011100111010110100101001110011101),
and a subset of {Xi

1X
j
2e | 0 ≤ i < 7, 0 ≤ j < 7} gives a

vector space basis for the ideal generated by e. �

IV. Duality, extensions, and minimum distance

In this section we analyze the decomposition of split
group codes into orthogonal ideals under certain conditions
on the splittings. In IV-B we introduce extensions of split
group codes, define an inner product, and find conditions
for the extended codes to be self-dual. In general the exten-
sion need not exist; we require that the base field F contain
sufficiently many roots of unity. In a typical situation Z is
a subgroup of A and the condition is that the image of Z
under all characters in G is contained in F . For the duadic
codes Z = {0} and this condition is void. In the general
case this extends the theory of duality for duadic codes to
general split group codes.

A. Orthogonal decompositions

For f =
∑
ψ∈G aψψ in K[G] we define the support of f

to be the set
Supp(f) = {ψ ∈ G | aψ 6= 0},

such that the weight of f is ||f || = |Supp(f)|.

Proposition IV.1: The standard Euclidean inner prod-
uct of f and g in F [G] is

〈f, g〉 =
1
n

∑
x∈A

f(x)g(−x).

Proof: Let f =
∑
ψ aψψ and g =

∑
ψ bψψ, and set

f∗g = fµ−1(g). Then the coefficient of the trivial character
in f ∗ g is 〈f, g〉 =

∑
ψ aψbψ. Expanding f ∗ g in terms of

its idempotent decomposition, we find
f ∗ g =

1
n

∑
ψ∈G

∑
x∈A

f(x)g(−x)ψ−1(x)ψ.

But by Theorem II.1 the coefficient of the trivial character
is also n−1

∑
x f(x)g(−x). �

Remark IV.2: Since f and g lie in F [G], the inner prod-
uct lies in F even though the summation occurs in the
extension K.

Corollary IV.3: Suppose that Z is stabilized by −1.
Then the dual of CZ is CZ0 ⊕ CZ1 . If −1 splits C0 then
C⊥0 = CZ0 , and if −1 stabilizes C0 then C⊥0 = CZ1 . In the
latter case the ideal decomposition

F [G] = CZ ⊕ CZ0 ⊕ CZ1
is an orthogonal decomposition of F [G].

Proof: Suppose that −1 stabilizes Z, and let f lie in
CZ and g lie in CZ0 ⊕ CZ1 . Then

〈f, g〉 =
1
n

∑
x∈A

f(x)g(−x) = 0,

since f(x) = 0 for all x in X0 ∪X1 and g(−x) = 0 for all x
in Z. The remaining orthogonality results are similar. �

We can now state the following theorem, which gener-
alizes a well-known property of binary quadratic residue
codes.

Theorem IV.4: Suppose that F = F2 and CZ0 is con-
tained in its dual. Then the weight of every codeword in
CZ0 is congruent to 0 mod 4.

Proof: Since 0 lies in Z, every element f of CZ0 satisfies
f(0) = 0, hence has even weight. Since CZ0 is contained in
its dual,

0 = 〈f, g〉 = |Supp(f) ∩ Supp(g)| mod 2
for all f and g in CZ0 . From the equality

||f + g|| = ||f ||+ ||g|| − 2 |Supp(f) ∩ Supp(g)|,
we conclude that || · || : CZ0 −→ Z/4Z is a well-defined
group homomorphism with image in 2Z/4Z. Let DZ

0 be
the kernel of this map. Then it is clear that it is an ideal
for F [G], and is of codimension zero or one in CZ0 . By
Corollary III.7 there exists a complementary ideal J such
that CZ0 = DZ

0 ⊕ J . By Proposition III.6 the only ideal
of dimension one is that which corresponds to the orbit
{0}. The idempotent generator of this ideal, the odd weight
element

∑
ψ∈G ψ, does not lie in CZ0 , so J = 0 and CZ0 =

DZ
0 . �
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B. Code extensions

Let (Z,X0, X1) be a splitting of A giving a code C0 over
F . Suppose that −1 either splits or stabilizes the code and
that F contains the image of Z under all characters in G.

