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Abstract

Endomorphism rings of elliptic curves over finite fields

by

David Kohel

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Hendrik W. Lenstra, Jr., Chair

Let k be a finite field and let E be an elliptic curve. In this document we study the ring
O of endomorphisms of E that are defined over an algebraic closure of k. The purpose
of this study is to describe algorithms for determining the isomorphism type of O,
and in certain cases for producing generators for the ring O. The content of this work
is naturally divided into the theory of ordinary and supersingular elliptic curves. For
each case we present the relevant background material and develop new methods for
working with these curves. The main results for ordinary elliptic curves are classical,
and the primary innovation added here is the development of computational methods
for computing with these curves. The main result is the following theorem.

Theorem 1 There exists a deterministic algorithm that given an elliptic curve E over

a finite field k of q elements, computes the isomorphism type of the endomorphism

ring of E and if a certain generalization of the Riemann hypothesis holds true, for

any ε > 0 runs in time O(q1/3+ε).

For the study of supersingular elliptic curves, theoretical background material is de-
veloped to prove the correctness of the following main theorem.

Theorem 2 There exists an algorithm that given a supersingular elliptic curve over

a finite field k computes four endomorphisms in O linearly independent over Z. For

any ε > 0 the algorithm terminates deterministically in O(p2/3+ε) operations in the

field k and probabilistically with expected O(p1/2+ε) operations in k, where p is the

characteristic of k.

Professor Hendrik W. Lenstra, Jr.
Dissertation Committee Chair
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Chapter 1

Introduction

This document is ostensibly concerned with the computational problem of deter-
mining the isomorphism type of the endomorphism ring of an elliptic curve over a
finite field. Along the way I hope to take a stroll through classical theory of elliptic
curves and complex multiplication. This tour will have served its goal if it inspires a
geometric intuition for the arithmetic theory of elliptic curves.

On the surface the rings of endomorphisms of ordinary and supersingular elliptic
curves appear quite dissimilar. While the familiar correspondences with lattices in
characteristic zero fits well with the ordinary curves, the noncommutative endomor-
phism rings of supersingular elliptic curves appear of quite a different flavor. The
geometry provides intuition for making the plunge into the world of noncommuta-
tive rings and makes the arithmetic theory palatable if not refreshing. The familiar
lattices and commutative rings reemerge in intricately interwoven webs inside of the
world of quaternions.

The question of determination of the endormorphism ring of an elliptic curve E over
a finite field k arises as a natural sequel to that of determining the number of points
on E(k). The cardinality of E(k) is an isogeny invariant of E, and in fact determines
the isogeny class. If we denote by π the Frobenius endomorphism relative to the field
k of q elements, then E(k) is the set of points fixed by π. Moreover, deg(π−1), equal
to the norm of π−1 in the ring End(E), is the cardinality of the kernel of π−1, so the
cardinality of E(k) is q − t+ 1, where t is the trace of Frobenius. Thus knowing the
number of k-rational points on E is equivalent to knowing the characteristic equation
for π, which is equivalent to knowing, up to isomorphism, the subring Z[π] contained
in the endomorphism ring of E with its distinguished element π of norm q. This
suggests the question of the determination of the isomorphism type of the full ring of
endomorphisms End(E) having distinguished element π.

Since the determination of the trace of Frobenius serves as the motivation and histor-
ical predecesor to the problem undertaken here, we review this recent history here.
The first deterministic polynomial time algorithm for point counting was established
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by René Schoof [27] in 1985. Using the action of the Frobenius endomorphism on
the subgroup of l-torsion points of the elliptic curve for a prime l, Schoof proposed
calculating the characteristic polynomial of the Frobenius endomorphism acting on
the finite group scheme of l-torsion points. This gives the trace of the Frobenius endo-
morphism π modulo the prime l, and by calculating this trace modulo various small
primes l, one is able to recover the trace t as an integer via the Chinese Remainder
Theorem and the Riemann hypothesis for function fields. Later improvements by A.
O. L. Atkin, Noam Elkies, and Jean-Marc Couveignes [5] used precalculated models
for modular curves to determine congruence data modulo l for the trace of Frobenius
by considering the action of π on the much smaller kernels of isogenies in E[l] or
the partial information from the action on the set of cyclic subgroups in E[l] (see
Schoof [28], Morain [21]).

As further motivation for the problem of computing Endk(E), we note that the pair
(Endk(E), π) determines the Endk(E)-module structure of E(k). In [18], Hendrik
Lenstra shows that for each degree r extension k/k of the base field there exists an
isomorphism of Endk(E)-modules relating the structure of the group of k-rational
points and the quotient of Endk(E) by the ideal (πr − 1). If the Frobenius endomor-
phism π does not lie in Z this isomorphism is

Endk(E)/(πr − 1) ∼= E(k).

For π ∈ Z the isomorphism of Endk(E)-modules is given by:

Endk(E)/(πr − 1) ∼= E(k)⊕E(k).

One should note that for ordinary elliptic curves Endk(E) = Endk(E) for all ex-
tensions k of k, so we may write unambiguously End(E). For supersingular elliptic
curves we will denote Endk̄(E) by End(E). As a consequence of the result of Lenstra,
the pair (End(E), π) determines the group structure of E(k) for all finite extensions
k of k. Thus the calculation of this pair, up to isomorphism, determines the group
structure of E(k) in addition to the number of points, and determines the group
structure of E(k) for all finite extensions k/k.

The exposition is organized as follows. Chapter 2 reviews elliptic curves and their
isogenies as given by rational functions. In practice one works with modular curves,
and makes use of practical improvements as described by Atkin and Elkies, however
asymptotically we know of no good algorithm for computing these curves and for
theoretical purposes work with the full l-torsion groups. Chapter 3 then reviews the
classical analytic and algebraic theory relating elliptic curves, complex multiplication,
and class field theory. Chapter 4 deals with the computation of the endomorphism
ring of an ordinary elliptic curve. The main result in the following theorem.

Theorem 1 There exists a deterministic algorithm that given an elliptic curve E over

a finite field k of q elements, computes the isomorphism type of the endomorphism
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ring of E and if a certain generalization of the Riemann hypothesis holds true, for

any ε > 0 runs in time O(q1/3+ε).

For the study of supersingular elliptic curves, background material is developed to ob-
tain results for the computational complexity of determining the endomorphism ring
of a supersingular elliptic curve. Chapter 5 first turns to the setting of quaternion
algebras and describes the arithmetic necessary for understanding the structure of
isogenies of supersingular elliptic curves. Prior to describing the algorithm for super-
singular elliptic curves, Chapter 6 takes a digression into quadratic spaces associated
to quaternion algebras, and the integral quadratic modules which they contain. The
main result of Chapter 7 is the following algorithm for partial determination of the
endomorphism ring of a supersingular elliptic curve.

Theorem 2 There exists an algorithm that given a supersingular elliptic curve over

a finite field k computes four endomorphisms in O linearly independent over Z. For

any ε > 0 the algorithm terminates deterministically in O(p2/3+ε) operations in the

field k and probabilistically with expected O(p1/2+ε) operations in k, where p is the

characteristic of k.

The chapter concludes with conditions under which the ring detetermined by this
algorithm coincides with the endomorphism ring of E.
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Chapter 2

Elliptic curves and isogenies

An elliptic curve E over a field k is a complete curve of genus one over k with a given
point O defined over k. For each point P of E there is an associated valuation vP
of the function field k(E) of E over k. From the Riemann-Roch theorem, there exist
functions x and y in k(E) having no poles outside of O and satisfying the following
conditions at O.

vO(x) = −2, vO(y) = −3,
y2

x3
(O) = 1. (2.1)

Then x and y are related by a relation in k[x, y]

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.2)

which we call a Weierstrass equation for E. This equation, or more correctly, the
homogeneous equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

defines E as a closed subvariety of P2, with O the unique point on the line at infinity.

For ease of notation, we define

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4, from which 4b8 = b2b6 − b24.

And further,

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6, from which 123∆ = c34 − c26.

The constant ∆ is called the discriminant of the Weierstrass equation. The curve
defined by Weierstrass equation (2.2) is nonsingular if and only if ∆ is nonzero.



CHAPTER 2. ELLIPTIC CURVES AND ISOGENIES 5

The j-invariant of E is defined to be j = c34/∆. The j-invariant is known to de-
termine the isomorphism class of the elliptic curve over the algebraic closure. Over
a nonalgebraically closed field k, multiple nonisomorphic curves may have the same
j-invariant.

Since E is a curve of genus one, the space of global sections of the sheaf of differentials
ΩE of E has dimension one as a vector space over k. We may take as generator

ω =
dx

2y + a1x+ a3

,

which we refer to as the invariant differential of E.

The single most significant fact about elliptic curves is that E admits the structure
of a group scheme with O as the identity. In fact we may identify E in a canonical
way with its Jacobian, via the map of points to divisors of degree zero

E - Pic0(E).

P - P −O

The group law on Pic0(E) is equivalent to the geometrically defined “chord-and-
tangent” rule that three colinear points under the embedding of E in P2 sum to
zero. The nomenclature for the invariant differential is justified by the fact that ω is
invariant under translation of the underlying curve of E by a point P .

2.1 Isogenies

An isogeny of elliptic curves ϕ : E1 → E2 is a nonconstant morphism of curves
satisfying ϕ(O) = O. We say that E1 and E2 are isogenous over k if there exists
an isogeny of E1 to E2 defined over k. A morphism of curves ϕ : E1 → E2 is
called a homomorphism if ϕ is also a homomorphism of group varieties. We will see
shortly that the relation of isogeny is an equivalence relation on elliptic curves. It
would be natural to restrict to isogenies which respect the group structures of E1 and
E2. Fortunately this is no additional constraint: every isogeny of elliptic curves is a
homomorphism [29, Theorem III.4.8].

We denote by Homk(E1, E2) the collection of homomorphisms from E1 to E2 over
k, and let Endk(E) = Homk(E,E). We write Hom(E1, E2) for Homk(E1, E2), and
End(E) for Endk(E). The group structure on E2 determines a group structure on
Hom(E1, E2) such that as a Z-module, Hom(E1, E2) is free of rank at most four [29,
Corollary III.7.5]. Composition of endomorphisms gives a ring structure on O =
End(E), and we refer to O as the ring of endomorphisms of E.

For an elliptic curve E, the abelian group law E×E → E is a morphism of varieties.
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Thus the map

[m] : E−−−−−−→E
P 7−→ P + · · ·+ P

sending a point to the sum of P with itself m times is a morphism of E to itself
sending O to O. This allows us to define an injective ring homorphism

[ ] : Z−−−−−→End(E).

Since any isogeny ϕ : E1 → E2 is a group homomorphism, for all integers m we have
[m]E2

◦ ϕ = ϕ ◦ [m]E1
. We use this injection to identify Z with its image in End(E).

We maintain the use of the bracket notation only where it is desirable to emphasize
the role of [m] as a morphism of curves.

We can define a degree map on the collection of isogenies Hom(E1, E2) by deg(ϕ) =
[K(E2) : ϕ∗K(E1)]. Moreover, we define respectively

degi(ϕ) = [K(E2) : ϕ∗K(E1)]i, and,

degs(ϕ) = [K(E2) : ϕ∗K(E1)]s,

the inseparable and separable degrees of ϕ. Then for every point Q in E2(k) the
number of points #ϕ−1(Q) in the inverse image of Q is degs(ϕ), and in particular if
ϕ is separable then # ker(ϕ) = deg(ϕ). By convention we set deg([0]) = 0.

A separable isogeny of elliptic curves is determined up to isomorphism over k by the
kernel of the isogeny. Conversely given any finite subgroup G of E(k), there is up
to isomorphism a unique elliptic curve E/G and separable isogeny fG : E → E/G
with G equal to the kernel [29, Proposition III.4.12]. If G is defined over k, then the
isogeny can also be defined over k.

Theorem 3 Let ϕ : E1 → E2 be an homomorphism of degree m. Then there exists

a unique isogeny ϕ̂ : E2 → E1 such that

ϕ̂ ◦ ϕ = [m] : E1 → E1,

and deg(ϕ̂) = m.

Proof. Silverman [29, Theorem III.6.1].

The isogeny ϕ̂ is called the dual isogeny to ϕ. The properties of the dual isogeny are
summarized in the following theorem.

Theorem 4 Let ϕ : E1 → E2 and ψ : E1 → E2 be homomorphisms of elliptic curves,

and let m be the degree of ϕ. Then the dual isogeny satisfies the following conditions.

1. ϕ̂ ◦ ϕ = [m] : E1 → E1.

2. ϕ ◦ ϕ̂ = [m] : E2 → E2.

3. [̂m] = [m].

4. ̂(ϕ+ ψ) = ϕ̂+ ψ̂.

5. ̂(ϕ ◦ ψ) = ψ̂ ◦ ϕ̂.
6. ̂̂ϕ = ϕ.
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Proof. Silverman [29, Theorem III.6.2].

Note that if ϕ : E1 → E2 is an isogeny, then

ϕ̂End(E2)ϕ ⊆ End(E1), and ϕEnd(E1)ϕ̂ ⊆ End(E2).

The map End(E1)→ End(E2) given by ψ 7→ ϕψϕ̂ is a Z-module homomorphism but
if deg(ϕ) 6= 1, is not a ring homomorphism. To correct this deficiency, we may choose
any elliptic curve E isogenous to E1 and E2, and set K = End(E)⊗Z Q. Then K is
either a field of degree at most 2 over Q or a definite quaternion algebra over Q. For
any isogeny ϕi : Ei → E of degree m we have a ring homomorphism

End(Ei)
ι - K

ψ - ϕ̂iψϕi ⊗m−1.

An immediate consequence is that Endk(Ei)⊗Q ∼= K for all elliptic curves Ei isoge-
nous to E over k.

We will classify endomorphism rings of elliptic curves in later sections, but one clas-
sical case of interest is when End(E) is an order in an imaginary quadratic extension
of Q. In this particular case we can deduce the following result.

Proposition 5 Suppose that End(E1) is isomorphic to an order in an imaginary

quadratic extension K of Q. If E1 and E2 are isogenous then there exist unique

relatively prime integers m1 and m2 such that

Z +m2 ι(End(E1)) = Z +m1 ι(End(E2)),

and the degree of every isogeny E1 → E2 is divisible by m1m2.

Proof. Let OK be the maximal order of K. The set S of orders O ⊆ OK forms a
partially ordered set under the ordering of containment. The natural numbers N can
be mapped bijectively to the set of orders via the map m 7→ O = Z + mOK . This
gives an isomorphism of partially ordered sets under the partial ordering on N given
by m ≤ n if m|n. Write

O1 = ι(End(E1)) = Z + nm1OK and O2 = ι(End(E2)) = Z + nm2OK ,

for integers m1, m2 and n such that gcd(m1, m2) = 1. Suppose ϕ : E1 −→ E2

is an isogeny of degree m. Then Z + ϕEnd(E1)ϕ̂ is contained in End(E2), and
ι(Z + ϕEnd(E1)ϕ̂) is contained in ι(End(E1)) with index m. Thus nm2 divides
nm1m, hence m2 divides m. Reciprocally m1 divides m, and the result follows.

We now recall the definition of a quadratic space. A quadratic space V over Q is
a vector space V over Q together with a symmetric bilinear form Φ : V × V → Q.
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Associated with a quadratic space V is a quadratic map q : V → Q such that
q(u+v)−q(u)−q(v) = Φ(u, v). A quadratic module over Z is a lattice M in V such
that the associated quadratic map on V restricts to an integer-valued map on M . A
quadratic space or quadratic module is said to be positive definite if q(v) > 0 for all
nonzero v in V .

Theorem 6 Let E1 and E2 be elliptic curves. Then there is a bilinear form

Φ : Hom(E1, E2)× Hom(E1, E2)→ Z

defined by Φ(ϕ, ψ) = ϕ̂ψ+ ψ̂ϕ. The bilinear form Φ defines the structure of a positive

definite quadratic space on V = Hom(E1, E2) ⊗ Q, with associated quadratic map

deg, extended to V by setting deg(ϕ⊗ r) = r2 deg(ϕ). The lattice Hom(E1, E2) is a

quadratic module with respect to deg.

Proof. [29, Corollary 6.3].

As a demonstration of the quadratic module structure on Hom(E1, E2), consider the
following two elliptic curves over the field k = F41.

E1 : y2 = x3 + 15x+ 35

E2 : y2 = x3 + x+ 33.

The Z-module Hom(E1, E2) is generated by isogenies ϕ and ψ of degree 3 and 7,
respectively, and such that

Φ(ϕ, ψ) = ϕ̂ψ + ψ̂ϕ = 1.

In terms of the basis {ϕ, ψ} the quadratic map deg on Hom(E1, E2) defines a quadratic

form

q(x1, x2) = deg(x1ϕ+ x2ψ) = 3x2
1 + x1x2 + 7x2

2.

Such binary quadratic forms arise in the ideal theory of orders in quadratic extensions
of Q. In Chapter 3 we turn to the relation between elliptic curves and the ideal theory
of such orders. This construction of quadratic modules from isogenies of elliptic curves
will be further exploited in Chapter 6 when our principal objects of study will be
quadratic modules of rank four over Z.

2.2 The image of Z in End(E)

We have seen that for an elliptic curve E/k, the abelian group law E × E → E is
a morphism of varieties, defined over k. Silverman [29, III §2] gives explicit rational
functions for the maps. Thus the map

[n] : E - E

P - P + · · ·+ P
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sending a point to the sum of P with itself n times is an endomorphism in Endk(E),
given by rational functions. From the group law on E we can recursively derive the
rational functions defining [n] on E. There exist relatively prime polynomials φn, ψn,
and ωn in k[x, y] such that [n] is given as follows.

E
[n] - E

(x, y) - (xn, yn) =(
φn(x, y)

ψn(x, y)2
,
ωn(x, y)

ψn(x, y)3
).

Definition. The polynomials φn, ψn, and ωn are called the nth division polynomials

on E.

The polynomial ψn plays a distinguished role in that the ideal (ψn(x, y)) defines
the closed subscheme E[n] − {O} of E, so we may refer to ψn as the n-th division
polynomial.

The division polynomials satisfy many relations which can be obtained from the
associativity of the group law on E, the Weierstrass equation relating x and y, and
the explicit formulas for addition. In the case that a1 = a2 = a3 = 0, Silverman [29]
and Lang [17] give recursive formulas for the division polynomials. Morain [21] gives
general formulas for φn and ψn. For completeness we include here recursive formulas
and relations for the division polynomials on an elliptic curve E.

The division polynomial ψn can be defined recursively via:

ψ0 = 0, ψ1 = 1, ψ2 = 2y + a1x+ a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2 · (2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ b4b8 − b26)
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1 (m ≥ 2),

ψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)/ψ2 (m > 2),

and φn by
φ0 = 1, φ1 = x, and φn = xψ2

n − ψn+1ψn−1.

Note that all of the above relations among the φn and ψn are generated by the relations
defining ψ0, . . . , ψ4, φ0, and φ1, and the relations:

φrψ
2
m − φmψ2

r = ψm−rψm+r, where r ≤ m,

which can be verified directly from the group law on E. The following formula for ωn
is valid if the characteristic of k is different from 2.

ωn = ((ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1)/ψ2 − (a1φn + a3ψ

2
n)ψn)/2.

This equation stems from the action of the endomorphism [n] on the invariant differ-
ential, namely that

n
dx

2y + a1x+ a3
=

dxn
2yn + a1xn + a3

.



CHAPTER 2. ELLIPTIC CURVES AND ISOGENIES 10

In general ωn is defined recursively as follows.

ω0 = 1, ω1 = y, and

ω2 = −(3x2 + 2a2x+ a4 − a1y)φ2 − (−x3 + a4x+ 2a6 − a3y)ψ
2
2 − (a1φ2 + a3ψ

2
2)ψ2,

ω2m+1 = ωmψ3m+2 − ωm+1ψ3m+1 − (a1φ2m+1 + a3ψ
2
2m+1)ψ2m+1 (m ≥ 1),

ω2m = (ωm−1ψ3m+1 − ωm+1ψ3m−1)/ψ2 − (a1φ2m + a3ψ
2
2m)ψ2m (m ≥ 2),

Among the ωn we have the following relations

ωrψn+r − ωn−rψ2n−r

ψn−2r

=
ωsψn+s − ωn−sψ2n−s

ψn−2s

,

which hold for all r and s such that 2r and 2s are less than n.

This defines ψn, φn, ωn as polynomials in Z[x, y, {ai}]. One checks for odd n that ψn
and φn lie in Z[x, ψ2

2 , {ai}], and for even n that ψ−1
2 ψn and φn lie in Z[x, ψ2

2 , {ai}].
Since ψ2

2 is equivalent to 4x3 + b2x
2 + 2b4x+ b6, modulo the relation (2.2), these can

be calculated as polynomials in Z[x, {ai}].

2.3 The Frobenius endomorphism

Let k be a finite field of q elements. Then the Galois group Gal(k/k) is generated by
the Frobenius automorphism φ relative to k, defined by φ(α) = αq for all α in k. For
any finite extension of k/k, the automorphism

k
� φ

⊃
k

determines a morphism Spec(k) −→ Spec(k). Thus for any variety V over Spec(k),
we can extend the base by φ to define a new variety V φ = V ×φ k. Let OV be the
sheaf of functions of V , and for each open subset U ⊆ V let ι : k −→ OV (U) be the
homomorphism determined by the map V → Spec(k). Define also

ι1 : OV (U) −→ OV (U)⊗φ k and ι2 : k −→ OV (U)⊗φ k

to be the injections f 7→ f ⊗ 1 and α 7→ 1⊗ α respectively, and define a map π∗ by

OV (U)⊗φ k

π∗
- OV (U)⊗φ k

f ⊗ α - f q ⊗ αq.
Then we have a commutative diagram

OV (U)
ι1- OV (U)⊗φ k

π∗
- OV (U)⊗φ k

k

ι
6

φ -
k

ι2
6

1 -
k

ι1 ◦ ι6
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where the left hand square defines the extension of base by φ and the right hand square
defines a morphism of varieties π : V −→ V φ over k, by means of the isomorphism

OV (U)
ι1
∼=
- OV (U)⊗φ k

k

ι
6

1
∼=

-
k.