Let FZ =
∏
z∈Z F and define a map F [G] to FZ by

evaluation at elements of Z. For each f ∈ F [G] we define
fZ = (f(z))z∈Z . The extended code C0 is defined to be
the subspace

C0 = {f̃ = (f, fZ) | f ∈ C0} ⊆ F [G]× FZ ,
C1 is defined similarly. We define an inner product on FZ

by

〈u, v〉 = − 1
n

∑
z∈Z

uzv−z,

for all u = (uz)z∈Z and v = (vz)z∈Z in FZ . Using this
inner product on FZ , we extend the usual Euclidean inner
product on F [G] to the extended word space F [G]×FZ by
defining F [G] and FZ to be orthogonal subspaces.

Theorem IV.5: The extended codes C0 and C1 are
equivalent. If −1 splits C0, then C0 and C1 are self dual,
and if −1 stabilizes C0, then C0 is dual to C1.

Proof: The equivalence of C0 and C1 follows immedi-
ately from the equivalence of C0 and C1 in Corollary III.9.
Suppose that µ−1(C0) = C1, and let f and g be in C0.
Then f ∗ g = fµ−1(g) lies in C0 ·C1 = C0 ∩C1. Thus f ∗ g
has the form∑

z∈Z
f(z)g(−z)ez =

1
n

∑
ψ∈G

∑
z∈Z

f(z)g(−z)ψ−1(z)ψ.

On the other hand if we write f =
∑
ψ aψ ψ and g =∑

φ bφ φ, then expanding the product, we find f ∗ g equals( ∑
ψ∈G

aψ ψ
)(∑

φ∈G

bφ φ
−1
)

=
∑
ψ∈G

∑
φ∈G

aψbφ ψφ
−1.

Equating coefficients of the trivial character, we find that

〈f, g〉 =
∑
ψ∈G

aψbψ =
1
n

∑
z∈Z

f(z)g(−z) = −〈fZ , gZ〉,

which implies the triviality of the inner product 〈f̃ , g̃〉. The
duality of C0 and C1 when µ−1(C0) = C0 follows similarly.
�

C. Minimum distance bounds

Let C0 be the split group code over F relative to a split-
ting (Z,X0, X1). We assume fixed an element s which splits
C0 and for f ∈ F [G] define f∗ = fµs(f).

Let N be the additive subgroup of A generated by Z.
Define H to be the subgroup of G vanishing on Z (equiv-
alently on N), and let C be a set of coset representatives
for G/H. Then G/H is identified with the dual of N and
H with the dual of A/N , whose order we denote by h. We
define an element eH by

eH =
1
h

∑
ψ∈H

ψ.

Lemma IV.6: Let C0 be a split group code over a field
of q elements. If τs agrees with a power of τq on Z, then
for each z in Z, f(z) = 0 if and only if f∗(z) = 0.

Proof: If τs = τ rq on Z, then f(sz) = f(qrz) = f(z)q
r

,
for all z in Z. �

Lemma IV.7: If C0 is split by s then the subgroup H is
stabilized by µs.

Proof: Elements φ in H are characterized by the con-
dition that φ(z) = 0 for all z in Z. Since τs stabilizes Z,
for any φ in H and z in Z, µs(φ)(z) = φ(sz) = 0, so µs(φ)
lies in H. �.

Lemma IV.8: The element eH is the idempotent gener-
ator of INc , and every g in CZ is of the form

g =
∑
φ∈C

cφ eHφ.

In particular, the support of g is a union of cosets of H.

Proof: Viewing H as the group of characters on A/N ,
the value of eH equals 1 on N and zero elsewhere by the
orthogonality relations for characters. Therefore eH is the
idempotent generator for INc . Since Zc contains N c, the
ideal INc contains CZ = IZc , so every element g of CZ can
be written

g = feH =
∑
φ∈C

cφeHφ,

as indicated. �

Proposition IV.9: Let C0 be split by s and let f be in
C0. Then f∗ is of the form

∑
φ∈C cφeHφ. Moreover, if the

support of f is contained in a coset of H, then f∗ is of the
form

f∗ = cξeHξ
for some ξ in G. If s = −1 then the coefficient cε of the
trivial character ε is 〈f, f〉h.