ι1 ◦ ι6

We call this morphism the Frobenius morphism. If we replace V with an elliptic
curve E over k and define π(O) to be the identity element on Eφ, then the Frobenius
morphism determines a Frobenius isogeny π : E −→ Eφ. We will be particularly
interested in the case that k = k, so that φ fixes the field of definition of E. Then
Eφ = E and π is called the Frobenius endomorphism relative to k, or the qth power
Frobenius endomorphism.

If E is given by Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

then the Weierstrass equation of the curve Eφ is

y2 + aq1xy + aq3y = x3 + aq2x
2 + aq4x+ aq6,

and the Frobenius isogeny is given by the map

E
π - Eφ

(x0, y0) - (xq0, y
q
0).

The basic properties of the Frobenius isogeny are summarized in the following propo-
sition.

Proposition 7 The qth power Frobenius isogeny π is purely inseparable and the de-

gree of π is q.

Proof. Silverman [29, Proposition II.2.12].

From this proposition, we can deduce the following result by which we can decompose
an isogeny into a purely inseparable isogeny composed with a separable isogeny.

Proposition 8 For any isogeny ψ : E1 → E2 of elliptic curves over a finite field,

there exists a factorization

E1

π - Eφ
1

ϕ - E2,

where q = degi(ψ) and π is the qth power Frobenius isogeny, and where ψ separable.
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Proof. Silverman [29, Corollary II.2.12].

Suppose that E/k is an elliptic curve over the field k. The Frobenius endomorphism
relative to k satisfies a characteristic equation π2− tπ+ q = 0 in the ring of endomor-
phisms. For any extension k/k of degree r, the Frobenius endomorphism relative to
k is πr. The collection of points fixed by π is exactly E(k), so the kernel of πr − 1 is
E(k). Since the isogeny π− 1 is separable, the cardinality of E(k) is deg(πr− 1), and
in particular, the number of k-rational points is deg(π− 1) = q− t+ 1. A theorem of
Tate [31, Theorem 1] tells us that the characteristic polynomial for π determines the
isogeny class of E over k.

From its definition, it is clear that π commutes with all isogenies defined over k, hence
we have that π lies in the center of Endk(E). The following theorem shows the key
role that the Frobenius endmorphism plays in the structure of the elliptic curve and
its endomorphism ring.

Theorem 9 Let k be a perfect field of characteristic p and let E be an elliptic curve

over k. Let π be the Frobenius endomorphism relative to k. The following conditions

are equivalent.

1. E[pr] = 0 for all r ≥ 1.

2. The dual π̂ of the Frobenius endomorphism is purely inseparable.

3. The trace of the Frobenius is divisible by p.

4. The full endomorphism ring End(E) defined over an algebraic closure of

k is an order in a quaternion algebra.

If the preceding equivalent conditions do not hold, then the all of the following state-

ments hold true.

1. E[pr] = Z/prZ for all r ≥ 1.

2. The dual π̂ of the Frobenius endomorphism is separable.

3. The trace of the Frobenius endomorphism is relatively prime to p.

4. The endomorphism ring End(E) of E is an order in a quadratic imaginary

extension of Q.

Proof. Silverman [29, Theorem V.3.1].

In the first case of the theorem, we say that E is supersingular, and in the second
case we say that E is ordinary. It is not in general true that if E is supersingular
then Endk(E) is an order in a quaternion algebra.

The Frobenius endomorphism determines more, however, than just these large scale
structures of the elliptic curves. The following theorem shows that the group and
Endk(E)-structure of the rational points are determined by π.

Theorem 10 Let k be a finite field and let E be an elliptic curve over k, Let π be the
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Frobenius endomorphism of E. Further, let k be a finite extension of k, and denote

be r = [k : k] its degree.

1. Suppose that π 6∈ Z. Then Endk(E) has rank 2 over Z, and there is an

isomorphism

E(k) ∼= Endk(E)

(πr − 1)
.

2. Suppose that π ∈ Z. Then Endk(E) has rank 4 over Z, we have

E(k) ∼= Z

Z(πr − 1)
⊕ Z

Z(πr − 1)

as abelian groups, and this group has, up to isomorphism, exactly one left

Endk(E)-module structure. Furthermore, one has

E(k)⊕ E(k) ∼= Endk(E)

(πr − 1)

as Endk(E)-modules.

Proof. Lenstra [18, Theorem 1].

2.4 Explicit isogenies

The goal of this section is not to duplicate Elkies’ document [9] of the same name.
Rather the goal is to show that given a polynomial ψ(X) defining the ideal sheaf for
a finite subgroup G ⊆ E(k), there exist explicit functions for the isogeny in terms of
ψ(X). In fact this section is entirely credited to Vélu [33]. The modest modification
made here is the description of the equations of Vélu not in terms of the coordinates
of the points in the group G, but in terms of a generator of the ideal sheaf for G. This
will simplify the task of exhibiting an isogeny to producing a generator polynomial
for the ideal sheaf of G.

Note that we lose nothing by the assumption that G is reduced and consequently the
corresponding isogeny separable. We have seen that any inseparable isogeny can be
factored as a purely inseparable Frobenius isogeny followed a separable isogeny.

If we let x and y be elements of the function field of E satisfying the Weierstrass
equation (2.1) of § 2.2, then a subgroup G/k is defined on the coordinate ring k[x, y]
for E − {O} by an ideal IG. Since G is stable under the automorphism [−1] on E
which fixes x, there exists a polynomial ψG(x) in k[x] which defines IG. If G has odd
degree, IG is equal to the principal ideal (ψG(x)). Otherwise IG is non-principal, and
(ψG(x)) has multiplicity two in the two-torsion points of G. We can define elements
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xG and yG in the function field of E, invariant under G, as follows.

xG(P ) = x(P ) +
∑

Q∈G−{0}

(x(P +Q)− x(Q)),

yG(P ) = y(P ) +
∑

Q∈G−{0}

(y(P +Q)− y(Q)).
(2.3)

The functions xG and yG generate the function field for a curve EG and satisfy the
conditions (2.1) of § 2.2 on EG. Then fG : E → EG defined by (x, y) 7→ (xG, yG),
is an isogeny of Weierstrass equations. Under this isogeny of curves the invariant
differential on the image curve EG pulls back to the invariant differential on E, that
is,

f ∗
G(

dxG
2yG + a1xG + a3

) = (
dx

2y + a1x+ a3

).

Following Vélu [33], we can write down explicit equations for xG and yG in terms of
x and y defining the isogeny fG of curves with the kernel specified by ψ(x) in k[x].
He develops rational functions in terms of the roots of ψ(x), but the isogeny is more
appropriately expressed in terms of symmetric functions in the roots as follows.

Isogenies of odd degree

First we assume that the degree of the isogeny determined by the equation ψ(x) for
the kernel is odd. A general isogeny over k can be decomposed over k into a composite
of isogenies of degree 2 or 4 and isogenies of odd degree. We will treat decomposition
of G in the sequel.

The isogeny is described in terms of the coefficients of ψ(x) as follows.

(x, y) 7−→ (xG, yG) = (
φ(x)

ψ(x)2
,
ω(x, y)

ψ(x)3
),

where φ(x) is given by

φ(x) = (4x3 + b2x
2 + 2b4x+ b6)(ψ

′(x)2 − ψ′′(x)ψ(x))

−(6x2 + b2x+ b4)ψ
′(x)ψ(x) + (dx− 2s1)ψ(x)2,

where the degree of the isogeny is d = 2n+1, and si is the ith elementary symmetric
function in the roots of ψ(x), so that ψ(x) = xn − s1x

n−1 + · · ·+ (−1)nsn.

If the characteristic of the base field k is different from 2, one can derive the equation
for ω(x, y) from φ(x) and ψ(x) using the condition that the the invariant differential
on EG pulls back to the invariant differential on E.

ω(x, y) = φ′(x)ψ(x)ψ2/2− φ(x)ψ′(x)ψ2 + (a1φ(x) + a3ψ(x)2))ψ(x)/2.
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Over an arbitrary field the following formula for ω(x, y) holds. First we must define
ψ′′(x) and ψ′′′(x).

ψ′′(x) =
n−2∑

i=0

(
i+ 2

2

)
ai+2x

i, ψ′′′(x) =
n−3∑

i=0

3

(
i+ 3

2

)
ai+3x

i.

Then ω(x, y) can be defined as follows.

ω(x, y) = φ′(x)ψ(x)y − φ(x)ψ′(x)ψ2 + ((a1x+ a3)ψ
2
2(ψ

′′(x)ψ′(x)− ψ′′′(x)ψ(x))

+ (a1ψ
2
2 − 3(a1x+ a3)(6x

2 + b2x+ b4))ψ
′′(x)ψ(x)

+ (a1x
3 + 3a3x

2 + (2a2a3 − a1a4)x+ (a3a4 − 2a1a6))ψ
′(x)2

+ (−(3a1x
2 + 6a3x+ (−a1a4 + 2a2a3))

+(a1x+ a3)(dx− 2s1))ψ
′(x)ψ(x) + (a1s1 + a3n)ψ(x)2)ψ(x).

The functions xG and yG then satisfy the following equation of Velu [33].

y2
G + a1xGyG + a3yG = x3

G + a2x
2
G + (a4 − 5t)xG + (a6 − b2t− 7w), (2.4)

where, in terms of the coefficients of ψ(x),

t = 6(s2
1 − 2s2) + b2s1 + nb4, and

w = 10(s3
1 − 3s1s2 + 3s3) + 2b2(s

2
1 − 2s2) + 3b4s1 + nb6.

Isogenies of even degree

Now suppose that the subgroup G defined by ψG(x) has elements of order 2. We will
first determine the isogeny corresponding to the subgroup H of degree 2 or of degree
4 defined by ψH(x) = gcd(ψG(x), 4x3 + b2x

2 + 2b4x+ b6).

If ψH(x) = x− x0 is linear the degree two isogeny of E to a curve EH determined by
ψH(x) as

xH = x+
3x2

0 + 2a2x0 + a4 − a1y0

x− x0

yH = y − (3x2
0 + 2a2x0 + a4 − a1y0)

a1(x− x0) + (y − y0)

(x− x0)2

where y0 is defined by the equations

y2
0 + (a1x0 + a3)y0 − x3

0 − a2x
2
0 − a4x0 − a6 = 0,

2y0 + a1x0 + a3 = 0.
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Thus y0 is a square root of x3
0 + a2x

2
0 + a4x0 + a6 in characteristic 2 and equals

−(a1x0 + a3)/2 otherwise.

If ψH(x) has degree three, corresponding to the subgroup H = E[2] ⊂ G, then the
resulting isogeny is given as follows.

(x, y) 7−→ (xH , yH) = (
φ(x)

ψ(x)2
,
ω(x, y)

ψ(x)3
),

where ψ(x) = ψH(x) and φ(x) is given by

φ(x) = ψ′(x)2 − 2ψ′′(x)ψ(x) + (4x− s1)ψ(x)2),

and ω(x, y) by

ω(x, y) = ψ2(x, y)(φ
′(x)ψ(x)− φ(x)ψ′(x))/2− (a1φ(x) + a3ψ(x))ψ(x)/2.

Since ψH(x) determines a separable isogeny, the characteristic is necessarily different
from 2 and the equation for ω(x, y) is well-defined.

In each case, the equation for the image curve is determined as above by (2.4), with
the following values of t and w. If ψH(x) = x− x0, then t = 3x2

0 + 2a2x0 + a4 − a1y0,
and w = x0t. Otherwise set

t = 3(s2
1 − 2s2) + b2s1/2 + 3b4/2,

w = 3(s3
1 − 3s1s2 + 3s3) + b2(s

2
1 − 2s2)/2 + b4s1/2.

Invariance under composition

The Weierstrass equation of the image curve EG and isogeny fG are uniquely deter-
mined by the choice of coordinates xG and yG. We define a function TG on functions
with no poles on G− {O} to be TG(t) = tG, where

tG(P ) = t(P ) +
∑

Q∈G−{O}

(t(P +Q)− t(Q)) ,

for all points P in E(k). Then TG(t + s) = TG(t) + TG(s) and TG(α) = α for all α
in k. By rearranging sums, one verifies that TG/H ◦ TH = TG. Since we defined the
coordinate functions of equations (2.3) on EG by xG = TG(x) and yG = TG(y), this
proves that the isogenies determined by the equations of Vélu are independent of the
decomposition into isogenies of smaller degree.

Isogenies of Vélu versus endomorphisms

In general the separable isogeny defined by Vélu will not be an endomorphism, even
if the group G is the kernel of an endomorphism. Let O be the endomorphism ring
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of E, and K = O ⊗ Q. Let p be the kernel of the map O → k which is defined by
the action of O on the sheaf of differentials. For each endomorphism α defined over
k having kernel G, there is a unique isomorphism of curves ια : EG → E such that
the following diagram commutes:

E
α - E

ϕG

EG.

ια
?-

Let the Weierstrass equation of EG be

y2
G + ã1xGyG + ã3yG = x3

G + ã2x
2
G + ã4xG + ã6,

then ã1 = a1, ã2 = a2, ã3 = a3, and ã4 and ã6 can be described by

ã4 = a4 +

[
α4 − 1

48α4

]
(−b22 + 24b4) and,

ã6 = a6 +

[
(α2 − 1)2(α2 + 1)

123α6

]
b32 −

[
α2 − 1

24α6

]
b2b4 +

[
α6 − 1

4α6

]
b6,

where the expression in braces should be evaluated in K before reducing modulo p

to obtain an element of k. One can easily verify that each such expression lies in the
localization of O at p.

2.5 Reduction and lifting of curves

The following theorems of Deuring describe the structures which are preserved in
passing between curves in characteristic zero and finite characteristic.

Theorem 11 Let Ẽ/Q be an elliptic curve with endomorphism ring End(Ẽ) = O,

where O is an order in an imaginary quadratic extension K of Q. Let p be a prime

of Q, over a prime number p, at which Ẽ has nondegenerate reduction E. The curve

E is supersingular if and only if p has only one prime of K above it. If p splits in K,

then let m be the conductor of O, so that O = Z +mOK . Write m = prm0, where pr

is the largest power of p dividing m. Then the endomorphism ring of E is as follows.

1. End(E) = Z +m0OK is the order in K with conductor m0.

2. If (p,m) = 1 then the map ϕ 7→ ϕ̂ is an isomorphism of End(Ẽ) onto

End(E).

Proof. Lang [16, Theorem 13.4.12].
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Theorem 12 Let E be an elliptic curve over a finite field k of characteristic p and

let ϕ be an endomorphism of E. Then there exists an elliptic curve Ẽ defined over a

number field H, an endomorphism ϕ̃ of Ẽ, and a prime p over p in H such that E is

isomorphic to the reduction of Ẽ at p, and ϕ corresponds to the reduction of ϕ̃ under

this isomorphism.

Proof. Lang [16, Theorem 13.5.14].
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Chapter 3

Complex multiplication

3.1 Elliptic and modular functions

Elliptic functions are meromorphic functions on the complex plane which are invariant
under translation by a lattice Λ. As such, elliptic functions are well defined on the
complex torus C/Λ and give us a means of parametrizing elliptic curves over C. With
proper normalizations, these functions give us integral models for elliptic curves. The
relations between elliptic functions, derived in the setting of complex analysis, are
equally valid over any field.

Modular functions, and more generally modular forms, are functions on the lattices
themselves. Using the complex analytic isomorphisms associating an elliptic curve to
a lattice in C via elliptic functions, we may view modular functions as parametrizing
the set of elliptic curves as a whole. With this perspective we can reinterpret elliptic
functions as functions on the space of lattices.

Weierstrass ℘-function

The classical elliptic function of study is the Weierstrass ℘-function. For a lattice Λ,
the Weierstrass ℘-function is defined as follows:

℘(z; Λ) = z−2 +
∑

ω∈Λ

′
(
(z − ω)−2 − ω−2

)
,

where the sum is restricted to nonzero ω in Λ. From the definition, one sees that ℘ is
a meromorphic function on C with double poles at the lattice points and holomorphic
elsewhere. The following theorem provides justification for the study of ℘(z; Λ).

Theorem 13 The field of elliptic functions with respect to Λ is generated by ℘(z; Λ)
and ℘′(z; Λ).
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From the definition of the Weierstrass ℘-function, one can show that for any lattice
Λ′ ⊇ Λ,

℘(z; Λ′) = ℘(z; Λ) +
∑

ω′

(℘(z + ω′; Λ)− ℘(ω′; Λ)) , (3.1)

where ω′ runs over a set of representatives for the nonzero cosets of Λ′/Λ.

Eisenstein series

Given a lattice Λ and an integer k > 2 we define the Eisenstein series Gk with respect
to Λ to be

Gk(Λ) =
∑

ω∈Λ

′ ω−k.

Note that Gk(Λ) = 0 is k is odd. We can express the coefficients of ℘ in terms of the
Gk(Λ) as follows:

℘(z; Λ) = z−2 +

∞∑

n=1

(2n+ 1)G2n+2(Λ)z2n.

The utility of this expression is due to the fact that each Eisenstein series Gk(Λ) can
be expressed as a polynomial in G4(Λ) and G6(Λ) with positive rational coefficients.
Specifically, for m > 3, the Eisenstein series G2m(Λ) can be expressed in terms of the
G2r(Λ) with r < m− 1 by the following equation:

(2m+ 1)(m− 3)(2m− 1)G2m(Λ) = 3

m−2∑

r=2

(2r − 1)(2m− 2r − 1)G2r(Λ)G2m−2r(Λ).

A classical equation

One can now verify the classical equation

℘′(z; Λ)2 = 4℘(z; Λ)3 − 60G4(Λ)℘(z; Λ)− 140G6(Λ),

relating ℘(z; Λ) and ℘′(z; Λ). The discriminant of this curve is

∆(Λ) = (60G4(Λ))3 − 27(140G6(Λ))2,

and this value is nonzero [29, Theorem VI.3.6(a)]. Thus the elliptic curve E given by
the above Weierstrass equation is parametrized by the functions ℘(z; Λ), and ℘′(z; Λ):

C/Λ −−−−−−→E,
z 7−→ (℘(z; Λ), ℘′(z; Λ))

and the map is an isomorphism of groups [29, Theorem VI.3.6(b)]. Moreover the
following categories are equivalent [29, Theorem VI.5.3]:
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1. The category L of lattices in C with morphisms given by homothety maps:

Mor(Λ1,Λ2) = {α ∈ C : αΛ1 ⊆ Λ2}.

2. The category T of complex tori C/Λ with holomorphic maps taking 0 to 0 for
morphisms.

3. The category E of elliptic curves over C with isogenies as morphisms.

Eisenstein series revisited

We now consider Eisenstein series as functions on lattices in C. From the definition
of Gk(Λ) it is clear that Gk(λΛ) = λ−kGk(Λ). Eisenstein series, and modular forms
in general, are naturally viewed as functions on the set of lattices but for doing work
on these functions, we translate to the setting of the upper half plane H as follows.

Let {ω1, ω2} be a basis for Λ, and let τ be ω1/ω2. We define

Gk(τ) = Gk(〈τ, 1〉) = Gk(ω
−1
2 Λ) = ωk2Gk(Λ).

It is standard to choose an orientation (ω1, ω2) on the basis such that ℑ(ω1/ω2) > 0,
and to study Gk(τ) on the upper half plane H. The action of SL2(Z) on the set of
bases for Λ, given by

(
a b
c d

)
(ω1, ω2) = (aω1 + bω2, cω1 + dω2)

is transitive on the set of bases for Λ oriented such that ℑ(ω1/ω2) > 0.

We thus let SL2(Z) be the induced left action on H given by
(
a b
c d

)
τ =

aτ + b

cτ + d
.

Then Gk : H→ C is a holomorphic function such that

Gk(ατ) = (cτ + d)kGk(τ),

for α =

(
a b
c d

)
in SL2(Z).

Theorem 14 The ring of modular forms for SL2(Z) is C [G4(τ), G6(τ)].

Return to modular forms as functions on lattices. Let a be a projective ideal for an
order O in an imaginary quadratic extension of Q. The condition that a is projective
over O is equivalent to the condition that O is precisely the order ring of elements
{α ∈ C : αa ⊆ a}. From the equivalence of categories of lattices and elliptic curves,
this implies that the elliptic curve E(a) has ring of endomorphisms isomorphic to O.
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Fourier series expansions

The element

(
1 1
0 1

)
∈ SL2(Z) acts on H by translation by 1, and a modular form

f(τ) for SL2(Z) is left invariant under this action. Thus f(τ) has a Fourier series
expansion

f(τ) =
∞∑

n=−∞

anq
n,

where q = e2πiτ . The condition that f(τ) be meromorphic at the at ∞ says that all
but finitely many of the coefficients an for n < 0 are zero.

The Eisenstein series have particularly nice Fourier series expansions

Proposition 15 Let Gk(τ) be the Eisenstein series of weight k and let q = e2πi.
Then Gk(τ) can be expessed as a series in q by

Gk(τ) = 2ζ(k) +
2(2πi)k

(k − 1)!

∞∑

n=1

σk−1(n)qn,

where σr(n) =
∑

d|n d
r.

Recall that the Riemann zeta function, at positive even values k, is equal to ζ(k) =

− (2πi)k

2(k!)
Bk, where Bk is the k-th Bernoulli number. Recall that the Bernoulli numbers

are defined by the equation
x

ex − 1
=

∞∑

n=0

Bn

n!
xn.