Proof: Since f∗ lies in C0 C1 = CZ , by Lemma IV.8 we
have f∗ =

∑
φ∈C cφeHφ. Since Q = Supp(f) is contained

in a coset Hρ of H, by Lemma IV.7 the set Supp(µs(f)) =
µs(Q) is contained in Hµs(ρ). Then

Supp(f∗) ⊆ Qµs(Q) ⊆ Hξ,
where ξ = ρ∗. Thus f∗ has support on Hξ and is of the
form f∗ = cξeHξ.

Now suppose that s = −1, then ξ = ρρ−1 is the trivial
character. Write f =

∑
ψ∈G aψψ. Then the coefficient of

the trivial character in the expansion
f∗ =

∑
φ∈G

∑
ψ∈G

aψaφψφ
−1,

is
∑
ψ∈G a

2
ψ = 〈f, f〉. It follows that cε = 〈f, f〉h. �

Theorem IV.10: Suppose that C0 is the split group code
over a field of q elements, and suppose that τs agrees with
a power of τq on Z. Then the minimum weight d of a
codeword in C0\CZ0 satisfies the bound

h ≤

{
d2 − d+ 1 if s = −1,
d2 otherwise.

Proof: If f lies in C0\CZ0 , then f∗ is nonzero by
Lemma IV.6. Since f∗(x) = 0 for all x in X0 ∪ X1, we
have

f∗ =
∑
z∈Z

f∗(z)ez =
1
n

∑
ψ∈G

∑
z∈Z

f∗(z)ψ(z)−1ψ.
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Since φ(z) = ψ(z) for all φ and ψ in the same coset of H
and all z in Z, the sum for f∗ can be expressed as

f∗ =
h

n

∑
φ∈C

(∑
z∈Z

f∗(z)φ(z)−1
)
eHφ,

Thus f∗ has a positive multiple of h nonzero coefficients.
On the other hand f∗ has at most d2 nonzero coefficients,
which implies d2 ≥ h. If C0 is split by s = −1, then d
coefficients of expansion for f∗ contribute to the coefficient
of the trivial character, so d2 − d+ 1 ≥ h. �

We define an incidence relation i : K[G]×G −→ {0, 1} by
setting i(f, ψ) = 1 if ψ is in the support of f and i(f, ψ) = 0
otherwise. In reference to the incidence structure, we refer
to functions in K[G] as lines and characters in G as points.
Moreover, if i(f, ψ) = 1, then we say that f meets ψ.

Theorem IV.11: Let C0 be a split group code over F
which is split by −1, and suppose that τ−1 = τ rq on Z for
some integer r. If C0\CZ0 has a codeword f of minimum
weight d, satisfying h = d2 − d + 1, then if f meets the
trivial character, the following statements hold.

1. The set Q = Supp(f) is a difference set for H with
parameter λ = 1.

2. Each coset Pφ = Hφ comprises the set of points of a
combinatorial projective plane of order d− 1 with respect
to the set of lines Lφ = fHφ.

3. The minimum distance of C0 is d.

Proof: Since f∗ lies in CZ , by Proposition IV.9 its
support is a union of cosets of H. On the other hand
Supp(f∗) lies in {ψφ−1 | ψ, φ ∈ Q}, so has at most h =
d2 − d + 1 elements. Since f∗ is nonzero, it follows that
Supp(f∗) = H, and every nontrivial element of H can be
uniquely represented in the form ψφ−1 for ψ and φ in Q.
Since f meets the trivial character, Q is contained in H,
and the first statement holds.

The support of a line in Lφ = fHφ is clearly contained in
the set Pφ = Hφ. It suffices to show that two distinct lines
in Lφ meet at a unique point. Let g1 = fν and g2 = fξ
be two such lines with support Q1 = Qν and Q2 = Qξ,
respectively. Consider the product map

Q1 ×Q−1
2 −→ Hνξ−1 = H

given by the restriction of the group law on G. The inverse
image of νξ−1 has d elements and elsewhere the map is
bijective. In particular, since ν 6= ξ, there is a unique pair
(ψ,ψ−1) mapping to the trivial character, implying g1 and
g2 meet uniquely at the point ψ.

Now let g be in CZ0 . We may assume that g meets the
trivial character. C0 and CZ0 are dual by Corollary IV.3,
so 〈fψ−1, g〉 = 0. Thus if fψ−1 and g meet, they must do
so at more than one point. By construction g and fψ−1

meet at the trivial character for all ψ in Q. Since the lines
{fψ−1 | ψ ∈ Q} are pairwise disjoint away from the trivial
character, it follows that g has weight at least d+ 1. �

V. Examples of split group codes

In this section we demonstrate two constructions by
which we remove the restriction that q be a square mod-
ulo all prime divisors of the block length. We focus on the
cyclic case; examples of the general construction for non-
cyclic abelian groups will be reserved for treatment in a
later article.

A. Dual nonresidue split group codes.

Let ` and m be distinct primes such that q is not a square
mod ` or mod m. Set R = Z/nZ where n = `m, and let A
its abelian group. Let( ·

n

)
: Z/nZ −→ {0, 1,−1}

be the Kronecker symbol (see §1.4 in Cohen [4]). We set
Z = mZ/nZ ∪ `Z/nZ and take X0 to be the set

X0 = {a ∈ R |
(a
n

)
= 1},

which is stable under 〈τq〉, and X1 its complement out-
side of Z. The following theorem shows that the codes C0

relative to this splitting are bad.

Theorem V.1: Suppose (Z,X0, X1) is a splitting of an
abelian group A such that Z contains a subgroup N of
order m. Let G be the dual group of A, and let H be the
subgroup which is trivial on N . Then f =

∑
φ∈H φ is a

codeword in C0 of weight n/m. In particular the minimum
distance is bounded above by n/m.

Proof: We may view H as the group of characters on
A/N . Then f(x) =

∑
φ∈H φ(1) = |H| for x in N , and by

the orthogonality relations for characters, is 0 on all other
elements of A. Since X0 does not meet N ⊆ Z, it is clear
that f is in C0. �

Applying the theorem to the construction, we find that
the code C0 has minimum distance bounded above by `, the
smaller of the two prime divisors of n. In contrast, the sub-
code CZ0 contains no obvious codeword of small weight, and
experimentally, appears to generally have large minimum
weight. The simplest example is that in Example III.1. In
Table I we present data for the block length, dimension,
and minimum weight of these codes over F2 up to block
length 209.

B. Twisted lifts of split group codes.

Although the codes CZ0 described above perform well,
in order to have reasonable minimum distance for C0, it
is clear from Theorem V.1 that we should avoid splittings
for which Z contains a large subgroup of A. Also in light
of Theorem IV.11 we may want to consider splittings for
which Z is a small subgroup of A. We thus present another
example in which the block length is divisible by a single
small prime in which q is a quadratic nonresidue.

Example V.2: Let F = F2, set R = Z/21Z and let A be
its additive group. Since the subset 7R∗ of A consists of a
single 〈τ2〉-orbit of two elements, we set Z = 7Z/21Z, and
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TABLE I

Dual nonresidue cyclic split codes over F2

C0 CZ0
` m n k da n k da

3 5 15 11 3 15 4 8
3 11 33 23 3 33 10 12
3 13 39 27 3 39 12 12
5 11 55 35 5 55 20 16
3 19 57 39 3 57 18 16
5 13 65 41 5 65 24 16
5 13c 65 41 5 65 24 16
3 29 87 59 3 87 28 24
5 19 95 59 5 95 36 16
3 37 111 75 3 111 36 24
3 43 129 87 3 129 42 28b

11 13 143 83 11 143 60 24b

5 29 145 89 5 145 56 24b

5 29c 145 89 5 145 56 26b

3 53 159 107 3 159 52 32b

3 59 177 119 3 177 58 30b

3 61 183 123 3 183 60 36b

5 37 185 113 5 185 72 24b

5 37c 185 113 5 185 72 32b

3 67 201 135 3 201 66 36b

11 19 209 119 11 209 90 30b

aMinimum distance computed with Magma [8].
bUpper bound found by probabilistic search for mini-

mum weight vectors with Magma; in each case the mini-
mum distance is provably bounded below by 18.