The first few Bernoulli numbers are:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = −1

2
,

B6 =
1

42
, B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2730
,

and Bk = 0 for odd k greater than 1.

This motivates us to define a normalized Eisenstein series by

Ek(τ) = 1− 2k

Bk

∑
σk−1(n)qn.

The series Ek(τ) has an equivalent series expansion of the form

Ek(τ) = 1− 2k

Bk

∑ nk−1qn

1− qn .
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We also have nice series expansions for ∆(τ):

∆(τ) = (2π)12 (E4(τ)
3 −E6(τ)

2)

123

= (2π)12q

∞∏

n=1

(1− qn)24.

Hereafter we will define ∆(τ) to be the normalized version ∆(τ) = q
∏

(1− qn)24. We
can now express j(τ) as

j(τ) =
E4(τ)

3

∆(τ)
= q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + · · · .

Consider also the Fourier series development for ℘:

℘(z; τ) = (2πi)2

[
1

12
− 2

∞∑

n=1

qn

(1− qn)2
+

∞∑

n=−∞

qnqz
(1− qnqnz )2

]
.

where q = e2πiτ as before and qz = e2πiz .

Returning to the modular parametrization of E, define

℘̃(z; τ) =
℘(z; τ)

(2πi)2
and ℘̃′(z; τ) =

℘′(z; τ)

2(2πi)3
.

Then the following relation holds.

℘̃′(z; τ)2 = ℘̃(z; τ)3 − E4(τ)

48
℘̃(z; τ)− E6(τ)

864
.

Higher levels

We have reviewed modular forms viewed as functions on the space of lattices, and
their use to parametrize the collection of elliptic curves over C. We wish to extend
this idea to achieve parametrizing spaces for elliptic curves with additional structure.
As a principal example, we consider pairs of lattices (Λ,Λ′) such that Λ ⊆ Λ′ and
the quotient of Λ′ by Λ is a cyclic subgroup of order N . From the equivalence of
categories such an inclusion of lattices corresponds to an isogeny of elliptic curves
E(Λ)→ E(Λ′) with cyclic kernel of order N . Translating the setting of lattices back
to our working environment in H, we find that the pair (Λ,Λ′) gives us a pair (τ, τ/N)
and that the subgroup fixing such pairs is the group Γ0(N) defined by

Γ0(N) = {α ∈ SL2(Z) : α ≡
(
a b
0 d

)
mod N}.
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We say that Γ0(N) corresponds to the moduli problem of classifying cyclic isogenies
of elliptic curves. The other two main subgroups of interest are

Γ1(N) = {α ∈ SL2(Z) : α ≡
(

1 b
0 1

)
mod N},

Γ(N) = {α ∈ SL2(Z) : α ≡
(

1 0
0 1

)
mod N}.

The subgroups Γ1(N) and Γ(N) of SL2(Z) correspond to the moduli problems of
classifying elliptic curves with a cyclic point of order N and of classifying elliptic
curves with an oriented basis of the full group of N -torsion points.

Corresponding to the inclusions of groups

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z),

there are corresponding maps of the modular curves

X(N)→ X1(N)→ X0(N)→ X(1),

which can be interpreted as forgetful maps.

Generating modular forms

To introduce the “tools of the trade” we present the following modular forms and
constructions by which we produce elements of the function fields of the modular
curves X0(N), X1(N), and X(N).

If X ′ → X is any map of curves then we have an inclusion of K(X) in K(X ′).
Similarly we have an inclusion of Mn(Γ) in Mn(Γ

′) for any congruence subgroup
Γ′ ⊆ Γ.

The modular interpretation of X0(N)→ X(1) which we interpret as the map

ϕ : (E → E ′) 7−→ E

suggests the possibility of projecting onto the image curve E ′. This would give a
second embedding of K(X(1)) in K(X0(N)). Indeed the map sending ϕ to its dual
ϕ̂ gives an involution of the curve X0(N) which exchanges these projections. More
generally, suppose that N = pq is the product of two primes. An isogeny ϕ : E → E ′

of degree N decomposes as

E
ϕ1−−−−−−→ E ′′ ϕ2−−−−→ E ′

where ϕ1 has degree p and ϕ2 has degree q. Similarly we may decompose ϕ as

E
ψ2−−−−→ E ′′′ ψ1−−−−−−→ E ′
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where ψ2 has degree q and ψ1 has degree p. By means of combinations of ϕ1, ϕ2, ψ1, ψ2

and their duals, we could imagine that there should be an involution of X0(N) ex-
changing ϕ with any of the diagonal maps or its dual diagram below.

E
ϕ1 - E ′′

E ′′′

ψ2

? ψ1 -
�

E

ϕ2

?-

Indeed, we arrive at the definition of the Atkin-Lehner involution via this construction
(see [1]).

Thus the additions to our repertoire of modular forms will be those forms f(nτ) for
n ∈ Z and f(τ) a previously described form.

For a moment let us return to the definition of the Eisenstein series Gk(τ). Recall
that

Gk(τ) =
∑

(n,m)∈Z2

′ (mτ + n)−k.

We observed that for k odd Gk(τ) is zero and only for k > 2 does Gk(τ) converge. In
order to salvage k = 2 we must separate the sums as follows.

G2(τ) =
∑

m∈Z

∑

n∈Z

′ (mτ + n)−2,

where the sum is restricted to n 6= 0 when m = 0. The series G2(τ) defined in this
manner is a convergent holomorphic function. As before, we obtain a Fourier series
expansion

G2(τ) = 2ζ(2)

(
1− 24

∑

n∈Z

σ1(n)qn

)
,

and normalize to get E2(τ) = 1− 24
∑∞

n=1 σ1(n)qn. The holomorphic function E2(τ)
is almost but not quite a modular form, transforming according to the following
rules [13, Theorem III.2.7].

E2(−1/τ) = τ 2E2(τ) +
12τ

2πi
,

E2(τ + 1) = E2(τ)

For a positive integer N , the following function

E∗
2(τ) =

NE2(Nτ)− E2(τ)

24

=
N − 1

24
+

∞∑

n=1

σ∗
1(n)qn,
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where

σ∗
1(n) =

{
σ1(n) if n 6≡ 0 mod N
σ1(n/N) otherwise

is a modular form. The modular interpretation for E∗
2(τ) stems from the following

formula [28]:

NE∗
2(τ) = −1

2

N−1∑

i=1

℘(iτ/N ; τ).

Thus it gives the first symmetric function in the x-values of the points of a cyclic
subgroup of order N on EΛ(C), where x(P ) and x(−P ) are counted once and x(Q)
is counted with multiplicity 1/2 for all Q in EΛ[2].

Next we define η(τ) = q1/24
∏

(1−qn), a 24-th root of ∆(τ). Then η(τ) is holomorphic
on H and transforms as follows [30, Theorem I.8.3] under the generators for SL2(Z):

η(−1/τ) =
√
−iτ η(τ), and

η(τ + 1) = e2πi/24 η(τ),

where
√

is a branch of the square root which is positive on the positive real axis.

While η(τ) is not a modular form we use η(τ) to construct modular forms. For
instance, set

u = 13

(
η(13τ)

η(τ)

)2

.

Then u is a modular form for Γ0(13) and the Atkin-Lehner operator acts in a partic-
ularly simple fashion on u.

u|W13
=

(
η(τ)

η(13τ)

)2

=
13

u
.

Theta functions

Theta functions associated to positive definite quadratic forms over Z provide an
abundant source of modular forms. This will be particularly useful when applied
with the binary and quaternary quadratic forms associated to ideal classes of orders
in complex imaginary extensions of Q and of orders in quaternion algebras over Q.

Let q : V → Q be a positive definite quadratic form of even dimension n = 2k over
Q with integral lattice Λ of determinant det(Λ). Then we can form a holomorphic
function on H

θΛ(τ) =
∑

ω∈Λ

qq(ω),

where q = e2πiτ , and the transformation of θΛ(τ) under elements of the modular group
SL2(Z) is well understood (see Chapter IX of Schoeneberg [26]). In the special case
that n = 4 and det(Λ) = N2 then θΛ(τ) is a modular form of weight 2 for Γ0(N).
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Models for modular curves

We can now make use of the above constructions for modular forms to produce
models for modular curves, in particular for X0(N). Classically one uses the functions
j = j(τ) and jN = j(Nτ) to construct the field of modular functions on X0(N). By
the following theorem, this gives us all functions on X0(N).

Theorem 16 The field of modular functions for Γ0(N) is C(j, jN).

The modular functions j and jN satisfy the classical modular equation ΦN(j, jN ) =
0, where ΦN (X, Y ) ∈ Z[X, Y ]. While this gives an aesthetically pleasing relation
between the j-invariant of a curve E and the j-invariants of the curves, ΦN (X, Y ) is
a singular model for X0(N) and has many singularities over Spec(Z). As a result,
the coefficients of ΦN (X, Y ) can be quite large. For instance for the first few values
of N , we have

Φ2(X, Y ) = (X + Y )3 −X2Y 2 + 1485XY (X + Y )− 162000(X + Y )2

+ 41097375XY + 8748000000(X + Y )− 157464000000000,

Φ3(X, Y ) = (X + Y )4 −X3Y 3 + 2232X2Y 2(X + Y ) + 36864000(X + Y )3

− 1069960XY (X + Y )2 + 2590058000X2Y 2

+ 8900112384000XY (X + Y ) + 452984832000000(X + Y )2

− 771751936000000000XY + 1855425871872000000000(X + Y ),

Φ4(X, Y ) = (X + Y )6 −X4Y 4(X + Y ) + 1488X4Y 4 + 2976X3Y 3(X + Y )2

− 2533680X2Y 2(X + Y )3 + 561444603XY (X + Y )4

− 8507430000(X + Y )5 + 80975207520X3Y 3(X + Y )
− 120497741069824X3Y 3 + 1425218210971653X2Y 2(X + Y )2

+ 1194227286647130000XY (X + Y )3

+ 24125474716854750000(X + Y )4

− 917945232480970290000X2Y 2(X + Y )
+ 1362750357225997008000000X2Y 2

+ 12519709864947556179750000XY (X + Y )2

− 22805180351548032195000000000(X + Y )3

+ 257072180519642551869287109375XY (X + Y )
+ 158010236947953767724187500000000(X + Y )2

− 410287056959130938575699218750000XY
− 364936327796757658404375000000000000(X + Y )
+ 280949374722195372109640625000000000000,

and the modular polynomial of level 13 is



CHAPTER 3. COMPLEX MULTIPLICATION 28

Φ13(X, Y ) = (X + Y )14 −X13Y 13 + 9672(X + Y )X12Y 12

− 40616316(X + Y )2X11Y 11 + 97116140576(X + Y )3X10Y 10

− 145742356534710(X + Y )4X9Y 9

+ 142727120530755696(X + Y )5X8Y 8

+ 63336131453363537808X12Y 12

+ · · ·
· · ·+ 2182 361 533 1115 133 236 180347944559(X + Y )3

− 2184 361 535 1115 13·236 209767·6780941(X + Y )XY
− 2200 363 538 72 1118 239XY
+ 2198 363 536 1118 133 239(X + Y )2,

a polynomial whose expanded coefficients, if included herein, would constitute a sig-
nificant increase in the length of this document.

The modular curve X0(13) has genus zero, and its function field is generated by
the function the function u = 13(η(13τ)/η(τ))2 defined earlier. In contrast to the
enormous coefficients in the expression relating j and j13, we find that j can be
simply expressed in terms of u with relatively small coefficients as follows.

j(τ) = (u14 + 26u13 + 325u12 + 2548u11 + 13832u10 + 54340u9

+157118u8 + 333580u7 + 509366u6 + 534820u5 + 354536u4

+124852u3 + 15145u2 + 746u+ 13)/u.

3.2 Class fields and complex multiplication

Among elliptic curves over C, those possessing “extra” endomorphisms are excep-
tional. Typically, an elliptic curve E has End(E) ∼= Z, but up to isomorphism there
are countably many curves such that the endomorphism rings have rank 2 over Z.
In terms of the equivalent category of lattices in C, if the endomorphism ring of a
lattice is not Z, then it is equal to an order O in a quadratic imaginary extension K
of Q in C. An elliptic curve with End(E)⊗Q ∼= K is said to have complex multipli-

cation by K. When we wish to be more restrictive, we will say that E has complex
multiplication by O. Elliptic and modular functions, evaluated at the “special val-
ues” corresponding to elliptic curves with complex multiplication and at the torsion
points on such curves, generate abelian extensions of K. The use of these functions
to generate abelian extensions of quadratic fields K is analogous to the use of the
exponential function at points corresponding to torsion in Gm(C) to generate abelian
extensions of Q.

We recall some definitions and results from class field theory. Let L/K be a finite
abelian extension, and DL/K the discriminant of L over K. We write OK for the
maximal order of K and OL for the maximal order of L. Let m be an ideal of OK .
We define IK to be the group of fractional ideals of OK , and let I(m) be the subgroup
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freely generated as an abelian group by the prime ideals relatively prime to m. We
denote by P (m) the subgroup of principal fractional ideals in I(m). For an integer m
we write I(m) = I(mOK), and similarly write P (m) for P (mOK). For each prime
p relatively prime to DL/K there exists a unique element σp in the Galois group
Gal(L/K) such that σp(x) ≡ xN(p) mod pOL for all x in the maximal order OL of L.
The map p 7→ [p, L/K] = σp extends multiplicatively to all of I(DL/K). We call the
homomorphism

[ · , L/K] : I(DL/K)−−−−−−→Gal(L/K)

the Artin map. A result of class field theory says that the Artin map is surjective.

The Hilbert class field H ofK is defined to be the largest unramified abelian extension
of K. The kernel of the Artin map of H/K consists of the principal fractional ideals
in OK . For imaginary quadratic extensions over Q, we have a beautiful description
of H in terms of the modular function j defined on lattices.

Theorem 17 Let K/Q be a quadratic imaginary field with ring of integers OK , then

j(OK) is an algebraic integer which generates the Hilbert class field over K. The

Galois conjugates of j(OK) are the values j(ai), where {ai} is a complete set of

representatives of the ideal classes of OK. The Artin map defines an isomorphism of

Cl(OK) with Gal(H/K) such that [ p, H/K](j(a)) = j(p−1a).

Proof. Silverman [30, Theorem II.4.3] or Lang [16, Chapter 10, §1, Theorem 1].

We would like to consider extensions of H by adjoining torsion points of an elliptic
curve E with complex multiplication by OK . We first need to define a Weber function

h : E → P1 to be a quotient of E by its automorphism group. In terms of a Weierstrass
equation for E, a Weber function for E is given as follows:

h(x) =





c4c6x/∆ if jE 6= 0, 1728,
c24x

2/∆ if jE = 1728,
c6x

3/∆ if jE = 0.

where x, c4, and c6 are defined as in Chapter 2. Alternatively, with respect to a lattice
Λ, we can construct an analytic Weber function on C. Let Λ ⊆ C be a lattice such
that

C/Λ −−−−−−→E(C)

z 7−→ (℘̃(z; Λ), ℘̃′(z; Λ))

gives an analytic isomorphism. A Weber function for E is given as follows.

h(z; Λ) =






E4(Λ)E6(Λ)℘̃(z; Λ)/∆(Λ) if j(Λ) 6= 0, 1728,
E4(Λ)2℘̃(z; Λ)2/∆(Λ) if j(Λ) = 1728,
E6(Λ)℘̃(z; Λ)3/∆(Λ) if j(Λ) = 0.
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These three cases correspond to Aut(E) having 2, 4, and 6 elements, respectively.
The weights of the numerators and denominators of the Weber functions above are
each 12, in the sense that the map (z; Λ) 7→ (λz;λΛ) multiplies both numerator and
denominator by λ−12. Thus up to some change of variable z 7→ λz, the Weber function
is an invariant of the homothety class of Λ.

Before stating the next results, we define ray class fields and ring class fields over
K. For any integral ideal m of O = End(E) we define E[m] = {P ∈ E(C) : ϕ(P ) =
O for all ϕ ∈ m}. Let Λ be a lattice such that, as before, C/Λ ∼= E(C). The torsion
points E[m] corresponds to m−1Λ/Λ ⊆ C/Λ. Thus in terms of our Weber functions
on E and on C, we have h(E[m]) = h(m−1Λ; Λ). For α ∈ K∗ by α ≡ 1 mod*m we
mean that vp(α− 1) ≥ r for every prime power pr dividing m with positive exponent.
We define

P1(m) = {(α) ∈ P (m) : α ≡ 1 mod*m} and,

PZ(m) = {(α) ∈ P (m) : α/n ≡ 1 mod*m for some n ∈ Z}.

Note that (α) ∈ P1(m) does not imply that α ≡ 1 mod*m, only that there exists a
unit µ ∈ O∗

K such that µα ≡ 1 mod*m. Also note that if m is the largest integer such
that m is contained in (m), then PZ(mOK) = PZ(m). Thus we assume m = (m) and
write PZ(m) for PZ(mOK).

The ray class field modulo m, denoted Km, is defined to be the largest unramified
abelian extension L of K such that the Artin map [ · , L/K] : I(m) → Gal(L/K)
contains P1(m) in its kernel.

The ring class field of conductor m is defined to be the largest abelian extension L
of K such that the Artin map [ · , L/K] : I(m) → Gal(L/K) contains PZ(m) in its
kernel. To justify the nomenclature for the definition of the ring class field, we first
recall that an order O inK has the form Z+mOK , for a unique positive integer m, the
conductor of O. The ideal class group Cl(O) of projective ideals of O is isomorphic
to I(m)/PZ(m). We call the ring class field of conductor m the ring class field for O
and denote it by KO.

We can now state the main theorems of this section.

Theorem 18 Let K/Q be a quadratic imaginary extension of Q, let m be an integral

ideal of OK, and let a be any fractional ideal for OK . Then

Km = K(j(a), h(m−1a; a))

is the ray class field modulo m.

Proof. Silverman [30, Theorem II.5.6] or Lang [16, Chapter 10, §1, Theorem 2].
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Theorem 19 Let K/Q be a quadratic imaginary extension of Q and let O be an order

of conductor m in K. Then j(O) is an algebraic integer which generates the ring class

field for O over K. The Galois conjugates for j(O) are j(ai), where {ai} is a complete

set of coset representatives for the projective ideal classes of O. The Artin map defines

an isomorphism of Cl(O) with Gal(KO/K) such that [ pOK , KO/K](j(a)) = j(p−1a),
where p is a prime ideal of O not dividing m.

Proof. Lang [16, Chapter 10, §3, Theorem 5]

As an application we can now define the class polynomial HD(X). Let O be an
order of discriminant D in an imaginary quadratic extension of Q, and let {ai} be a
complete set of coset representatives of the h(O) projective ideal classes of O. The
above theorem implies that

HD(X) =

h(O)∏

i=1

(X − j(ai))

is an irreducible polynomial in Z[X].

For example, if we take D = −71, the class polynomial H−71(X) is

X7 + 313645809715X6 − 3091990138604570X5 + 98394038810047812049302X4

− 823534263439730779968091389X3 + 5138800366453976780323726329446X2

− 425319473946139603274605151187659X + 119 · 176 · 233 · 413 · 473 · 533.

As with the modular equation, the coefficients grow rapidly with the size of the
discriminant. And as with the modular equations, one can try to deduce simpler
expressions for the class polynomial using different modular functions. For instance,
Yui and Zagier [37] use special values of certain classical Weber functions to find a
reduced class equation

W−71(t) = t7 − t6 − t5 + t4 − t3 − t2 + 2t+ 1,

for the discriminant −71, where t and X satisfy the relation (t24 − 16)3 = t24X.

The following commutative diagram of exact sequences summarizes the ideal class
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relations for an ideal m and integer m in m.

1 1 1

1 - G
?

- (Z/mZ)∗

{±1}

?

- (OK/m)∗

O∗
K mod m

?

1 - O∗
K + m

O∗
K + (m)

?

- I(m)

P1(m)

?

- I(m)

P1(m)

?

- 1

1 - (OK/mOK)∗

O∗
K(Z/mZ)∗

?

- Cl(O)
?

- Cl(OK)
?

- 1

1
?

1
?

We define m to be primitive if m is contained in no proper ideal nOK for an integer
n in Z. In the case of principal interest, m is primitive and m = N(m). In this case
the cokernel of (OK/m)∗/O∗

K by (Z/mZ)∗/{±1} is trivial. In particular, we will be
interested in the case that m is a power of a splitting prime p of OK .

The class fields corresponding to the above Galois groups are as follows, where H
is the Hilbert class field, L is the subfield generated by j(OK) over Q, and m is an
integer in the ideal m.

K(m)

Km

KO

H

L

K

Q

To put the class field theory in context with the elliptic curves having complex mul-
tiplication, we summarize the class field theory through the following dictionary with
elliptic curves with complex multiplication. In the glossary below, let E be an elliptic
curve defined over the field generated by its j-invariant jE with endomorphism ring
equal to the maximal order in K.
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L = Q(jE) Field of definition of E. The endomorphisms ring of E over L is
EndL(E) = Z.

H = K(jE) Field of definition of End(E), and all isogenies E → E ′ for a com-
plete set of representatives {E ′} of the isomorphism classes of el-
liptic curves with endomorphism ring equal to OK .

Km/H Splitting field for cyclic points E[m] modulo Aut(E).
The group E[m] is the kernel of the isogeny E → E ′ corresponding
to C/Λ→ C/m−1Λ where OK ∼= End(Λ) ⊆ C.

KO/H Splitting field for all isogenies of E ′ → E ′′, for a complete set of
representatives of {E ′} and {E ′′} of the isomorphism classes of
elliptic curves with complex multiplication by orders O′ and O′′

contained in OK and containing O.
K(m)/H Complete splitting field for E[m] modulo Aut(E).

3.3 The main theorem of complex multiplication

Theorems 17, 18, and 19 constitute the main theorem of complex multiplication. In
this section we would like to combine the three theorems into one using the idele
group of K. First we must recall the necessary definitions from class field theory.