cFor gcd(`−1, m−1) greater than 2 there exist additional
splittings over Z; for the pairs (5, 13), (5, 29), and (5, 37)
we find an additional inequivalent splitting, reported here.

take X0 to be
X0 = {a ∈ R |

(a
7

)
= 1},

where (a/7) is the Legendre symbol. Since 2 is a quadratic
residue in Z/7Z, it is clear that τ2 stabilizes the splitting.
Moreover, −1 is a quadratic nonresidue mod 7, so gives the
splitting. The associated split group code, denoted Q0, is
a [21, 12, 3]-code, while the subcode QZ0 of functions van-
ishing on Z is a [21, 9, 4]-code, both poor codes. If instead
we choose X0 equal to

{a ∈ R∗ |
(a

7

)
= 1} ∪ {a ∈ 3R∗ |

(a
7

)
= −1},

then we obtain a split group code C0 with parameters
[21, 12, 5] and subcode CZ0 with parameters [21, 9, 8], both
of which are best possible for length 21 and their respective
dimensions. �

In the next construction we develop this idea further,
showing that the special case above is typical. We de-
scribe first a formal construction for provably bad codes,
and discuss how to “twist” them to obtain codes which
experimentally perform well.

Let (W,Y0, Y1) be a splitting of the additive group of
a finite ring S with associated split group code Q0 and
subcode QW0 . Suppose that there exists a surjective homo-
morphism π : R → S with kernel of order `. We form the

lifted splitting (Z,X0, X1) of A by setting
Z = π−1(W ), X0 = π−1(Y0), and X1 = π−1(Y1),

and let C0 and CZ0 be the associated split group codes. For
such codes we have the following theorem, which shows that
these codes are bad.

Theorem V.3: The weight enumerator polynomial of C0

is w(T )`, where w(T ) is the weight enumerator polynomial
of Q0. The same relation holds between the respective
weight enumerator polynomials of CZ0 and of QW0 . In par-
ticular the minimum distances of C0 and CZ0 are the same
as the minimum distances of Q0 and QW0 , respectively.

Proof: Denote the additive groups of R and S by
A and B, respectively, and set M = Hom(B,K∗) and
G = Hom(A,K∗). Then the pullback π∗ : M → G is an
injective homomorphism with cokernel of order `. Denote
also by π∗ the induced ring homomorphism F [M ]→ F [G].
Under this homomorphism F [G] decomposes as an F [M ]-
module into a direct sum F [G] =

⊕
π∗(F [M ])ψ, where

ψ ranges over coset representatives of G/M . Consider the
idempotent e0 for Q0. Then by definition, for all x in A,
π∗(e0) satisfies

π∗(e0)(x) = e0(π(x)) =
{

0 if π(x) ∈ Y0,
1 otherwise,

so is the idempotent for C0. In particular C0 is generated
by the image of Q0, so we have an F [M ]-module decompo-
sition

C0 = F [G]π∗(Q0) =
⊕

π∗(Q0)ψ.
The form of the weight enumerator polynomial follows from
the fact that each π∗(F [M ])ψ, hence π∗(Q0)ψ, has disjoint
support in G, and from the independence of the equivalent
subcodes π∗(Q0)ψ. The decomposition of CZ0 into copies
of QW0 follows by the same argument, and equality of the
minimum distances is then clear. �

We apply the above theorem to the following setting.
Let S = Z/mZ, for a prime m, let R = Z/`mZ, and let π
be the surjective homomorphism R→ S. Let Q0 and QW0
be the quadratic residue codes of length m defined by the
splitting ({0}, Y0, Y1), where

Y0 = {a ∈ S |
( a
m

)
= 1},

and Y1 is the complement in S\{0}.

First we consider the splitting over Z = mZ/`mZ with
X0 = π−1(Y0) and X1 = π−1(Y1); specifically we note that

X0 = {a ∈ R |
( a
m

)
= 1}.

The associated codes C0 and CZ0 are liftings of Q0 and
QW0 , so by Theorem V.3 the minimum distances of C0 and
CZ0 are exactly the same as for the quadratic residue codes
themselves.