Let K be a field and MK be the set of places of K. The adele ring AK of a field K
is defined to be the restricted product

∏′Kv of the completions Kv of K at each of
the places v of K with respect to the local rings of integers Ov. Let S be a finite set
of places of K including the infinite places. Define AS by

AS =
∏

v∈S

Kv ×
∏

v/∈S

Ov,

with the product topology. Then each AS is a locally compact topological ring. AK
is defined as the union of AS for all finite subsets S of MK containing the infinite
places. Defining each AS to be open topological subrings induces a topology on AK
as a topological ring.

Next we define the idele group JK of K. This will be a subgroup of the adeles
consisting of the invertible elements A∗

K . The induced subset topology is insufficient
to give JK the structure of a topological group. Instead we enlarge the topology on
JK so that the map x 7→ x−1 is continuous. The topology on JK is defined to be
that for which the homomorphism of JK to AK × AK given by x 7→ (x, x−1) is a
homeomorphism of JK onto its image.

Definition of Artin map not yet stated in general.

Let K ⊆ C be a quadratic imaginary extension of Q. Let t be an idele for K, and
let Λ be a lattice in K. As a special case, assume that End(Λ) = OK . For any prime
p of OK , define Λp to be the closure of Λ in the completion of K at p. From the
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local-global correspondence of lattices, there is a well-defined lattice tΛ defined by

tΛ =
⋂

p∈MK

K ∩ tpΛp.

Moreover, there are natural isomorphisms

K/Λ ∼=
⊕

p

Kp/Λp and K/tΛ ∼=
⊕

p

Kp/tpΛp.

This allows us to define an isomorphism t : K/Λ→ K/tΛ by multiplication by tp on
the p-primary component.

For the general case, we have an identification of adele rings AK = K ⊗ AQ, from
which we have a decomposition of rings AK =

∏′
pK ⊗Qp, restricted with respect to

the rings OK ⊗ Zp. For a prime p in Z, let Λp = Λ⊗ Zp. Then we can write an idele
t ∈ JK as (tp)p∈MQ

, and t acts on Λ by

tΛ =
⋂

p∈MQ

K ∩ tpΛp.

Again we have natural isomorphisms

K/Λ ∼=
⊕

p∈MQ

Kp/Λp, and K/tΛ ∼=
⊕

p∈MQ

Kp/tpΛp,

and we define an isomorphism t : K/Λ → K/tΛ by multiplication by tp on each
component Kp/Λp.

This definition coincides with that for the special case, and for any lattice Λ in K we
note that End(Λ) = O for some order O in K. If the conductor of O is m, then for
all primes p of MK not dividing m, (OK)p = Op and the lattice Λp is well-defined.
We have the liberty of decomposing an idele t ∈ JK as t = (tp)p6 |m× (tq)q|m), and view
t as acting locally at p as in the previous case.

Let σ ∈ Gal(C/Q). Corresponding to the automorphism of fields C
σ←− C there is a

morphism σ∗ : Spec(C) −→ Spec(C). For any elliptic curve E/C we define Eσ/C to
be the elliptic curve E base extended by σ∗.

We can now state the main theorem of complex multiplication, in its idelic version.

Theorem 20 Let K ⊆ C be a quadratic imaginary extension of Q, and let Λ be a

lattice in K. Let φ : C/Λ → E(C) be a complex analytic isomorphism to an elliptic

curve E. Let s be an idele of K and let σ be an automorphism of C such that

[s,K] = σ|Kab. Then there exists a unique complex analytic isomorphism

ψ : C/s−1Λ→ Eσ(C)
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such that the following diagram is commutative.

K/Λ
φ - E(C)

K/s−1Λ

s−1

? ψ- Eσ(C)

σ

?

Proof. Lang [16, Chapter 10, §2, Theorem 3]. See also Silverman [30, Theorem
II.8.2].

3.4 Actions of ideles

The above theorem suggests that we should study the action of JK on the collection
of elliptic curves over Kab, given by s · E = Eσ, where σ = [s,K]. On Weierstrass
equations, this is the expected operation, taking a Weierstrass equation with coef-
ficients {ai} to the Weierstrass equation with coefficients {aσi }. Let E(K) be the
category of elliptic curves over Kab having complex multiplication by K. For each
s ∈ JK this gives a functor of E(K) to itself, and we say that JK acts on the category
E(K), and call this the arithmetic action of JK . In our applications, this action will
be unsatisfactory, since the Galois group Gal(Kab/K) does not act on elliptic curves
over finite fields.

Consider the action we described on the set of lattices in C, which for s ∈ JK takes
Λ to s−1Λ. Let Λ be one such lattice and let O = End(Λ). If sO is an integral ideal
of O, then s−1Λ is properly contained in Λ. Then we have a canonical quotient map

C/Λ
ϕ - C/s−1Λ

z mod Λ - z mod s−1Λ

If we use the Weierstrass parametrization of elliptic curves, for every elliptic curve
EΛ and complex analytic isomorphism

C/Λ - EΛ,

z - (℘̃(z; Λ), ℘̃′(z; Λ))

we can associate a curve Es−1Λ = s · E such that

C/s−1Λ - Es−1Λ,

z - (℘̃(z; s−1Λ), ℘̃′(z; s−1Λ))
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In order to define this map independent of any Weierstrass equations we recall that

℘̃(z; Λ′) = ℘̃(z; Λ) +
∑

ω′

(℘̃(z + ω′; Λ)− ℘̃(ω′,Λ)) ,

℘̃′(z; Λ′) = ℘̃′(z; Λ) +
∑

ω′

(℘̃′(z + ω′; Λ)− ℘̃′(ω′,Λ)) ,

where Λ′ = a−1Λ ⊆ Λ and notice that for G = E[a], and x = ℘̃(z,Λ) and y = ℘̃′(z,Λ),
the functions xG and yG defined by

xG(P ) = x(P ) +
∑

Q∈G−{0}

(x(P +Q)− x(Q)),

yG(P ) = y(P ) +
∑

Q∈G−{0}

(y(P +Q)− y(Q)),

correspond to xG = ℘̃(z,Λ′) and yG = ℘̃′(z,Λ′). This is precisely the isogeny we
defined in § 2.4.

For an arbitrary idele s and order O, the lattice sOb is a fractional ideal of O, which
we may write as n−1b for some integer n and integral ideal b. We have canonical
isogenies

C/Λ
ϕ−−−−−−→ C/b−1Λ

ψ←−−−−−− C/nb−1Λ,

which serve to define an elliptic curve E ′ = s · E. Namely, write sO = n−1a, and set
G = E[a]. Given any Weierstrass equation for E, in § 2.4 we described an explicit
Weierstrass equation for EG. And in the end of that section, we give the equation of
the curve E ′ mapping to EG = E ′

E[n]. This serves to define s · E = E ′.

This gives an action on the set of Weierstrass equations of elliptic curves over a finite
field. The above construction is valid for all ideles which are trivial at the prime of
reduction. In an ad hoc fashion we can extend the action to all ideles by letting the
prime of reduction act by the Frobenius isogeny. Note that only the decomposition
group of Gal(Kab/K) at a place p acts on the reduced curve at p, and that the image
curve of the Frobenius automorphism is defined to be the same as for the Frobenius
isogeny.

Example Suppose s ∈ JK and sΛ ⊆ Λ, so that sO = a is an integral ideal. Let
t = s and a = st = N(a) ∈ Z. Let α be a generator for ah, where h is the order of a

in Cl(O). Consider the following diagram, where the solid arrows are the canonical
quotient isogenies, shown for those isogenies induced by s and t. The dotted lines
down indicate the isomorphisms obtained by multiplication by α on lattices.
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- Et−1Λ
-

-

Ea−1Λ
-

-

Ea−1t−1Λ
-

-

- EΛ
-

-

Es−1Λ
-

-

Es−2Λ
-

-

- - -

- Et−1α−1Λ

?
-

-

Ea−1α−1Λ

?
-

-

Ea−1α−1Λ

?
-

-

- EαΛ

?
-

-

Es−1αΛ

?
-

-

Es−2αΛ

?
-

-

- - -

If we quotient out by isomorphisms, JK acts on the finitely many isomorphism classes
in particular, on their j-invariants. Below we represent isomorphism classes for those
elliptic curves (equivalently lattices) with endomorphism rings equal to orders OK ⊇
O1 ⊇ O2 ⊇ · · · where each Oi has index 2i in the maximal order OK of discriminant
−71. A vertex of the graph represents an isomorphism class of elliptic curve, a line
between them represents the existence an isogeny of degree two between members of
the classes.
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Graph of isogenies of degree two.

Through the arithmetic action of JK on E(K) of the previous section, only a subgroup
of the Galois group Gal(Kab/K) – the decomposition group of a prime p – acts on
the set of reduced curves at p. In contrast, reduction of elliptic curves is injective on
the set of isogenies so the full idele group acts on the image of the reduction map
via these fractional isogenies. Thus there exist fractional isogenies of elliptic curves
giving an automorphism of the above diagram in any characteristic.
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Chapter 4

The ordinary case

Throughout this section E will denote an ordinary elliptic curve over a finite field k
of q elements and characteristic p. Let π be the Frobenius endomorphism relative to
k. Recall that E is ordinary if it satisfies any of the following equivalent conditions.

1. E[pr] ∼= Z/prZ for all positive integers r.

2. End(E) is an order in a complex imaginary extension of Q.

3. The dual of the Frobenius endomorphism is separable.

4. The trace of the Frobenius endomorphism is relatively prime to q.

For an ordinary elliptic curve E over a field k, the full endomorphism ring End(E),
which we denote by O, is equal to Endk(E). For a rational integer l we denote
Z[π]⊗ Zl by Z[π]l and O ⊗ Zl by Ol.
The objective of this chapter is to describe methods by which to determine the isomor-
phism type of the endomorphism ring O, which we refer to as the endomorphism type
of E. We refer to the subset of curves in the isogeny class of E with endomorphism
type O as the endomorphism class of E. The algorithm of Schoof [27] is a polynomial
time algorithm for determining the trace t of Frobenius relative to k on E, so we
may assume that we know the subring Z[π] of O = End(E). The methods described
here will comprise elements of an algorithm for computing the endomorphism type
of a given ordinary elliptic curve E. We synthesize the various components into an
algorithm in the last section. We may let OK be the maximal order in the formal
field of fractions K = Z[π] ⊗ Q of discriminant DK , and let m be the conductor of
Z[π]. Then there exists an integer a such that

OK = Z

[
π − a
m

]
.

The integer a has the property that that (X − a)2 = X2 − tX + q mod m, and
is determined by the conditions that 2a ≡ t mod m and q − ta + a2 ≡ 0 mod m2.
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In particular, the integers a = (t + m)/2 and a = t/2 satisfy these conditions if
DK ≡ 1 mod 4, and DK ≡ 0 mod 4, respectively.

Let k/k be a finite extension of degree r. For integers ar and mr we write

OK = Z

[
πr − ar
mr

]
,

and let tr be the trace of the Frobenius endomorphism πr relative to k. Recall the
result of Lenstra [18] that

E(k) ∼= O
(πr − 1)

,

as a module over O. It follows that the group structure of E(k) is Z/lrZ×Z/nrZ, for
lr|nr and lrnr = qr−tr+1, and where lr is the largest integer dividing gcd(ar−1, mr).

Notice that the integers tr and mr are completely determined by the trace of π. They
are respectively

tr =

[r/2]∑

i=0

(−1)ibi(r)t
r−2iqi =

[r/2]∑

i=0

(−1)i
(
r − i− 1

i

)
tr−2iqi, and

mr = m

[r/2]∑

i=0

(−1)ici(r)t
r−2i−1qi = m

[r/2]∑

i=0

(−1)i
r

r − i

(
r − i
i

)
tr−2i−1qi,

where the coefficients bi(r) and ci(r) are determined by the recursions

bi(r) = bi(r − 1) + bi−1(r − 2) and ci(r) = ci(r − 1) + ci−1(r − 2).

subject to the boundary conditions b0(r) = 1, bi(2i) = 2, c0(r) = 1, and ci(2i) = 0.

To emphasize that the group structure of E(k) alone is not the appropriate k-
isomorphism invariant to be studied, consider the following example. Let K = Q(α)
where α2−α+5 = 0 and let OK be the maximal order in K. Let π = 9+5α, a prime
element of norm 251. Then both OK/(π − 1) and Z[π]/(π − 1) are isomorphic to
Z/229Z as groups, or as modules over Z[π]. But the group structure fails to capture
the fact that

OK
(π2 − 1)

∼= Z

5Z
× Z

12595Z
and

Z[π]

(π2 − 1)
∼= Z

62975Z
.

So the group structure of E(k) is a weaker invariant of study. As a point of record,
it should be pointed out that neither determination of the endomorphism type nor
of generators for O produces generators for the group and except in incidental cases,
actual generators for the endomorphism ring are not determined in this document.

The goal of the algorithm is to determine for each prime divisor l of the conductor of
Z[π], the largest power which divides π−a in End(E). The isogeny class of E contains
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h(O) curves with endomorphism ring O for each of the orders Z[π] ⊆ O ⊆ OK . From
the exact sequence of class groups

1−−−→(OK/mOK)∗

O∗
K(Z/mZ)∗

−−−→Cl(O)−−−→Cl(OK)−−−→1 (4.1)

derived in the Chapter 3, we can express the class number of O as

h(O) =
h(OK)

[O∗
K : O∗]

m
∏

l|m
prime

(
1−

(
DK

l

)
l−1

)
. (4.2)

In particular at each prime l|m the probability that O ⊗ Zl is equal to Z[π] ⊗ Zl

is at least (l − 1)/3 times as great as O ⊗ Zl being larger. Thus one expects the
endomorphism ring of E to contain Z[π] with small index.

Moreover, if one assumes that the discriminants t2 − 4q of the rings Z[π] generated
by the Frobenius endomorphism are in some sense random, the typical ring Z[π] is
expected to have discriminant equal to a small square multiple of the fundamental
discriminant of the field K, and Z[π] itself has small index in the maximal order. A
general algorithm for computing the isormorphism type of End(E) must treat the
exceptional cases in which the index [OK : Z[π]] is large and possibly divisible by a
large prime. However, methods will be described which are not applicable in such
exceptional cases, but reflect the needs of treating typical curves.

Throughout this chapter we will refer to the following examples of elliptic curves.

Example 1.

Let E/Fp be the elliptic curve given by Weierstrass equation

Y 2 = X3 − jE
48(jE − 123)

X − jE
864(jE − 123)

with j-value jE = 8898251418317952967445539870 mod p over the field of p elements,
where p is the prime

17747207550031772398868493073.

The trace t of Frobenius is equal to 81759951888758, so that

disc(Z[π]) = t2 − 4p = −25 · 32 · 41 · 97 · 16366333369 · 3430358152087.

The index of Z[π] in the maximal order of K = Z[π]⊗Q is 6.

Example 2.

Let Fp be the same field as in Example 1, and let E/Fp be the elliptic curve given by
Weierstrass equation

Y 2 = X3 − jE
48(jE − 123)

X − jE
864(jE − 123)
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with j-value jE = 17231256056072244361919990886 mod p.

The Frobenius endomorphism π has trace t equal to 145933714622674, hence

disc(Z[π]) = t2 − 4p = −222 · 33 · 712 · 5472 · 105953.

The index of Z[π] in the maximal order of K = Z[π]⊗Q is 211 · 3 · 76 · 547.

Example 3.

Let E/Fq be the elliptic curve of Atkin (see Schoof [28]) having Weierstrass equation

Y 2 = X3 − 105X − 78153

over the field of q elements, where q is the 200 digit prime

10000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000153.

Atkin determined the trace t of the Frobenius endomorphism to be

−6789750288004224118080314365460277641928049641888

39991591392960032210630561760029050858613689631599.

Thus the discriminant of Z[π] is equal to

t2 − 4p = −3 · 4621 · 5783 · 15667 · 23251 · 2580042061 · n1,

where n1 is a composite integer of 174 decimal digits. Provided n1 is square free, then
Z[π] is the maximal order, hence also the full endomorphism ring of E.

Example 3 demonstrates that while one can expect a random elliptic curve to have
endomorphism ring containing Z[π] with small index, even if Z[π] is maximal, this
fact can not be recognized in polynomial time.

4.1 Explicit kernels

Let E/k be an elliptic curve defined by a Weierstrass equation FE(x, y) = 0. As in
the previous section we denote the conductor of Z[π] by m and let a be an integer
such that π − a ≡ 0 mod mOK . We observe that since E is ordinary, the trace of
Frobenius is relatively prime to q, thus m is relatively prime to q and π determines a
linear automorphism

π : O/mO → O/mO,
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and the integer a is is the double eigenvalue modulo m of π. The objective is to find
the largest n for which π − a is the zero map on O/nO. The most direct way to
determine if a divisor n of m divides π− a in O is by comparing the homomorphisms
induced by π and [a] on the ring

k[X, Y ]

(FE(X, Y ), ψn(X, Y ))
,

where ψn(X, Y ) is the division polynomial for n. The endomorphism π − a is equal
to nα for some α in End(E) if and only if the kernel of π − a contains E[n]. Let
P1 = E/{[±1]}, let πP1 and [a]P1 be the maps induced on P1 by π and [a], and let
ψn(X) be a generator for (ψn(X, Y )) ∩ k[X]. Since

[a]P1(X) =
φa(X)

ψa(X, Y )2
∈ k(X), and πP1(X) = Xq,

one computes Xqψa(X, Y )2 − φa(X) mod ψn(X), which equals zero if and only if n
divides π−a in O. Note that we can take for a any of its coset representatives modulo
n, and all calculations are carried out modulo the polynomial ψn of degree O(n2). By
taking n = l, l2, . . . up to the highest power of a prime l dividing [OK : Z[π]], we find
the exponent of l in the index [O : Z[π]].

Example 4. We now return to our examples for this chapter.

In Example 1, we observe that the largest prime powers dividing the m are 2 and 3.
We find that 1 is a coset representative for a mod 6, so π acts as the identity on E[n]
for n|6 if and only if π − 1 is divisible by n in O. One finds that the 2-torsion group
is contained in E(k), but that the 3-torsion group is not. Thus Z[π] is contained in
End(E) with index 2.

In Example 2, we would need to consider the action of π on the torsion groups

E[2], E[22], . . . , E[211], on E[3], on E[7], E[72], . . . , E[76], and on E[547].

As we have noted, it is likely that the endomorphism ring contains Z[π] with small
index, and thus we are likely to find that E[lr] 6⊆ ker(π − a) well before treating the
largest power of l dividing the conductor of Z[π]. However, a priori we may have
to calculate the action of Frobenius on the subgroup of order 76 = 117649. In the
following section we describe a practical method for determining the index of Z[π]l in
Ol when a large power of l divides the conductor.

4.2 Probing the depths

The direct approach described above makes use of the decomposition of the conductor
of Z[π] into prime powers n = lr. However, it fails to further exploit the decomposition
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of n, if we find that a large power of l divides [O : Z[π]]. Here we describe how to
construct isogenies, using a factoring algorithm in k[X], in order to probe the depths

at which E lies relative to l.

First we make explicit the terminology which we use in this section. If O is maximal
at l, we say that E lies at the surface relative to l, where we may drop the qualification
relative to l if the prime l is understood. If the index [OK : O] is divisible by lr but
not lr+1, we say that E lies at depth or level r. If Ol = Z[π]l, we say that E lies at
the floor of rationality.

Let ϕ : E → E ′ be an isogeny of degree n. We define K = End(E) ⊗ Q. Then ϕ
determines a homomorphism

ι : O′ → K

sending ψ to ϕ−1ψϕ = ϕ̂ψϕ ⊗ n−1. Given any other isogeny η : E → E ′ with
deg(η) = k, the induced homomorphism O′ → K gives the same embedding:

η̂ψη ⊗ k−1 = η̂(ϕϕ̂)ψ(ϕϕ̂)η ⊗ k−1n−2

= (η̂ϕ)ϕ̂ψϕ(ϕ̂η)⊗ k−1n−2

= ϕ̂ψϕ(η̂ϕ)(ϕ̂η)⊗ k−1n−2

= ϕ̂ψϕ⊗ n−1,

where the next to last step relies on the commutativity of O′. In general, as we will
see with supersingular elliptic curves, the induced embedding of End(E ′) in a ring
End(E)⊗Q depends on the isogeny ϕ. For ordinary elliptic curves, we view all elliptic
curves in an isogeny class as embedded in a field K isomorphic to O⊗Q, where O is
any endomorphism ring of a curve in the isogeny class.

Proposition 21 Let E/k be an ordinary elliptic curve over the finite field k. Let

ϕ : E → E ′ be an isogeny of prime degree l different from the characteristic of k.
Then O contains O′ = End(E ′) or O′ contains O in K and the index of one in the

other divides l.

Proof. The proposition follows from the observation that

Z + l2O ⊆ Z + ϕ̂O′ϕ ⊆ O,

where Z + l2O has index l2 in O. If equality holds nowhere this translates into the
equality of O and O′ in K. If Z + l2O = Z + ϕ̂O′ϕ then O′ has index l in O and if
Z + ϕ̂O′ϕ = O then O is contained in O′ with index l.

Proposition 22 Let ϕ : E → E ′ be an isogeny of ordinary elliptic curves over k and

let O = End(E) and O′ = End(E ′). Then the following conditions are equivalent.

1. The orders O and O′ are isomorphic.
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2. The left ideal I(ker(ϕ)) = {ψ ∈ O : ψ(ker(ϕ)) = O} is a projective ideal of

norm equal to deg(ϕ).

3. There exists an isogeny ψ : E → E ′ of degree relatively prime to deg(ϕ).

Proof. We could deduce this result from the results of Chapter 3 and the Deuring
lifting theorem. Instead we take the approach of Tate. Let φ be the Frobenius
automorphism of k/k. Then Tate [31] has shown that for every prime l different from
the characteristic p of k, that

Hom(E ′, E)⊗ Zl
∼= HomZ[φ](Tl(E

′), Tl(E)),

where Tl(E) and Tl(E
′) are the Tate modules at l. Both sides have the structure of left

Ol-modules, and Zl[φ] and Zl[π] have the same representations on the Tate modules.
Moreover Ql[π] = O⊗Ql. Since EndZl[φ](Tl(E)) ∼= Ol and EndZl[φ](Tl(E

′)) ∼= O′
l, the

Tate modules Tl(E) and Tl(E
′) are isomorphic as Zl[φ]-modules if and only if Ol ∼= O′

l.
This is equivalent to Hom(E ′, E) ⊗ Zl being a free Ol-module. If these conditions
hold for all l 6= p, since Op is maximal at p, this is equivalent to Hom(E ′, E) being
projective as a left O-module. Observing that I(ker(ϕ)) = Hom(E ′, E)ϕ, this proves
the equivalence of the first two conditions. The degree map on isogenies of O equals
the norm map on the ring O. If the ideal I(ker(ϕ)) = Hom(E ′, E)ϕ has norm deg(ϕ)
then it follows that there exists an isogeny of degree relatively prime to deg(ϕ). By
decomposing an isogeny into isogenies of prime degrees, from condition 3 we deduce
that the orders O and O′ are isomorphic by the previous proposition.

The ideal I(ker(ϕ)) is called the kernel ideal for ϕ.

Proposition 23 Let E/k be an ordinary elliptic curve with endomorphism ring O
of discriminant D, let l be a prime, and let

(
D
l

)
be the Legendre symbol.

1. If Ol is maximal then there are
(
D
l

)
+ 1 isogenies of degree l to curves with

endomorphism ring isomorphic to O.

2. If Ol is nonmaximal, then there are no isogenies of degree l to curves with

endomorphism ring O.

3. If there exist more than
(
D
l

)
+ 1 isogenies of degree l, up to isomorphism, then

all isogenies of degree l are defined over k, and up to isomorphism of the pairs

(E,E ′) there are exactly

(
l −
(
D

l

))
[O∗ : O′∗]−1

elliptic curves E ′ and isogenies E → E ′ of degree l such that the endomorphism

ring O′ of E ′ is properly contained in O.



CHAPTER 4. THE ORDINARY CASE 46

Proof. Statements 1 and 2 follow by counting the number of projective ideals of
norm l. The final statement follows by enumeration of the remaining elliptic curves,
up to isomorphism, and applying the class number relations of equation (4.2). The
factor [O∗ : O′∗] is the size of the orbits of the action of automorphisms of E on the
set of cyclic subgroups of E[l].

Let E/k be an ordinary elliptic curve over the finite field k. We use this proposition
as follows.

If E lies at the floor of rationality, we can recognize this fact easily as follows. Since
Zl[π] = Ol, there are no elliptic curves in the isogeny class of E at depth greater than
E at l. By proposition 23, of the l+1 isogenies of degree l over k, exactly

(
D
l

)
+1 are

defined over k. If l divides the index m of Z[π] in OK then by assumption E is not
at the surface and this number is 1. The remaining l curves which are l-isogenous to
E over k are not defined over k. Thus we would like to use l-isogenies to probe the
depths for the floor of rationality, as we describe below.

Suppose that l is a prime dividing the conductor of Z[π], and E does not lie at the
floor of rationality. We construct an isogeny ϕ : E → E ′ of degree l. At the surface,
the number of isogenies to curves at greater depth is at least max((l − 1)/3, 1), and
at greater depth l of the l+ 1 isogenies lead down. If we choose an isogeny such that
E ′ lies at a greater depth than E, then all isogenies except the dual to ϕ continue
our descent. Thus we construct l-isogenies until we reach a curve at the floor of
rationality. Counting the number of levels down to a curve at the floor of rationality
gives the exponent of l in the index n = [O : Z[π]].

In the unfortunate event that our initial choice of l-isogeny did not begin this descent,
we overestimate the index n. For that reason we perform a second probe. By the
proposition, if E does not lie at the surface, one l-isogeny leads up and l isogenies of
degree l lead down to greater depth. If we begin our second probe along a different
l-isogeny, one path is certain to lead down, and we conclude that the exponent of l
in n is the minimum of the lengths of the two probes.

Finally, if we begin at the surface with respect to l, there are
(
D
l

)
+ 1 isogenies of

degree l to curves having the same endomorphism type. If l splits in O, we may have
the misfortune of floating indefinitely along the surface before beginning our descent.
However, we know that the maximum exponent of l to be that in the conductor of
Z[π]. If the length of both probes exceeds this bound, then we conclude that E lies
at the surface.

In practice this method is good for small primes for which we have a good model of
X0(l). The j-value of the isogenous curve E ′ is sufficient to determine whether E ′ is
defined over k.

We can now treat our examples.
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Example 5. Let E/Fp be the elliptic curve

Y 2 = X3 − jE
48(jE − 123)

X − jE
864(jE − 123)

of Example 2 over the field of

17747207550031772398868493073

elements and j-invariant jE = j0 = 17231256056072244361919990886 mod p. The
discriminant of Z[π] can be verified to be

disc(Z[π]) = t2 − 4p = −222 · 32 · 712 · 5472 · 105953.

Hence Z[π] is nonmaximal at the primes 2, 3, 7, and 547, and a curve at the floor of
rationality lies at depth 11, 1, 6, and 1 respectively with respect to 2, 3, 7, and 547.

By means of explicitly constructed sequences of isogenous curves, we can prove that
the index [Ol : Z[π]l] is 22 at l = 2, is 1 at l = 3, and is 7 at l = 7.

Index at 2. Let Φ2(X, Y ) be the modular equation of level 2. Let E = E0 and
let j0 be the j-invariant of the elliptic curve E. We can construct a sequence of j-
invariants ji of elliptic curves Ei by successively solving for a root ji+1 of Φ2(X, ji),
where ji+1 6= ji−1. Then each ji is the j-invariant of a curve Ei such that there exists
an 2-isogeny ϕi : Ei−1 → Ei over k. The first such sequence of curves, with j-values
given below, terminates after four isogenies in a curve at the floor of rationality.

j0 = 17231256056072244361919990886 mod p,

j1 = 11678349699364578632774192846 mod p,

j2 = 174908099099881991696854280 mod p,

j3 = 1741679273658591798810095273 mod p,

j4 = 859284985375096729566308140 mod p.

A second sequence of isogenies of degree two, represented by j-values below, termi-
nates after just two isogenies in a curve at the floor of rationality.

j0 = 17231256056072244361919990886 mod p,

j′1 = 10708566226384585303085918797 mod p,

j′2 = 10468492235421567140789372959 mod p.

In the first sequence, then, the first choice of isogeny above was to the unique curve
having endomorphism ring which containsO with index 2. Since the shortest sequence
of isogenies to the floor of rationality is of length 2, the index of Z[π]2 in End(E)2 is
22.
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Index at 3. Let Φ3(X, Y ) be the modular equation of level 3. Then Φ3(X, jE) has
exactly one root, hence E lies at the floor of rationality with respect to 3. Thus the
index of Z[π]3 in End(E)3 is 1.

Index at 7. Let Φ7(X, Y ) be the modular equation of level 7. Then Φ7(X, jE) splits
completely, so E does not lie at the floor of rationality, but E is 7-isogenous to a
curve with j-value 6762106650783712895725675431 mod p which does lie at the floor
of rationality, as do 5 of the other 6 curves 7-isogenous to E.

In order to determine the index of Z[π]l in End(E)l at l = 547, we could look at the
splitting of the division polynomial ψ547 of degree (5472− 1)/2 = 149604, or contruct
equations for the modular curve X0(547) and determine the number of Fp-rational
points lying over jE under the map X0(547)/Fp → X0(1)/Fp. However, in the next
section we will describe another method by which we can treat such large factors.

4.3 Isolated endomorphism classes

In this section we describe how to make use of the existence of large prime divisors
of the conductor of Z[π]. The techniques described here will be the only methods
by which we may construct endomorphisms of E not lying in Z[π]. This will not be
the motivating goal however, and we will incidentally produce such endomorphims
only when the endomorphism ring is unexpectedly large. If one takes a constructive
approach to the problem the methods outlined here can be applied to build generators
for O, but the computational complexity is significantly worse than that obtainable
for the determination of the endomorphism type of E.

By decomposition into prime degree isogenies, and application of proposition 21, we
see that an isogeny between elliptic curves of endomorphism types O1 and O2 must
have degree divisible by the integer

[O1O2 : O1] · [O1O2 : O2] = [O1 : O1 ∩O2] · [O2 : O1 ∩ O2].

Moreover, every elliptic curve in the isogeny class of E over k has endomorphism
ring containing Z[π]. Thus for any isogeny ϕ : E → E ′ of degree relatively prime
to the conductor of Z[π], the image curve E ′ also has endomorphism type O. By
proposition 22 the kernel ideal for ϕ is projective, and ϕ is principal if and only if E ′

is isomorphic to E. This gives us the bijection of the endomorphism class of E, up
to isomorphism, with the class group of O as described in section 3.4 of Chapter 3.

This suggests two approaches which we might exploit for the determination of the
endomorphism type of E. The first is to enumerate all of the h(O) elliptic curves in
the endomorphism class of E. This involves choosing a set of small prime generators
for the class group and using these to construct the corresponding endomorphisms of
elliptic curves. The second involves computation of principal ideals of smooth norm
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in a possible endomorphism ring O, and then determining the corresponding isogeny
to determine whether the image curve is isomorphic to E.

First we explore the possibilities of the enumeration approach. The class number
of Z[π] and the orders containing it can be exceedingly large. The discriminant of
O divides D = t2 − 4q, and the class number has bound O(

√
|D| log(|D|)). By the

Brauer-Siegel Theorem [4, Theorem 4.9.15], the growth of log(OK) is asymptotically
log(|DK |1/2), but the result is noneffective, and few absolute bounds on h(OK) from
below are known.

However, if the conductor of Z[π] is divisible by a large prime l, then the orders
containing

O1 = Z

[
π − a
l

]

have discriminants dividing (t2 − 4q)/l2 and class numbers of these orders divide the
class number h(O1). Thus if we can enumerate the elliptic curves, up to isomorphism,
in the endomorphism class of E until we exceed h(O1), we can conclude that E lies
at the floor of rationality with respect to l.

Such a calculation presupposes that we have determined h(O1) and that we have small
splitting primes in O1 from which we can feasibly construct sequences of isogenies of
small degree to all members of the endomorphism class. In the last section we will deal
with the existence questions and the bounds necessary to derive complexity bounds
on this method.

In order to enumerate the curves in the endomophism class of E, up to isomorphism,
we blindly explore the bounds of the class until we have determined the size of the
world to which E is confined. This fails to exploit the considerable knowledge we
have of the ideal group acting on the endomorphism class of E. Instead we can build
on the algorithms for ideal class groups to find class group relations among small
splitting primes r1, . . . , rc in the order O1. In doing so we obtain a principal ideal
(β) = rs11 · · · rsc

c ⊆ O1, with exponent sum u = s1 + · · ·+ sc and let b = βO ∩O. By
constructing the sequence of isogenies:

E0 = E → E1 = E/E[r1]→ E2 = E/E[r2
1]→ · · · → Eu = E/E[b],

each of small degree, we obtain a curve Eu = E/E[b] which is isomorphic to E if and
only if b is principal. Typically we find β in a ring O1 containing Z[π] with large
index, and we expect b to be nonprincipal in O = End(E). In the incidental case
that O ⊇ O1 we have constructed a new endomorphism E −→ E ′ ∼= E.

We now recap the procedure for constructing the isogeny with kernel ideal r. We note
that any prime ideal r of O which does not divide the discriminant of Z[π] can be
written in the form (r, π− b) for r = N(r) and b ∈ Z. Let FE(X, Y ) be a Weierstrass
equation for E and let ψr(X, Y ), ψb(X, Y ), and φb(X) be the division polynomials on
E in the notation of § 2.2. The kernel of the isogeny E → E ′ = E/E[r] is determined
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by the ideal

I = (ψr(X, Y ), Xqψb(X, Y )2 − φb(X)) ⊆ k[X, Y ]

(FE(X, Y ))
.

We let ψ(X) be a generator for I ∩ k[X], and construct E/E[r] using the formulas of
§ 2.4.

We can now complete the determination of the endomorphism type of the curve E of
Example 2. We return to the complexity issues in the following section, in which we
synthesize an algorithm.

Example 6. Now we can complete the calculation of the index of Z[π] inO = End(E)
for the curve of Example 2. In order to have class group of the smallest possible size,
it will be useful to have an isogenous curve near the surface for each of the primes 2,
3 and 7. It is easy to find a curve one level above the floor of rationality for l since the
unique isogeny of degree l over Fp from a curve at the floor of rationality is to a curve
with larger endomorphism ring. Finding a curve at the surface, however, involves a
random search for one lying at the surface. Of the l + 1 elliptic curves isogenous to
E via an isogeny of degree l, only one lies at a depth less than E. At each depth
above the floor of rationality one must calculate up to l + 1 isogenies and determine
the depth of each by the methods of the previous section. By means of such a search
we identify an elliptic curve E0 with j-invariant

j0 = 580821385975059568086463192 mod p

at the surface with respect to 2, 3, and 7. We know then that the endomorphism ring
has either discriminant −3 ·5472 ·105953 or is maximal with discriminant −3 ·105953.
In the maximal order there exists a principal ideal p13p

3
19 of norm 13 · 193. Since 13

and 19 do not divide the conductor of Z[π], in any order O1 containing Z[π], the
primes p13 and p19 restrict to primes q13 = (13, π − 3)O1 and q19 = (19, π + 3)O1 in
O1.

The curve E0/E0[q13] isogenous to E0 via the isogeny of degree 13 induced by the
ideal q13 has the following j-value:

j1 = 4912256076205411462701139763 mod p.

Further, constructing isogenies induced by the ideal q19, we get a sequence of elliptic
curves having j-invariants as follows.

j2 = 6695768474115274781661782366 mod p,

j3 = 10013983805943763612560658488 mod p,

j4 = 7630889439855778258800203176 mod p.

Since the final curve has j-value j4 6= j0, we can conclude that q13q
3
19 is not principal

in the endomorphism ring of E0, so it has discriminant −3 · 5472 · 105953. Combining
the index calculations done in Example 5, we conclude that the endomorphism ring
O of E has discriminant −218 · 32 · 710 · 5472 · 105953.
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4.4 Computation of the endomorphism type

The objective of this section is to prove the following theorem.

Theorem 24 There exists a deterministic algorithm that given an elliptic curve E
over a finite field k of q elements, computes the isomorphism type of the endomorphism

ring of E and if a certain generalization of the Riemann hypothesis holds true, for

any ε > 0 runs in time O(q1/3+ε).

The algorithm combines the methods of the previous sections to produce a determin-
istic algorithm. Throughout this section, B will be a positive integer. We refer to
primes or prime powers less than or equal to B as small, and those greater than B as
large. The notation for the endomorphism ring O, the field of fractions K = O ⊗Q,
and the discriminant D and the conductor m of Z[π] remain as previously defined.
The maximal order of K is the order

OK = Z

[
π − a
m

]
.

The proposed algorithm uses the calculation of explicit kernels from § 4.1 to test
the index of Z[π] in O for all integers n|m up to the bound B. Larger primes and
prime powers will be treated using class group calculations as in § 4.3. While the
method of probing the depths of § 4.2 provides a practical method for handling small
primes dividing the conductor, for lack of a fast, deterministic factorization algorithm
for polynomials over finite fields, it will not play a role in the complexity analysis.
Moreover, in the final analysis, a worst case scenario in which no powers of small
primes occur in the index m renders this additional tool inapplicable. Although we
do maintain the restriction to deterministic algorithms, for the sake of exhibiting
small splitting primes, we venture into conjectural territory and assume a certain
generalized Riemann hypothesis.

Proof of Theorem 24. The first step in the determination of the endomorphism
type of E is to calculate the trace t of the Frobenius endomorphism, and second, to
factor its discriminant t2−4q to discover m, and determine a. As noted in Example 3,
the factorization step can be an obstacle to the endomorphism type computation for
E even when the ring Z[π] itself is maximal. Existing factoring algorithms perform
better than the result of the theorem, in fact we can find all square factors in time
O(q1/6+ε).

Next we consider the divisors of m below the bound B. As we have noted, it suffices
to consider prime power divisors. For any prime power divisor n ≤ B, we apply the
explicit kernel calculation of § 4.1. The following lemma gives the complexity of the
computation.

Lemma 25 There exists an algorithm to calculate the kernel of π−a on E[n] in time

O(n2 log n log q).
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Proof. Let ψn(X, Y ) be the n-th division polynomial, and let ψn(X) be a generator
for (ψn(X, Y ))∩ k[X]. Then ψn(X) defines the n-torsion points of E. As observed in
§ 4.1 it suffices to compute

Xqψa(X, Y )2 − φa(X) mod ψn(X),

and let
ψ0(X) = gcd(Xqψa(X, Y )2 − φa(X), ψn(X)).

Then ψ0(X) defines the kernel of π − a on E[n]. Since the degree of ψn(X) is
O(n2), using fast multiplication and fast gcd algorithms, this can be achieved in
time O(n2 log n log q).

Thus we can apply explicit kernel calculations to determine if n divides [O : Z[π]] for
all of the O(log q) divisors up to B in time O(B2 logB(log q)2).

At this point we need to make use of the conjectural existence of many small primes.
Lagarias and Odlyzko [14] prove that a result of this sort follows from the truth of a
generalized Riemann hypothesis. First we need to introduce some notation. Let

Li(x) =

∫ x

2

dt

log(t)
∼ x

log(x)
,

and for any Galois extension L/F of number fields, we can define the Artin symbol
[p, L/F ] on primes of F as a conjugacy class of G = Gal(L/F ). For each conjugacy
class C of G, define

πC(x, L/F ) =
∣∣{p : p is unramified in L, [p, L/F ] = C, and NK

Q (p) ≤ x}
∣∣ ,

and let nL be the degree of the extension L/Q and DL be its discriminant. The
theorem of Lagarias and Odlyzko is as follows.

Theorem 26 There exists an effectively computable positive absolute constant c1
such that if the generalized Riemann hypothesis holds for the Dedekind zeta function

of L, then for every x > 2 and conjugacy class C of Gal(L/F )
∣∣∣∣πC(x, L/F )− |C||G| Li(x)

∣∣∣∣ ≤ c1

( |C|
|G|x

1/2 log(|DL|xnL) + log(|DL|)
)
.

Proof. [14, Theorem 1.1].

We apply this theorem with L = K and F = Q, and C = {1}. Lagarias and Odlyzko
observe that the crossover point for Li(x) and their bound occurs below

x0 = c2(log |DL|)2(log log |DL|)4,

for some effectively computable constant c2. If we set a smoothness bound S at some
value greater than x0 we are guaranteed to have an effectively computable positive
fraction of Li(S) splitting primes in OK with norm less than S. We state this as a
corollary of the theorem.
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Corollary 27 For every ε > 0 and t > 2 there exists an effectively computable

real number d such that if K is a quadratic extension of Q with |DK | > d then for

S = (log |DK |)t,
∣∣π{1}(S,K/Q)

∣∣ ≥ (1− ε) Li(S)

2
.

Hereafter we assume we have fixed an order O1 such that [O1 : Z[π]] = n1 is a large
prime power. Also let S be a fixed smoothness bound, and let {r1, . . . , rc} be a set of
primes of O1, relatively prime to D = t2−4q and bounded in norm by S. We further
assume that N(ri) 6= N(rj) for i 6= j, so that for positive integers si and ti, if

rs11 · · · rsc

c rt11 · · · rtcc

is principal and generated by β ∈ O1, then β 6∈ O∗
1Z, as long as not all si = ti. We

refer to such a set of primes {r1, . . . , rc} as a factor base.

In practice the calculation proceeds by first using the exact sequence (4.1) of class
groups to find relations in the class group of OK , then to determine relations in the
kernel

(OK/m1OK)∗

O∗
K(Z/m1Z)∗

of the surjection Cl(O1) → Cl(O). In the complexity analysis, this separation is
suppressed. Thus the first step is to determine enough ideals rs11 · · · rsc

c over the factor
base {r1, . . . , rc} to guarantee that the map of these ideals to Cl(O1) is not injective.
Thus we fix an exponent bound u and form a list of product ideals rs11 · · · rsc

c in the
factor base with

∑
si ≤ u until the number of ideals exceeds the class number of O1.

The number of ideals over the factor base of size c with total exponent bounded by
u is

(
u+c
c

)
. The following combinatorial lemma will be useful to choose appropriate

values of u and c.

Lemma 28 The binomial coefficient
(
u+c
c

)
satisfies the following bounds.

(
u+ c+ 1

c+ 1

)c+1(
u+ c + 1

u+ 1

)u+1

u+ c+ 1

≤
(
u+ c

c

)
≤
(
u+ c

c

)c(
u+ c

u+ 1

)u
.

Proof. The bounds follow from comparing the logarithm of
(
u+c
c

)
to the integral of

log(x).

We would like to choose u and c in order to bound the class number of O1 by the
number of ideals we can produce as products of elements in the factor base {r1, . . . , rc}
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having total exponent bounded by u. Thus we would like to have

h(O1) ≤

(
u+ c+ 1

c+ 1

)c+1(
u+ c+ 1

u+ 1

)u+1

u+ c+ 1

≤
(
u+ c

c

)
.

(4.3)

We are able to satisfy these bounds, but it will not be sufficient to produce a smooth
element of O1. We would like to produce a smooth element β which generates O1⊗Zl

over Zl. As a consolation, we will obtain bounds which constrain the index [O1⊗Zl :
Zl[β]].