Instead, we note that the set R\Z splits into the orbits of
R∗ and those of `R∗. We thus choose X0 to be the subset
of A\Z twisted by a quadratic nonresidue mod m on one
of these sets:

{a ∈ R∗ |
( a
m

)
= 1} ∪ {a ∈ `R∗ |

( a
m

)
= −1}.

Then any s in R∗ which is not a square mod m splits
(Z,X0, X1), but this twisted lift avoids the conditions of
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Theorem V.3 which produced poor codes. Indeed in the
tables below we find that the minimum distances of the
resulting twisted lifts well exceed those of the correspond-
ing quadratic residue codes, and give some new minimum
distance records.

From Theorem V.3 it is clear that for each [m, k, d]-code
above there exists a lifted [`m, `k, d]-code. Thus we provide
Table II as reference for the parameters of quadratic residue
codes of block length m, and in Table III give only the
parameters of the twisted lifts, taking ` = 3. In view of
Theorem IV.10 we also indicate the smallest value d0 for
which d2

0 ≥ m when m ≡ 1 mod 8, or for which d2
0−d0+1 ≥

m when m ≡ 7 mod 8.

We note that the minimum distances of the examples
in Table III are consistently close to the best known of
their length and dimension. In particular, the [21, 12, 5]
and [93, 48, 14] codes C0 and the [21, 9, 8] code CZ0 match
the best known in Brouwer [2]. The minimum distance of
the [141, 69, 24] code CZ0 gives a new minimum distance
record for codes of length 141 and dimension 69. By the
Spoiling Lemma [19, Lemma 1.1.34] this improves the lower
bound on the best possible minimum distance of a code for
the ten values of [n, k] listed in Table IV.

TABLE II

Quadratic residue codes over F2

C0 CZ0
m k da m k da d0

7 4 3 7 3 4 3
17 8 5 17 7 6 5
23 12 7 23 11 8 6
31 16 7 31 15 8 6
41 21 9 41 20 10 7
47 24 11 47 23 12 8
71 36 11 71 35 12 9
73 37 13 73 36 14 9
79 40 15 79 38 16 9
89 45 17 89 44 18 10
97 49 15 97 48 16 10
103 52 19 103 51 20 11
113 57 15 113 56 16 11
127 64 19 127 63 20 12

aMinimum distance computed with Magma [8].

VI. Conclusion

We have shown that the main results and methods for
various abelian group codes can be studied as a uniform
family of codes, and that these generalize duadic codes.
Moreover, within this family there exist subclasses not in-
cluded in the previously described family of duadic codes.
As demonstrated by examples constructed within special
subclasses, these include codes which have good parame-
ters. It is also of interest that results are obtained regarding
classes of codes which have poor parameters. The exam-

TABLE III

Twisted lifts of QR codes over F2 for ` = 3

C0 CZ0
m n k da n k da d0

7 21 12 5 21 9 8 3
17 51 27 9 51 24 10 5
23 69 36 11 69 33 12 6
31 93 48 14 93 45 16 6
41 123 63 18 123 60 20 7
47 141 72 21 141 69 24 8
71 213 108 22b 213 105 24b 9
73 219 111 26b 219 108 28b 9
79 237 120 30b 237 117 32b 9
89 267 135 35b 267 132 36b 10
97 291 147 29b 291 144 30b 10
103 309 156 39b 309 153 40b 11
113 339 171 46b 339 168 48b 11
127 391 197 57b 381 194 60b 12

aMinimum distance computed with the Magma [8].
bUpper bound found by probabilistic search for mini-

mum weight vectors with Magma; in each case the mini-
mum distance is provably bounded below by 16.

TABLE IV

New minimum distance bounds over F2

n k d d0
a

141 69 24 23
140 69 23 22
140 68 24 23
139 68 23 22
139 67 24 23
138 67 23 22
138 66 24 23
137 66 23 22
137 65 24 23
136 65 23 22

aMinimum distance of previously
best known code in Brouwer [2].

ples in this work emphasize the cyclic split group codes;
in future work we expect to extend the computational ef-
forts to split group codes in for noncyclic abelian groups,
which include the generalized quadratic residue codes and
generalized duadic codes.
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