Lemma 29 For every δ > 0 and t > 2 there exists a deterministic algorithm which,

given a discriminant D1 of an order O1 in a complex imaginary extension K/Q for

which a generalized Riemann hypothesis holds, returns an element β of O1 − Z such

that

1. all prime factors of β are bounded in norm by O((log |D1|)t), and

2. the norm of β is bounded by O(|D1|γ), where γ =
(1 + δ)t
(t− 1)

,

and runs in time O(h(O1) log |D1|).

Proof. Set γ0 = 1 + δ, then let

u =
γ0 log |D1|

(t− 1) log log |D1|
and set c = ut − 1.

Choose a factor base {r1, . . . , rc} consisting of one prime lying over each of the first c
primes of Z which split in O1. The number of ideals a = rs11 · · · rsc

c with
∑
si ≤ u is

then
(
u+c
c

)
, which is bounded below by

(
ut + u

ut

)ut (
ut + u

u+ 1

)u

u+ 1
∼
eu
(
ut + u

u+ 1

)u

u+ 1
,

by Lemma 28 and the observation that for fixed t > 2, the term
(
ut+u
ut

)ut

∼ eu.

From the bound h(O1) = O(|D1|1/2 log |D1|), we find that for the choice of u and c
above, and for all |D1| sufficiently large, that

(
u+c
c

)
exceeds h(O1). Once we have

listed a number of ideals in excess of the class number of O1, we find two ideals
a = rs11 · · · rsc

c and b = rt11 · · · rtcc lying in the same class. Thus there exists β in O1

such that
(β) = ab = rs11 · · · rsc

c rt11 · · · rtcc ,
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and the running time is dominated by the calculation of reduced ideal classes for up
to h(O1) ideals. Since we can find a reduced binary quadratic form representing the
class of an ideal rs11 · · · rsc

c in time O(log |D1|), this gives the stated complexity bound.

We now apply Corollary 27 to conclude that for |D1| sufficiently large, if the gener-
alized Riemann hypothesis for K holds, then the maximum norm of a prime in the
factor base {r1, . . . , rc} is bounded by S = (log |D1|)t. Note that we must exclude
from the first splitting primes of K at most log |D1| primes dividing the conductor of
O1. Thus we conclude that

log N(β) ≤
c∑

i=1

(si + ti) log N(ri) ≤ 2u logS =
tγ0

t− 1
log |D1| = γ log |D1|.

This completes the proof of the lemma.

For each prime power n1 > B, we construct β ∈ O1 as above. The computation of
the isogeny with kernel E[b], where b = βO ∩ O can be done in polynomial time.
If b is not principal, then O1 is not contained in O and the conductor of O does
not divide m1 = m/n1. If β lies in O, then we have constructed an entirely new
endomorphism which, much as π, has a compact representation. By the bound on
N(β), the discriminant of Z[β] satisfies

| disc(Z[β])| ≤ 4N(β) = O(|D1|γ),

where γ = (1 + δ)t/(t− 1), and the index of Z[β] in O1 is bounded by O(|D1|(γ−1)/2).

Thus we have constructed an endomorphism β : E → E as an element of OK , about
which we know the following data.

1. A representation β = a1+b1ω in OK , where ω = (π−a)/m; thus in particular we
know the conductor b1 of Z[β] and an integer a1 such that β−a1 ≡ 0 mod b1OK .

2. Rational functions αi : Ei−1 → Ei for 1 ≤ i ≤ u, such that E = E0 = Eu, such
that β is the composite of the αi, and such that each αi has degree bounded by
S.

We call such an isogeny an explicit S-smooth isogeny for E. We now adapt the
explicit kernel calculations of § 4.1 to Z[β].

Lemma 30 There exists a deterministic algorithm which takes an explicit S-smooth

isogeny β : E → E and a divisor n of the conductor of Z[β], and which determines if

n divides [O : Z[β]] in O(n2(n2 log S + S logn)u) polynomial time operations in k.

Proof. As with the algorithm of § 4.1 it will suffice to determine the action of β on
the image of E[n] in E/{[±1]} = P1, and compare this with the action of [a1]. Let β
be the composite

E = E0
α1−−−−−→ E1

α2−−−−−→ · · · αu−−−−−→ Eu = E,
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and the map induced by αi on P1 be αi|P1(x) = ϕi(x)/χi(x). For each i let ψ
(i)
n (X, Y )

be the n-th division polynomial on Ei, and let ψ
(i)
n (X) be a generator for (ψ

(i)
n (X, Y ))∩

k[X]. We are interested in the induced maps:

k[X]

(ψn(X))
=

k[Xu]

(ψ
(u)
n (Xu))

−→ · · · −→ k[X1]

(ψ
(1)
n (X1))

−→ k[X0]

(ψ
(0)
n (X0))

=
k[X]

(ψn(X))
.

Rather than concerning ourselves with inverting elements in the above rings, we
express a quotient

σ(X)

τ(X)
∈ k[X]

(ψn(X))

as (σ(X) : τ(X)). In order to compose maps, we denote the homogenization of
(σ(X) : τ(X)) by (σ̃(X,Z) : τ̃ (X,Z)), where

σ̃(X,Z) = σ(
X

Z
)Zd and τ̃(X,Z) = τ(

X

Z
)Zd,

for d = max(deg(σ(X)), deg(τ(X))).

We can then compute the map Xi = (Xi : 1) 7−→ (σi(X) : τi(X)) given by αi◦· · ·◦α1,
by setting (σ0(X) : τ0(X)) = (X : 1) and recursively calculating

(σi(X) : τi(X)) = (σ̃i−1(ϕi(X), χi(X)) : τ̃i−1(ϕi(X), χi(X))),

where σi(X) and τi(X) are calculated modulo the polynomial ψn(X). This gives

βP1(X) ≡ σu(X)

τu(X)
mod ψn(X).

In order to determine if β and [a1] agree on E[n] it remains only to calculate

σu(X)ψa1(X, Y )2 − φa1τu(X) mod ψn(X),

for the division polynomials φa1(X) and ψa1(X, Y ). The result is zero if and only if
E[n] ⊆ ker(β − [a1]), and thus n divides the index [O : Z[β]].

The complexity of the calculation is dominated by the calculations of the composites

σ̃i−1(ϕi(X), χi(X)) and τ̃i−1(ϕi(X), χi(X)).

For this computation, we need deg σi−1 + deg τi−1 = O(n2) multiplications of polyno-
mials of degrees n2 and S. Using fast multiplication methods, this gives a complexity
of O(n2(n2 logS + S logn)) for each of the u compositions of isogenies. This proves
the stated complexity for the algorithm.

Note. In our application, we have bounds S = O(n), and log(deg β) ≤ u logS. Thus
the complexity is O(n4 log(deg β)). A much better complexity bound can be obtained

if we compute each of the polynomials ψ
(i)
n (X) and compute the image of

X = (X : 1) 7−→ (σi(Xu−i) : τ(Xu−i))
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induced by αu ◦ · · · ◦ αu−i by setting (σ0(Xu) : τ0(Xu)) = (Xu : 1), recursively
calculating the composites

(σi(Xu−i) : τi(Xu−i)) = (ϕ̃u−i(σi−1(Xu−i), τi−1(Xu−i)) : χ̃u−i(σi−1(Xu−i), τi−1(Xu−i)))

modulo ψ
(i)
n , and making use of the fact that the degrees of ϕ and χ remain bounded

by S. The improved complexity is not necessary since we are able to control the size
of n by selecting a larger value of t in Lemma 29.

We apply this lemma with n equal to the greatest common divisor of [O1 : Z[β]] and
n1 to decide if n1 divides [O : Z[π]]. Thus Lemma 25, Lemma 29, and Lemma 30
complete the index calculation for all prime powers dividing the conductor of Z[π].
By choosing B = q1/6, all prime powers less than or equal to B can be determined
in time O(q1/3(log q)2) by Lemma 25. We apply Lemma 29 to orders O1 with [O1 :
Z[π]] equal to a prime power greater than B. Then the discriminant of O1 satisfies
|D1| = O(q2/3), and so the running time is O(q1/3(log q)2), where we use the bound
h(O1) = O(|D1|1/2 log |D1|). If we set δ = 1/80 and t = 10, then we apply Lemma 30
with S = O((log q)10), with log(deg β) = O(u logS) = O(log q), and n = O(|D1|1/4)
to obtain a complexity bound of O(q1/3(log q)6). All of the log q factors, polynomial
time calculations in k, and treatment of the O(log q) divisors of the conductor of Z[π]
are subsumed under the factor qε in the complexity for the final algorithm, with the
bounding constant appropriately adjusted. This completes the proof of Theorem 24.
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Chapter 5

Arithmetic of quaternion algebras

In this chapter we introduce the arithmetic of quaternion algebras which we need in
order to understand the endomorphism rings and arithmetic of supersingular elliptic
curves.

5.1 Introduction to quaternions

A quaternion algebra A over a field F is defined to be a central simple algebra of
dimension four over F , that is, A is a ring with no nontrivial two-sided ideals, equipped
with a homomorphism of rings F → A which is an isomorphism with the center
of A and which gives A the structure of a vector space of dimension four over F .
We identify F with its image in A under this homomorphism. We consider only
quaternion algebras over Q, or over one of the completions Qp or R at a place of
Q. We define a lattice in a quaternion algebra A over Q to be a finitely generated
Z-module which contains a basis for A over Q, and adopt the notation Λ for such a
lattice. A lattice in a quaternion algebra over Qp is a finitely generated Zp-module
containing a Qp-basis. We denote an order of a quaternion algebra, defined to be a
lattice which is a subring containing 1, by O. Moreover, for a finite prime p or the
infinite prime ∞ of Q, we make the following definitions:

Ap = A⊗Q Qp and A∞ = A⊗Q R,

Op = O ⊗Z Zp, and Λp = Λ⊗Z Zp.

The Wedderburn structure theorem [25, Chapter 1, Theorem 7.4] implies that a
quaternion algebra over a field F is either a central division algebra over F or isomor-
phic to the matrix algebra M2(F ). If A is a quaternion algebra over Q then a prime p
is said to ramify if Ap is a division algebra or split if Ap is isomorphic to M2(Qp). The
ramification index of p is defined to be 2 is p ramifies in A and equal to 1 otherwise.
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A quaternion algebra which ramifies at infinity is called definite, and one which splits
at infinity is called indefinite.

As a consequence of the Wedderburn theorem, for any α in A not in the center F ,
the commutative ring K = F [α] is of dimension two over F . This follows easily if
α is a unit in A for then K is a field extension of F , and A is a vector space and
noncentral algebra over K, hence K/F is necessarily quadratic. If α is not invertible,
then A must be isomorphic to M2(F ), and so α satisfies its characteristic equation
of degree two. Thus every noncentral element generates a quadratic extension of the
center, and the maximal commutative subrings of A are quadratic extensions over F .
The quaternion algebras which arise from supersingular elliptic curves are division
algebras over Q, and the maximal subfields of A are imaginary quadratic extensions
of Q.

To each α in A we can associate its conjugate α in F [α]. The map A −→ A taking
α to α gives an involution of A. We define the reduced norm N : A −→ F and the
reduced trace Tr : A −→ F by N(α) = αα and Tr(α) = α + α. Hereafter we refer to
these maps as the norm and trace, respectively, which should not be confused with the
norm and trace of the vector space endomorphism of A given by left multiplication
by α.

The Brauer group of a field F provides a means of classifying the central simple
algebras over F . We define a relation ∼ on the set of central simple algebras over
F by the definition that A ∼ B if and only if there exist finite dimensional vector
spaces V and W over F such that

A⊗F End(V ) ∼= B⊗F End(W ),

as algebras over F . Denote by [A] the equivalence class of A under this relation. For
two central simple algebras A and B over F , the tensor product A ⊗B is again F -
central and simple [15, Chapter 4, Theorem 1.2], so we define a semigroup operation
on the set of equivalence classes by [A] · [B] = [A ⊗F B] with [F ] as the identity
element. Denote this semigroup by Br(F ).

For each algebra A we can construct its opposite algebra Aop as the algebra with the
same underlying F -vector space and multiplication defined by aop ·bop = (ba)op. Then
there exists an isomorphism:

θ : A⊗F Aop −→ EndF (A)

defined by θ (a⊗ bop) (c) = acb. It follows that [Aop] = [A]−1 and therefore Br(F ) is
a group.

The conjugation involution defines an isomorphism between a quaternion and its
opposite algebra, thus quaternion algebras have order 2 in the Brauer group of F .
By the Wedderburn theorem [25] every central simple algebra over F has the form
Mn(D) for a central division algebra D over F . As a consequence, we state the
following classification theorem for classes of the Brauer group.
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Theorem 31 The elements of Br(F ) are in one to one correspondence with the iso-

morphism classes of central division algebras over F , by the map D 7→ [D].

Proof. [15, Chapter 4, Proposition 1.4].

Finally we recall a fundamental exact sequence from class field theory [32]. A central
result from local class field theory states that there exists a canonical isomorphism
invp : Br(Qp) ∼= Q/Z for all finite p, and Frobenius proved in 1878 that Br(R) has
order two, which by analogy we embed in Q/Z by a homomorphism which we denote
inv∞. Then there exists an exact sequence of groups:

0 - Br(Q) -
⊕

p

Br(Qp)
inv- Q/Z - 0,

where Br(Q) maps diagonally to
⊕

p Br(Qp) via [A] 7→
⊕

p[Ap], and the surjection
on Q/Z is given by inv =

∑
invp. Necessarily the number of primes ramifying in a

quaternion algebra over Q, including the infinite prime, is finite and even in number.
Moreover, the image of the quaternion algebras in the Brauer group of Q equals the 2-
torsion subgroup of Br(Q). The quaternion algebras which arise from endomorphism
rings of supersingular elliptic curves are ramified at the characteristic p and at ∞,
thus form a set of generators for the two torsion subgroup of Br(Q).

Before moving on to the study of orders and ideals, we give the following examples
of quaternion algebras.

1. Over the real numbers, the algebra

R + Ri+ Rj + Rij,

defined by the relations i2 = −1, j2 = −1, and ij = −ji, generates the Brauer
group of R. This is Hamilton’s classical ring of quaternions.

2. For any prime p there is up to isomorphism a unique quaternion algebra over
Q ramified at p and ∞. For instance the algebra

Q + Qi+ Qj + Qij

satisfying i2 = −3, j2 = −1223, and ij = −ji defines the algebra ramified at
1223 and ∞.

5.2 Orders, ideals, and class groups

The purpose of this section is to present the main results of the integral arithmetic
of quaternion algebras over Q. The material is primarily drawn from the articles of
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Pizer [23], [24] and the definitive book on the subject by Vignéras [34]. For simplicity
of presentation the focus will be on the maximal orders in a quaternion algebra A over
Q. Most of the results in this section hold for the nonmaximal orders of a certain
associated level which is analogous to the conductor of an order in an imaginary
quadratic extension of Q.

The following propositions will provide the main tools for working with quaternions.

Proposition 32 Let A be a quaternion algebra over Q. Let M be a lattice in A.

There exists a bijection between lattices Λ and collections of lattices (Λ(p))p<∞ such

that Λ(p) is a lattice in Ap and Λ(p) = Mp for almost all primes p, and the inverse

bijections are given by:

Λ 7−→ (Λp)p<∞ and (Λ(p))p<∞ 7−→
⋂

p<∞

(A ∩ Λ(p)).

Proof. Vignéras [34, Proposition 5.1]

To show the necessity of the condition that the local data agree almost everywhere
with a globally defined lattice, consider the following example. Let A = M2(Q) and
let (Λ(p)) = (α−1

p M2(Zp)αp), where

αp =

(
0 1
p 0

)
.

Then the intersection of the Λ(p) inside of A is equal to the ring of upper triangular
matrices in M2(Q), hence does not have full rank.

Proposition 33 Let A be a quaternion algebra over Q, let p be a finite prime of Q,

and let e be the ramification index of p in A.

1. If Ap is a division algebra over Qp, then there is a unique maximal order

Op = {α ∈ Ap : N(α) ∈ Zp}.

2. If Ap is isomorphic to M2(Qp), then all maximal orders are conjugate to

M2(Zp) under this isomorphism.

3. A maximal order Op of Ap has a unique maximal two-sided ideal P. Every

two-sided ideal of Op is of the form Pm for an integer m, and Pe = (p).

Proof. Reiner [25, Theorems 12.8 and 17.3].

Proposition 34 Let O be a maximal order of A. Then every left ideal of Op is

principal at all finite primes p. A left ideal I of O is projective if and only if it is

locally free at all finite primes p.
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Proof. The first statement is Theorem 17.3 of [25]. It follows that I is projective if
and only if at Ip = Opαp for an invertible element αp in A∗

p at each finite prime p.

Definition. Let O be a maximal order in A. We define a fractional ideal I of O to
be a lattice in A such that αI ⊆ I for all α in O. Throughout this section we make
the convention of referring to fractional ideals as ideals, and reserve integral ideal for
a fractional ideal of O which is contained in O. Two left ideals I and J of O are
said to belong to the same class if I = Jβ for some β in A∗. The class number of O,
denoted H , is the number of distinct classes of projective left ideals. Two maximal
orders O and O′ belong to the same type if O′ = α−1Oα for some α in A∗. As a
consequence of the theorem of Skolem–Noether [25, Theorem 7.21], a maximal order
type coincides with an isomorphism class of orders. The type number T is defined to
be the number of distinct types of maximal orders.

As with number fields, we can define a ring of adeles for A. For any order O of A,
we define the adele ring AA of A to be the restricted product of the localizations Ap

with respect to the rings Op. If S is a finite set of places of Q including infinity, then
we let

AS =
∏

p∈S

Ap ×
∏

p 6∈S

Op,

endowed with the product topology. Each AS is a locally compact topological ring,
and we define AA to be the union of the AS inside of

∏
p Ap, with each AS embedded

as an open topological subring. Note that any two orders of A differ at only finitely
many primes, hence AA is independent of the order O in the above definition.

The group of ideles JA is defined to be the group of units in AA, with the topology such
that the homomorphism JA −→ AA×AA given by x 7→ (x, x−1) is a homeomorphism
onto its image.

For each p we introduced the reduced norm map N : Ap −→ Qp, which we can use
to define a norm map on the ideles. Let | · |p : Qp −→ Q be the absolute value,
normalized as usual so that |p|p = p−1. We define

N : JA
- Q∗

s = (αp) -
∏

p

|N(αp)|p .

Define J1
A to be the kernel of the norm map in JA. By means of the diagonal embed-

ding, A∗ embeds in J1
A. Define also U(O) = {s = (αp) ∈ J1

A : αp ∈ O∗
p for all p <∞}.

Proposition 35 Let A be a quaternion algebra over Q and O a maximal order in A.

Then the following results hold.

1. A∗ is a discrete subgroup of J1
A.

2. J1
A/A

∗ is compact.

3. U(O) is an open compact subgroup of J1
A.
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Proof. Weil [36].

From the correspondence between global lattices and collections of local lattices, for
every left ideal I of an order O and every idele s = (αp), there exists a left ideal J
such that Jp = Ipαp for all p, and we define J = Is. Under the action of J1

A on the
set of left projective ideals given by I 7→ Is, the isotropy group is U(O).

Proposition 36 The double cosets U(O)\J1
A/A

∗ are in bijective correspondence with

the ideal classes of projective left ideals of O via the map s 7→ Os.

Proof. Let I and J be projective left ideals for O. By Proposition 34, for each
prime p there are elements αp and βp in A∗

p such that Ip = Opαp and Jp = Opβp. By
Proposition 32, for almost all primes αp and βp lie in O∗

p. Then s = (α−1
p βp) lies in

J1
A and J = Is. Thus the action is J1

A is transitive, and the result follows.

We define the normalizer N(O) of O to be

N(O) = {α ∈ A∗ : α−1Oα = O},

and define the normalizer N(Op) of the order Op in Ap similarly. Then let N(O) to
be the restricted product of N(Op) with respect to the local units O∗

p.

Proposition 37 Conjugation by J1
A defines a transitive action on the set of maximal

orders of A. The isomorphism classes of maximal orders are in bijective correspon-

dence with the set of double cosets N(O)\J1
A/A

∗ by the map s 7→ s−1Os.

Proof. Let O and O′ be two maximal orders of A. By Proposition 33 at each prime
p, the orders Op and O′

p are conjugate: O′
p = α−1

p Opαp. But O′
p = Op at almost all

primes p by Proposition 32, so t = (αp) lies in J1
A and O′ = t−1Ot. By definition,

N(O) lies is the stabilizer of O under the action of J1
A by conjugation on the set

of maximal orders. All isomorphisms of maximal orders are determined globally by
conjugation by A∗, thus the bijection follows.

Proposition 38 The class number H and the type number T are finite, and T is less

than or equal to H. For each maximal order, the number H of classes of left ideals is

equal to the number of classes of right ideals and is independent of the maximal order

of A.

Proof. The finiteness follows from Proposition 36 and Proposition 35 and since
N(O) contains U(O), the classes of maximal orders is a quotient of the classes of left
ideals by the action of N(O). The map J1

A −→ J1
A sending s 7→ s−1 is a continuous

involution of J1
A which restricts to continuous involutions of U(O) and A∗. Thus we

have a bijection
U(O)\J1

A/A
∗ −→ A∗\J1

A/U(O),
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hence also of the left and right classes of projective ideals. Likewise, for each idele
t we have a homeomorphism J1

A −→ J1
A sending s 7→ t−1st. This map restricts to a

homeomorphism of A∗ and gives a homeomorphism U(O)→ U(t−1Ot). Thus we also
have a bijection

U(O)\J1
A/A

∗ −→ U(t−1Ot)\J1
A/A

∗.

Since conjugation by J1
A is transitive by Proposition 37, the class number is the same

for every maximal order of A.

As a result, we can state the following corollary.

Corollary 39 If I1, I2, . . . , IH is a complete set of representatives of left ideal classes

for any maximal order O of A, then the set of right orders of the Ij represent all of

the isomorphism classes of maximal orders.

For left ideals I and J of an order O, define (I : J)r = {α ∈ A : Jα ⊆ I}, and for
right ideals I and J of O′, define (I : J)l = {α ∈ A : αJ ⊆ I}. We define the inverse

of a left ideal of O to be
I−1 = {α ∈ O : IαI ⊆ I}.

The right order of a left ideal I of O is defined to be (I : I)r and the left order of a
right ideal J of O′ is defined to be (J : J)l.

Proposition 40 Let I be a projective left ideal for a maximal ideal O. Then the

right order O′ is also maximal. Moreover, the left order of I with respect to the right

order O′ is O. The inverse of I is equal to (O : I)r and also to (O′ : I)l.

Proof. By Proposition 32 and Proposition 34, there exists an idele s such that
I = Os. The right order is determined locally as the order O′ = s−1Os. Since it is
conjugate to O at all primes p and hence locally maximal, O′ is also maximal. The
left order of the projective right O′ module I is obviously O. We can also write I as
tO′ for some idele t, so that I = tO′ = Os. Then

(O : I)r = s−1O = O′t−1 = (O′ : I)l.

To prove the identity of (O : I)r with I−1, we verify locally that

IαI = Os αOs ⊆ I = Os

if and only if α ∈ s−1O.

The set of left ideals of all the various maximal orders forms the Brandt groupoid of
A. For two ideals I and J such that the right order of I is equal to the left order
of J , the composite IJ = {

∑
k ikjk : ik ∈ I, jk ∈ J} is a well-defined ideal with left

order equal to the left order of I and right order equal to the right order of J .
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Define a bilinear form Φ : A× A −→ Q by means of the norm

Φ(x, y) = N(x+ y)− N(x)−N(y) = Tr(xy).

The different D of an order O is the ideal inverse of the dual lattice of O with respect
to the bilinear form Φ. For each finite prime p let N(Ip) be the ideal of Zp generated
by the set {N(x) : x ∈ Ip}. Define the reduced norm of the ideal I to be the positive
integer

N(I) =
∏

p

|Zp/Np(Ip)| .

The reduced discriminant d(O) of O is the norm of the different.

Proposition 41 If O is maximal, then D is an integral two-sided ideal of O, and

for any basis {α1, α2, α3, α4} of O, we have

d(O)2 = |det(Φ(αi, αj))| .

Moreover D2 is the two-sided ideal of O generated by d(O).

Proof. All but the last statement is contained in Vignéras [34, Chapitre I, Lemme
4.7]. Since D divides exactly the ramifying primes, each of which have ramification
index two, its square is principal.

Proposition 42 Let O and O′ be two orders such that O ⊆ O′. Then d(O) divides

d(O′) and d(O) = d(O′) if and only if O = O′. An order O is maximal if and only

if d(O) is the product of the finite primes of Q ramifying in A.

Proof. This is the content of [34, Chapitre I, Corollaire 4.8] and [34, Chapitre III,
Corollaire 5.3].

Suppose I and J are two-sided ideals for an order O. Then we can compose I and J
in the Brandt groupoid of A to obtain a two-sided ideal IJ of O. Suppose I = Jα
for some α in A∗. The right orders of I and J are equal to O, so O = α−1Oα. Thus
α lies in the normalizer N(O) of O.

Proposition 43 Conjugation by N(O) is trivial on the set of two-sided ideals of O.

Thus the class group Cl(O) of two-sided ideals modulo principal two-sided ideals is

well-defined, and isomorphic to U(O)\N(O)/N(O) via the homomorphism s 7→ Os.
The class group of O is a quotient of the free Z/2Z-module generated by the two-sided

prime ideals lying over the finite primes of Q ramifying in A.

Proof. By Proposition 33, the two-sided ideals of Op are generated freely by the
unique two-sided ideal P lying over p. If p splits in O, then P is generated by p.
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Otherwise P is a principal ideal with P2 = (p). If πp is a generator for P, then
N(Op) = Q∗

p〈πp〉. In either case, the normalizer stabilizes two-sided ideals of Op, so
the action of N(O) is trivial. The final statement follows from the surjection

⊕

p|d(O)

Z/2Z ∼= U(O)\N(O)/Q∗ −→ U(O)\N(O)/N(O) ∼= Cl(O).

This completes the proof.

5.3 An equivalence of categories

In order to relate the arithmetic of quaternion algebras to supersingular elliptic curves
over finite fields, we describe an explicit equivalence of two categories. One is a
category of modules over a maximal order in a quaternion algebra A. The other is
a category of supersingular elliptic curves over a finite field k. Let A be the unique
quaternion algebra over Q, up to isomorphism, ramified exactly at one finite prime p
and at∞. Deuring proves in his classic article [6, §10.2] a bijection between the set of
two-sided ideal classes for each of the types of maximal order in A, and the j-invariants
of supersingular elliptic curves in an algebraically closed field of characteristic p. The
statement of his result is as follows.

Theorem 44 Given a type of maximal order, there exist one or two supersingular

j-invariants such that the corresponding endomorphism ring is of the given type. If

the prime ideal P over p is principal then j is rational over the prime field; otherwise

there are two such j-invariants, constituting a conjugate pair in a quadratic field

extension of the prime field.

In Waterhouse [35] one finds a description of this correspondence for finite fields
in terms of kernel ideals. This correspondence has been exploited in various forms
(see [20]) for computations with elliptic curves and modular forms. The purpose of
this section is to describe an explicit and functorial version of this correspondence.

Throughout we fix a finite field k of q elements and characteristic p, and we let A be
the quaternion algebra over Q ramified at p and∞, and let O be a maximal order in
A containing an element of reduced norm q.

We define Sk to be the category of supersingular elliptic curves over k. The objects
of Sk are defined to be pairs (E, π), where E is a supersingular elliptic curve over k
and π is the Frobenius endomorphism relative to k. A morphism of objects (E1, π1)
to (E2, π2) is defined to be a homomorphism ψ : E1 −→ E2 such that ψ ◦π1 = π2 ◦ψ.

Before proceeding, we make some algebraic definitions for modules over O. We define
the rank of a projective module P over O to be the smallest integer r such that P
embeds in a free O module of rank r. Let I and J be right projective modules over
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O of rank one, and let φ : I −→ J be a homomorphism of right modules. Both I
and J are locally free, so for each prime l we can find xl ∈ Il and yl ∈ Jl such that
Il = xlOl and Jl = ylOl. Then the image of xl under φ⊗ 1Zl

is xlαl for some αl ∈ Ol.
Define the reduced norm of φ to be the product

N(φ) =
∏

l

|Zl/N(al)Zl| .

We now define MO,q as a category of projective right modules of rank one over O. The
objects of MO,q are defined to be pairs (I, φ) such that I is a projective right module
of rank one over O and φ is an endomorphism of I of reduced norm q. A morphism
of objects (I1, φ1) and (I2, φ2) is defined to be a homomorphism ψ : I1 −→ I2 such
that ψ ◦ φ1 = φ2 ◦ ψ.

We define a functor I from Sk to MO,q as follows. By Theorem 44, there exists
an elliptic curve E0 over k with O ∼= End(E0). We fix such a curve and identify
its endomorphism ring with O. The functor I takes an object (E, π) to an object
(I(E), I(π)), where I(E) = Hom(E0, E) and I(π) = τπ is the homomorphism of
Hom(E0, E) to itself given by left composition by π. For any morphism ψ of objects
(E1, π1) to (E2, π2) there is a well-defined morphism I(ψ) = τψ which is the right
O-module homomorphism

τψ : Hom(E0, E1) −→ Hom(E0, E2)

given by left composition by ψ, which satisfies the condition that τψ ◦ τπ1
= τπ1

◦ τψ.

The main result of this section is the following theorem.

Theorem 45 The functor I is an equivalence from Sk to MO,q.

Remark. One could easily have defined the category MO,q to be a category of
projective left modules of rank one over O. These two categories are dual to one
another, in the sense that there is a contravariant equivalence of categories between
the two. The definition of MO,q as a category of right modules ensures that the
functor I is a covariant functor from Sk to MO,q.

Proof of Theorem 45. By Theorem IV.4.1 of MacLane [19], to prove that I is an
equivalence it is sufficient and necessary to prove that I is full and faithful, and each
object of MO,q is isomorphic to an object in the image of I.

First we show that I is a full and faithful functor from Sk to MO,q.

Definition. Let J be a set of isogenies of E. Then we define E[J ] to be the scheme
theoretic intersection of the kernels of all α in J . A left O-ideal I is called a kernel

ideal if I = {α ∈ O|α(E[I]) = O}.

Theorem 46 Every left O-ideal is a kernel ideal, and every finite subgroup of E is

of the form E[I] for some left O-ideal I. The rank of E[I] is the reduced norm of I.
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Proof. Waterhouse (Theorem 3.15 [35]).

We also need the following standard result.

Lemma 47 Let φ : E → E ′ and ψ : E → E ′′ be isogenies and suppose that ψ ker(φ) =
O. Then there exists an isogeny ̺ : E ′′ → E ′ such that ψ = ̺φ.

Proposition 48 Let I ⊆ Hom(E ′, E) be a left module over O = End(E), and let

J ⊆ Hom(E,E ′) be a right O-module. Then there exists an elliptic curve E ′′ and an

isogeny ̺ : E ′′ → E ′ such that I = Hom(E ′′, E)̺. Likewise there exists an elliptic

curve E ′′ and an isogeny σ : E ′′ → E such that J = σHom(E,E ′′).

Proof By means of any isogeny φ : E → E ′, there exist embeddings of I and
Hom(E ′, E) in O as integral ideals such that

Iφ ⊆ Hom(E ′, E)φ ⊆ O.

Let E ′′ = E/E[Iφ] and let ψ : E → E ′′ be the isogeny with kernel E[I̺]. By
Theorem 46 and Lemma 47,

Iφ = {α ∈ O : α(E[Iφ]) = O} = Hom(E ′′, E)ψ,

so I = Hom(E ′′, E)̺. The result holds for J by taking duals.

Proposition 49 The functor I from Sk to MO,q is full and faithful.

Proof. It is clear that I is faithful. To prove that I is full, we need to show that
every right O-module homomorphism ψ of Hom(E0, E1) to Hom(E0, E2) arises by
composing on the left with an isogeny σ : E1 → E2. From the previous proposition,
the image of ψ in Hom(E0, E2) is of the form σHom(E0, E1). Comparing ψ with left
multiplication by σ, the two O-module homorphisms differ only up to a unit in the
left order O1 = End(E1) of Hom(E0, E1). Thus by multiplying σ by a unit ψ = τσ has
the required form. The equivalence of the commutativity relations ψ ◦ τπ1

= τπ1
◦ ψ

and σ ◦ π1 = π1 ◦ σ is trivially verified.

To complete the proof of Theorem 45, it remains only to show that every object (I, φ)
is isomorphic to one of the form (I(E1), I(π)). First we introduce the definition of
a hereditary ring. We define a ring O to be hereditary if every one-sided ideal of O

is projective. Let R be a Dedekind domain with field of fractions K, and let B be
an algebra over K, in which O is an order containing R. Then by Theorem 40.5 of
Reiner [25], the ring O is hereditary if and only if Ol is hereditary for all maximal
ideals l of R. Every ideal in a maximal order in a definite quaternion algebra over
Q is locally free at all finite primes l of Z, so it follows that O is hereditary. Thus a
module P over O is projective of rank one if and only if P is isomorphic to an ideal
of O.
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Let (I, φ) be an object in MO,q. Since O is hereditary we can embed I as a right
ideal in O = End(E0). Then I ∼= σHom(E0, E

′′) by Proposition 48, and so I ∼=
Hom(E0, E

′′). Under this isomorphism, φ : I −→ I induces a homomorphism of right
End(E0)-modules

Hom(E0, E
′′) −→ Hom(E0, E

′′)

of norm q, and by Proposition 48 this map is given by left composition by an element
π1 of End(E ′′). A theorem of Honda [10] asserts that there exists an elliptic curve
E1 and an isomorphism to E ′′ over some extension of k such that the Frobenius
endomorphism maps to π1 under the isomorphism of endomorphism rings. This
completes the proof of Theorem 45.
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Chapter 6

Quadratic spaces

The equivalence of categories of the preceding section carries over not only the struc-
ture of maps of objects in the respective categories, but also relates the additional
structure of the degree map on isogenies to the reduced norm on morphisms of pro-
jective modules over O. As a Z-module, Hom(E1, E2) has rank four, and the degree
map gives V = Hom(E1, E2)⊗Q the structure of a quadratic space over Q in which
Hom(E1, E2) is an integral lattice. In this section, we will give the necessary defini-
tions, and consider this quadratic space structure.

6.1 Introduction to quadratic spaces

We recall that quadratic space (V,Φ) over a field F of characteristic different from 2 is
a finite dimensional F -vector space V with a symmetric bilinear form Φ : V ×V → F .
From the bilinear form Φ we can define a function q : V → F by

q(v) =
1

2
Φ(v, v).

The symmetric bilinear form Φ can be recovered from q by setting

Φ(u, v) = q(u+ v)− q(u)− q(v).

Thus we may equivalently denote the quadratic space (V,Φ) by (V,q). For any such
form q on V we call Φ the bilinear form associated to q, and call q the quadratic
map associated to Φ. Except where explicitly noted, we restrict to regular quadratic
spaces. A quadratic space is said to be regular if for every v in V , the condition that
Φ(u, v) = 0 for all u in V implies v = 0. Otherwise we say that (V,q) is singular.

Let R be an integral domain with field of fractions F , and let Λ be a lattice over R
in V , i.e. a finitely generated R-submodule of V containing a basis for V over F . If
q(Λ) is contained in R we say that (Λ,q) is a quadratic module over R. If Φ(Λ,Λ) is
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contained in R we say that (Λ,Φ) is a bilinear module over R. If, moreover, Φ(v, v) lies
in 2R for all v in Λ, we say that (Λ,Φ) is even. From the definition of the quadratic
form q associated to Φ, it is clear that there is a bijective correspondence between
even bilinear modules over R and quadratic modules over R.

A quadratic form is defined to be a degree two homogeneous polynomial in n variables.
For each choice of basis {v1, v2, . . . , vn} for V over F the quadratic space determines
a quadratic form f(x) over F , given by

f(x) = q(x1v1 + x2v2 + · · ·+ xnvn) =
∑

i≤j

fijxixj,

where x = (x1, x2, . . . , xn). If {v1, v2, . . . , vn} is a basis over R for a quadratic module
Λ over R then f(x) is a quadratic form over R. If R is a principal ideal domain,
then every quadratic module has a basis. The ideal a generated by the coefficients
of a quadratic form f(x) is defined to be the content of f(x). If R is a principal
ideal domain, then we will say that f(x) has content a if the ideal a equals aR. If
the content of a quadratic form f(x) is equal to 1, then we say that f is proper.
More generally we define the content of a quadratic module (Λ,q) to be the ideal a

generated by q(v) for all v in Λ, and say (Λ,q) has content a if a is generated by
a. A quadratic module is said to be proper if it has content 1. Similarly we define
the content of a bilinear module (Λ,Φ) to be the ideal generated by Φ(u, v) for all u
and v in Λ, and say that (Λ,Φ) is proper over R if it has content 1. Note that the
content of a quadratic form contains the content of the associated bilinear form, and
the condition that (Λ,Φ) is even does not imply that the content is contained in the
ideal 2R.

Let (Λ1,q1) and (Λ2,q2) be quadratic modules over an integral domain R. A repre-

sentation of (Λ1,q1) by (Λ2,q2) is a homomorphism of R-modules

σ : Λ1 −→ Λ2

such that q2(σ(v)) = q1(v) for all v in Λ1. If σ is an isomorphism of the underlying
R-modules, we call the representation an isometry. If a quadratic module (Λ,q)
contains an element v ∈ Λ such that q(v) = m, we say that (Λ,q) represents m.

A similitude is a homomorphism σ : Λ1 → Λ2 of R-modules which satisfies the weaker
condition that

q2(σ(v)) = c·q1(v),

for some c in F ∗. The factor c is termed the similitude factor of σ. If there exists a
similitude σ : Λ1 → Λ2 which is an isomorphism of the underlying R-modules, then
(Λ1,q1) and (Λ2,q2) are said to be similar. A representation or similitude σ : Λ1 → Λ2

such that the R-module Λ2/σ(Λ2) is torsion-free is said to be primitive.

Example. Let E1 and E2 be isogenous elliptic curves. Let Λ = Hom(E1, E2) with the
quadratic map deg, which assigns to each isogeny its degree. The associated bilinear
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map
Φ(φ, ψ) = deg(φ+ ψ)− deg(φ)− deg(ψ)

on isogenies φ and ψ, can be extended by linearity to all of V = Hom(E1, E2) ⊗ Q.
Then (Λ,q) = (Hom(E1, E2), deg) is a quadratic module over Z contained in V . Let
E0 be a fixed elliptic curve isogenous to E1 and E2. Then we define Λ(Ei) to be
Hom(E0, Ei) and V (Ei) to be Hom(E0, Ei)⊗ Q. If ψ : E1 → E2 is an isogeny, then
the map Vψ : V (E1) → V (E2) given by φ 7→ ψφ is a Q-vector space homomorphism
V (E1) to V (E2) which takes Λ(E1) to Λ(E2) such that

q2(Vψ(φ)) = deg(ψ)·q1(φ),

hence Vψ is a similitude with similitude factor deg(ψ). However the quadratic modules
(Λ(E1),q1) and (Λ(E2),q2) in general are not similar.

Definition. Let (Λ,Φ) be a bilinear module over R, and let {v1, v2, . . . , vn} be a
basis for Λ over R. Then the determinant of Λ, denoted det(Λ), is defined to be
det(Φ(vi, vj)). The determinant of a quadratic module (Λ,q) is defined to be the
determinant with respect to the bilinear form Φ associated to q. The determinant
is nonzero if and only if (Λ,Φ) is regular. The determinant is not independent of
the choice of basis. However, det(Λ) is well-defined modulo R∗2. Under inclusion of
bilinear modules, the determinant behaves as indicated in the following proposition.

Proposition 50 Let (Λ1,q1) and (Λ2,q2) be regular quadratic modules over R such

that Λ1 and Λ2 are free of rank n over R. If Λ1 ⊆ Λ2 then det(Λ2) divides det(Λ1).
If also det(Λ1) = det(Λ2) mod R∗2, then Λ1 = Λ2.

Proof. Let {u1, u2, . . . , un} be a basis for Λ2 and {v1, v2, . . . , vn} a basis for Λ1. Then

vj =
∑

i

rijui,

for some rij in R. Setting M = (rij), we have

det(Λ1) = det(Φ(vi, vj)) = det(
∑

l

∑

k

rliΦ(ul, uk)rkj)

= det(M t(Φ(ul, uk))M) = (det(M))2 det(Λ2).

Thus det(Λ1) divides det(Λ2). If equality holds modulo R∗2, then M is invertible and
Λ1 = Λ2.

Now we specialize to the quadratic spaces and modules derived from quaternion
algebras. Let A be a definite quaternion algebra over Q, and let O be a maximal
order in A. For any left projective rank one module I over O we can define a reduced
norm map from the reduced norm on O. For each finite prime l, fix a generator xl
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for Il as an Ol module. Then each x in I is of the form αlxl ∈ Il for some αl in
Ol. Since xl is defined only up to an element of O∗

l , and N(O∗
l ) = Z∗

l , we define
N(x) = N(αl) mod Z∗

l . Since A is definite, at the infinite prime, the image of the
reduced norm on A ⊗ R is contained in R≥0. Thus we define N(x) to be the unique
positive generator of ⋂

l

(N(αl)Zl ∩ Z) .

Proposition 51 Let O be a maximal order in a definite quaternion algebra over Q

and let I be a projective rank one left module over O with the quadratic map defined

by the reduced norm on I. The determinant of I is d(O)2, and any isomorphism of I
with an ideal J of O determines a similitude σ : I → O with similitude factor N(J).

Proof. The reduced norm on I is defined using the local isomorphism Il ∼= Ol.
Thus det(Il) = det(Ol) mod Z∗

l
2 for all l and the two determinants are equal. By

Proposition 41, both determinants are then equal to d(O)2. The reduced norm on
O, restricted to elements of J is N(J) times the reduced norm on J defined via its
left O-module structure. Thus an isomorphism of I with J defines a similitude with
factor N(J).

6.2 Clifford algebras

Let R be an integral domain with field of fractions F . Let (Λ,q) be a quadratic
module over R, and V = Λ ⊗ F be the quadratic space containing it. An injective
homomorphism of R-modules ι : Λ→ A of Λ in an R-algebra A is said to be compat-

ible with q if ι(v)2 = q(v)·1. An R-algebra C = C(Λ) with an injection ιC : Λ → C
compatible with q is said to be a Clifford algebra for (Λ,q) if for any R-algebra A
and R-module monomorphism ιA : Λ → A, there exists a unique R-algebra homo-
morphism φ : C(Λ)→ A such that φ ◦ ιC = ιA. The Clifford algebra of (Λ,Φ) exists
and can be constructed as the quotient of the tensor algebra T(Λ) =

⊕
i T

i(V ) of Λ
by the relations v ⊗ v − q(v), with ι defined to be the isomorphism of Λ with T1(Λ).
Hereafter, where convenient, we will identify Λ with its image in C(Λ) and omit the
reference to ι. The relations v ⊗ v − q(v) generating the kernel of the surjection
T(Λ) → C(Λ) lie in

⊕
i T

2i(Λ). Thus the Z-grading on T(Λ) in the construction of
the Clifford algebra, descends to a Z/2Z-grading on C(Λ), and we have a decomposi-
tion of R-modules C(Λ) = C0(Λ)⊕C1(Λ), where C0(Λ) is the even part of C(Λ) and
C1(Λ) is the odd part. The ring C0(Λ) is called the even Clifford algebra of (Λ,Φ).
The Clifford algebra of the quadratic space (V,q) is defined to be the Clifford algebra
C(V ) of (V,q) as a quadratic module over F .

The Clifford algebra of a quadratic module is well-behaved under extension of the
base ring.
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Proposition 52 Let (Λ,q) be a quadratic module over R and let C(Λ) be its Clifford

algebra. Let R → S be an injection of rings. Then the Clifford algebra C(ΛS) of the

extended quadratic module ΛS = Λ⊗ S is C(Λ)S = C(Λ)⊗ S.

Proof. From the inclusion Λ ⊆ ΛS there is a unique homomorphism C(Λ)→ C(ΛS).
From the universal property of the tensor product, this determines a unique homo-
morphism C(Λ)S → C(ΛS). Conversely, both C(Λ)S and C(ΛS) contain ΛS, so there
is a unique map of C(ΛS) to C(Λ)S. By the universal property for the Clifford algebra,
the composites of these maps is the identity on each of C(Λ)S and C(ΛS).

Of particular interest is the case when p is a prime and S is the localization of R at p.
We will also need several results on the structure of the Clifford algebra over a field
k and over an integral domain R.

Theorem 53 The dimension of the Clifford algebra of a dimension n quadratic space

V over a field F is 2n. If Λ is a quadratic module free of rank n over R, then C(Λ)
is free of rank 2n over R.

Proof. This appears in Lam [15] for R a field. The same argument implies that a
basis for C(Λ) over R is ve11 v

e2
2 . . . ven

n , where {vi} is a basis for Λ over R and 0 ≤ ei ≤ 1.

Corollary 54 The dimension of C0(V ) and the dimension of C1(V ) are equal to

2n−1. The R-algebra C(Λ) is an order in C(V ), and the R-algebra C0(Λ) is an order

in C0(V ).

Proof. The dimensions of C0(V ) and C1(V ) are equal since C1(V ) is equal to vC0(V )
for any v in V . Comparison of the ranks of the subrings C(Λ) and C0(Λ) over R yields
the result that these are indeed orders in C(V ) and C0(V ).

Proposition 55 There exists a unique algebra involution ε : C(Λ)→ C(Λ) which is

the identity on Λ. Moreover, ε stabilizes both C0(Λ) and C1(Λ).

Proof. This follows from [15, Proposition 5.1.11] for the Clifford algebra over a field.

We can also state the following structure theorem for the Clifford algebra of an even
dimensional quadratic space V .

Theorem 56 Suppose dim(V ) = n is even. Then

1. C(V ) is a central simple algebra over F , isomorphic to M t(D) for some

central division algebra D over F .

2. If d = det(V ) is nontrivial in F ∗/F ∗2 then C0(V ) is a central simple

algebra over k(
√
d).

3. If det(V ) is trivial in F ∗/F ∗2, then the center of C0(V ) is isomorphic to

F × F and C0(V ) is isomorphic to M r(D)×M r(D) where 2r = t

Proof. Lam [15, Theorem 5.2.5].



CHAPTER 6. QUADRATIC SPACES 75

6.3 Quadratic modules of quaternions

Hereafter we will restrict to the study of four dimensional regular quadratic spaces V
over F such that det(V ) is trivial in F ∗/F ∗2. By Theorem 56, the F -algebra C(V ) is
isomomorphic to a matrix algebra over a quaternion algebra A, which may be split,
and C0(V ) is isomorphic to a product of two copies of A. This will enable us to
characterize the quadratic modules arising from projective modules over orders in A.

This work was inspired in part by the article of Isabelle Pays [22], in which she analyzes
the integral Clifford algebra C(Λ) in order to answer the question of whether a given
quadratic module over Z arises as the norm form of an order in a quaternion algebra.
We consider the module structure of a general quadratic module Λ in the Clifford
algebra to deduce similar results.

We continue with the dissection of the Clifford algebra. The even Clifford algebra
C0(V ) splits into a product of two quaternion algebras over F . We let e and f be the
two nontrivial central idempotents of C0(V ).

Proposition 57 The involution ε on C(V ) fixing V is the identity on the center of

C0(V ) and takes eV to V e. The submodules V e and fV are equal, as are eV and

V f .

Proof. We follow the proof of Theorem V.2.5 of Lam [15]. Let {v1, v2, v3, v4} be
an orthogonal basis of V , so that vi and vj anticommute in C(V ) for all i 6= j. Set
z = v1v2v3v4, so that z2 mod F ∗2 is the determinant of V . Since det(V ) is a square,
we may scale v1 by an element of F ∗ and assume that z2 = 1. Then we define
e = (1 + z)/2 and f = (1− z)/2, and verify directly that e and f are the nontrivial
central idempotents of C0(V ). But also

ε(z) = v4v3v2v1 = v1v2v3v4 = z,

so e and f are fixed by ε. Thus the center Fe × Ff of C0(V ) is fixed by ε. Since
ε is an involution, ε(eV ) = V e and ε(V f) = fV . Since the orthogonal element vi
anticommutes with vj for j 6= i, from the definition of z, we have viz = −zvi. Thus
ve = fv for all v in V , and likewise vf = ev.

Proposition 58 The subrings A1 = C0(V )e = eC0(V ) and A2 = C0(V )f of C0(V )
are quaternion algebras over F with unity elements e and f respectively. Conjugation

on A1 and on A2 are the restrictions of the involution ε of C0(V ). In particular the

reduced norms on A1 and A2 are given by α 7→ α ε(α).

Proof. The subrings A1 and A2 are quaternion algebras over F by Theorem 56. Every
involution of a quaternion algebra A is equivalent to the conjugation involution on A

up to an inner automorphism. It suffices to show that ε has the additional property
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that α ε(α) lies in F for all α in A. But this follows directly from the generating
relations v2 = q(v) for all v in V and the fact that ε is the identity on V .

Definition. Let Λ be a left module over an order O in a quaternion algebra A with
reduced norm N and let q : Λ −→ R be a quadratic map on Λ. We say that tthe left
module structure of Λ is compatible with the quadratic map q if q(αv) = N(α)q(v)
for all α in O and all v in Λ. Likewise for a left module V over A we say that the
left module structure is compatible with a quadratic map q : V −→ F if q(αv) =
N(α)q(v) for all α in A and all v in V .

Proposition 59 The odd part of C1(V ) decomposes as eV ⊕fV . The quadratic space

structure of the decomposition can be summarized as follows.

1. The composite map

V - C1(V ) - eC1(V ) = eV

is an isometry with the quadratic map on eV defined by q(ev) = ev ε(ev),
and equips V with the structure of a left A1-module and right A2-module,

compatible with the reduced norm N.

2. For every u in V there exists a similitude

σu : V - A1

of (V,q) to (A1,N) with similitude factor q(u), defined by v 7→ ev ε(eu).
In particular, if u represents 1, then σu is an isometry.

Proof. Under the identification of F with Fe, the map V −→ eV is a representation
by the definition of the Clifford algebra, since

q(ev) = ev ε(ev) = ev2e = eq(v).

The condition that V is regular implies that V −→ eV is an isomorphism of vector
spaces over F . The involution ε gives an isomorphism of vector spaces eV ∼= fV . If
ev = fu lies in the intersection of eV and fV , then ev = e · ev = efv = 0. Thus
by counting dimensions we find that eV ⊕ fV is all of C1(V ). The left and right
module structure of eV is inherited from multiplication in C(V ). Left multiplication
by A1 is clear and right multiplication by A2 follows from the equality eV = V f
of Proposition 57. The compatibility with the reduced norm of A1 is demonstrated
using the generating relations in the Clifford algebra and the centrality of e in C0(V ):

q(α ev) = α ev ε(α ev) = α e v2 e ε(α)

= α eq(v)ε(α) = eN(α)q(v).

The other representations and similitudes are likewise proved by elementary demon-
strations.
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Now we would like to turn from the structure of quadratic spaces to the quadratic
modules contained in them. For a quadratic module (Λ,q) over R contained in (V,q)
there is a unique inclusion of the Clifford algebra of C(Λ) in C(V ). First we prove a
lemma regarding the multiplicative structure of this integral Clifford algebra.

Proposition 60 Let (Λ,q) be a proper quaternary quadratic module over R contained

in (V,q), and let e be a nontrivial central idempotent of C(V ). Then eC1(Λ) is a

projective module over C0(Λ)e.

Proof. Recall that we define (Λ,q) to be proper if q(Λ) is contained in no proper ideal

of R. Define P = eC1(Λ) and P̂ = fC1(Λ), and let O1 = eC0(Λ) and O2 = fC0(Λ).

Then P has the structure of a left O1-module and right O2-module. Similarly P̂
has the structure of a left O2-module and right O1-module. It suffices to prove that
P ⊗ P̂ ∼= O1. There exists a well-defined map P ⊗ P̂ −→ O1 taking elements of the
form ev ⊗ ue to evu. This extends linearly to sums and form generators for P ⊗ P̂
over O1. Multiplication by O1 is defined in the ring C(Λ) so the left and right module
structures are compatible with multiplication in O1. It remains to show that the map
is surjective. For this it suffices to show that 1 lies in O1, but this follows from the
hypothesis that Λ is proper.

The main theorem of this section follows.

Theorem 61 Let (Λ,q) be a proper regular quaternary quadratic module over R of

square determinant contained in the quadratic space (V,q). Let e be a nontrivial

central idempotent of C0(V ). Then (Λ,q) is the quadratic module associated to a

projective rank one left module for an order in a quaternion algebra if and only if one

of the following equivalent statements is true.

1. eΛ = eC1(Λ).

2. eΛ is a left module for eC0(Λ).

3. Λe is a right module for eC0(Λ).

4. For every u in Λ, eΛu is a left ideal of eC0(Λ).

5. For some u in Λ, eΛu is a left ideal of eC0(Λ).

6. For some v in Λ, vΛe is a right ideal of eC0(Λ).

Proof. By the previous proposition, the first statement implies that eΛ is the
quadratic module associated the left projective module over O1 = eC0(V ). By Propo-
sition 59, the quadratic module eC1(Λ)u is similar to eC1(Λ) with the same left module
structure over eC0(Λ). By Proposition 57 the involution ε exchanges the modules eV
and V e so the conditions for right multiplicative structures hold by symmetry. Each
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of the statements is then equivalent to the condition that eΛ is closed under left mul-
tiplication by eC0(Λ). By Proposition 60 this gives a projective module structure on
eΛ = eC1(O).

Hereafter we will be interested in quadratic modules (Λ,q) which satisfy the equiv-
alent conditions of Theorem 61. For a choice of idempotent e, we then define the
left order of Λ to be O1 = eC0(Λ) and the right order to be O2 = fC0(Λ). We have
already proved that Λ is projective as a left module over O1 and by symmetry Λ is
projective as a right module over O2. For any such quadratic module there are pre-
cisely two quaternion left and right module structures on Λ compatible with q. These
structures are dual to one another in the sense that the left order O1 of Λ becomes
the right order of Λ under the second structure, with the opposite ring structure on
O1, and similarly for the right order of Λ. In particular, the pair consisting of the left
and right orders of Λ in C(Λ) is an invariant of the quaternary quadratic module.

We can now deduce several corollaries for projective modules over orders in quaternion
algebras over Q. The first is a classic result concerning positive definite quadratic
forms over Z of determinant equal to the square of a prime (see Eichler [7] and [8]).

Corollary 62 Every positive definite quadratic module (Λ,q) over Z with determi-

nant equal to the square of a prime p is the quadratic module of a left projective

module of rank one over a maximal order in the quaternion algebra ramified at p and

at ∞.

Proof. The positive definite condition implies that the quaternion algebra A1 =
eC0(Λ) ⊗ Q ramifies at infinity, hence also at a finite prime. The quadratic module
eΛ is contained in the quadratic module eC1(Λ), and by Proposition 51 and 50,
equality holds and p is the unique finite ramifying prime.

From the category equivalence of Chapter 5 we can relate the theory of quadratic
modules to homomorphisms of supersingular elliptic curves.

Corollary 63 Let (Λ,q) be a positive definite quadratic module over Z of discrimi-

nant equal to the square of a prime. Then there exist supersingular elliptic curves E1

and E2 such that (Λ,q) is isometric to the quadratic module associated to Hom(E1, E2)
equipped with the degree map.

Proof. From Corollary 62, there exists an order O in the quaternion algebra ramified
at p and ∞ such that Λ has the structure of a left projective module over O. By
Theorem 44 and Theorem 45 every projective module arises as a module of homo-
morphisms of supersingular elliptic curves.

Corollary 64 Let E1, E2, E3, and E4 be supersingular elliptic curves over a finite

field k, and set I = Hom(E1, E2) and J = Hom(E3, E4). Let φ be the pth power
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Frobenius automorphism. Then I is isometric to J if and only if one of the following

set of isomorphisms holds over an algebraic closure.

1. E1
∼= E3 and E2

∼= E4.

2. E1
∼= Eφ

3 and E2
∼= Eφ

4 .

3. E1
∼= E4 and E2

∼= E3.

4. E1
∼= Eφ

4 and E2
∼= Eφ

3 .

Proof. Each of the four possibilities implies that I is isometric to J . Conversely if
I is isometric to J then the isometry determines a unique isomorphism of C(I) with
C(J). Therefore I is isomorphic to J as a left O-module, where O = eC0(I). The two
right quaternionic module structures on J are precisely the natural ones on J and the
isometric module Ĵ of dual isogenies. But O ∼= End(E1) arises up to isomorphism
only as the endomorphism ring of curves isomorphic to E1 or Eφ

1 . By the equivalence
of categories of § 5.3, these are the only possibilities.

Corollary 65 The number of positive definite quadratic modules of discriminant p2

is equal to
H1(H1 + 1)

2
+H1H2 +H2(H2 + 1)

where H = H1 + 2H2 is the class number of the quaternion algebra A ramified at p
and at ∞, and T = H1 +H2 is the type number.

Proof. This is just a count of the combinations of pairs (E1, E2) under the equiv-
alences obtained in Corollary 64. The integer H1 is the number of nonisomorphic
supersingular elliptic curves over Fp with j-values lying in the base field, and the
integer H2 the number of conjugate pairs whose j-values lie in Fp2.

Remark. The Clifford algebra for the quadratic modules of isogenies embeds in an
explicitly described matrix ring of isogenies. Let E1 and E2 be supersingular elliptic
curves and let I = Hom(E2, E1). Then I has left order O1 = End(E1) and right order

O2 = End(E2), and we define Î to be the module Hom(E2, E1) of dual isogenies. We
can define a matrix ring S of isogenies by:

S =

( O1 I

Î O2

)
,

with multiplication given by matrix multiplication and composition of isogenies. The
homomorphism of I to S defined via the map

ϕ 7−→
(

0 ϕ
ϕ̂ 0

)
,

is compatible with the degree map. Thus there exists a unique ring homomorphism
C(I) −→ S, commuting with the injection of I in S. The even Clifford algebra C0(I)
then embeds in O1 ×O2.
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6.4 Representations of quadratic modules

We now restrict to the case that A is a quaternion algebra over Q, and let O be a
maximal order in A. In this section we consider representations by quadratic modules
(Λ,q) associated to projective rank one left modules over O. Special consideration
is given to representations of binary quadratic modules by Λ. We have seen that
the algebraic and quadratic module structures are intimately related. We pursue
this further by presenting some algebraic results regarding the structure of modules
over O viewed as modules over commutative subrings. Recall that a representation
(M,q) −→ (Λ,q) is primitive if the quotient Λ/M is a torsion free Z-module. A
subring R of O is said to be optimally embedded if O/R is torsion free. The first
result we prove is the following.

Theorem 66 If R→ O is an optimal embedding of a rank two commutative subring

R in O, then the exact sequence of left R-modules

0→ R→ O → O/R→ 0

splits and the cokernel O/R is projective as a left R-module. In particular, O is

projective as a left R-module over every optimally embedded subring R.

Proof. We follow a line of reasoning suggested by Hendrik Lenstra. By the definition
of an optimal embedding, the cokernel O/R is torsion free, hence we have a dual exact
sequence

0→ Hom(O/R,Z)→ Hom(O,Z)→ Hom(R,Z)→ 0.

Moreover this sequence is naturally equipped with a right R-module structure, for
which Hom(R,Z) is projective as an R-module. The dual sequence then splits, and
hence the original also. Let us write O = R+ N, and let S ⊆ R⊗Q be the left order
of N. It suffices to show that S equals R. Form the module S + N = S +O, which is
clearly a left S-module. Moreover

(S +O) · S = S · (S +O) = S · (S +O) = S +O,

so that (S + O) · S = S + O. Thus S + O is a ring containing O, so S equals R by
the maximality of O.

We can now prove the following theorem regarding the algebraic structures attached
to representations of binary quadratic modules.

Theorem 67 Let (Λ,q) be the quadratic module associated to a projective rank one

left module over O, and let (M,q) be a proper primitive binary quadratic submodule

of (Λ,q). Then the left order of M is a ring R of discriminant equal to − det(M)
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which optimally embeds in the left and right orders of Λ. The exact sequence of left

R-modules

0→M → Λ→ Λ/M → 0

splits and the cokernel Λ/M is projective as a left R-module. In particular Λ is

projective as a left R-module.

Proof. We relate the algebraic structures on Λ and M by means of the Clifford
algebra. The representation of M by Λ gives a unique homomorphism of Clifford
algebras C(M) −→ C(Λ), by which we view C(M) as a subring of C(Λ). We identify
M with eM and Λ with eΛ, with left orders R = eC0(M) and O = eC0(Λ). Since M
is proper, 1 lies in M ·M , so R = eM2 and the discriminant of R is − det(M). We

also identify M̂ = HomR(M,R) with Me, thus

M ⊗R M̂ - R

em1 ⊗m2e - em1m2

is an isomorphism. In C(Λ) we can also identify Λ⊗RM̂ with eΛMe so that Λ⊗RM̂ ⊆
eC0(Λ) = O. By hypothesis OΛ ⊆ Λ and R = M ⊗r M̂ ⊆ Λ ⊗R M̂ , so we have

Λ ⊗R M̂ = O. In addition, we have shown that R ⊆ O, so there exists an exact
sequence of R-modules

0 −→M −→ Λ −→ N −→ 0.

Since M̂ is a projective, hence flat, R-module, we get an exact sequence

0 −→ R −→ O −→ P = N ⊗R M̂ −→ 0,

in which R optimally embeds in O. By the previous theorem, we have a splitting
O ∼= R ⊕ P of R-modules, where P is projective over R. Hence N = P ⊗R M is
projective and we have a splitting of R-modules Λ ∼= M ⊕N .

Corollary 68 Let (Λ,q) be the quadratic module associated to Hom(E1, E2), and let

M → Λ be a primitive representation of a proper binary quadratic module (M,q).
If R is the order of discriminant − det(M) in a quadratic extension of Q, then R
optimally embeds in End(E1) and End(E2).

Knowledge of the subrings optimally embedded in the rings of endomorphisms of
supersingular elliptic curves provides strong information on the isomorphism class of
this order, as indicated by the following proposition.

Proposition 69 An order R in a complex imaginary quadratic extension of Q opti-

mally embeds in End(E) if and only if jE is a root of the class equation HD(X) mod p
for the discriminant D = disc(R). In particular, in its isogeny class, E is one of at

most h(R) elliptic curves containing an optimal embedding of R.
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Proof. From Deuring’s lifting theorem, E can be lifted to an elliptic curve Ẽ over Q

with endomorphism ring R. Thus j eE satisfies the class equation of degree h(R), and
jE is one of h(R) roots of the reduction of the class polynomial modulo p.

Example. In general it is not true that a projective module Λ over a quaternion order
inherits the complex multiplication of nonproper submodules primitively embedded
in it. In particular, we may take Λ equal to Hom(E1, E2), where E1 and E2 are
elliptic curves with complex multiplication by orders of discriminant D1 = −16 and
D2 = −36 over the algebraic closure of F103. Let R = Z[2i] ⊆ End(E2) be the
commutative subring of discriminant −16 in End(E2), and let K = R ⊗ Q. Neither
endomorphism ring has the maximal order of discriminant −4 embedded in it, since
the class polynomials for the orders of discriminant −4 and−16 and −36 are relatively
prime modulo p. However, there exists a basis {α1, α2, α3, α4} of Λ such that

(Φ(αi, αj)) =




10 2 4 1
2 12 5 4
4 5 12 0
1 4 0 12


 .

The submodule M generated by {α3, α4} has left order equal to Z[i] ⊆ K and content
equal to 6 as a quadratic module. The left order of Λ/M ∼= Λ + KM/KM is also
Z[i]. However, since Λ is not a left Z[i]-module, the exact sequence

0→M → Λ→ Λ/M → 0

has no splitting preserving the R-module structures on M and Λ/M

6.5 Exterior algebras and determinant maps

Let (Λ,q) = (End(E), deg) be the quadratic module associated to any supersingular
elliptic curve E, and let Φ be the associated bilinear form on Λ. Then the discriminant
of an element τ in Λ, defined as the discriminant of the basis {1, τ} of Z[τ ] is equal
to

disc(τ) = − det

(
Φ(1, 1) Φ(1, τ)
Φ(1, τ) Φ(τ, τ)

)
= −(Φ(1, 1)Φ(τ, τ)− Φ(1, τ)2).

This defines a singular quadratic map on Λ, and suggests the definition of a positive
definite quadratic map det, equal to − disc, on Λ/Z. We call the quadratic map det
the determinant map on Λ. If we take (Λ,q) to be the quadratic module associated
to Hom(E1, E2) for supersingular elliptic curves E1 and E2, then no distinguished
element plays the role of 1. For any two elements σ and τ of Λ, the determinant of
the submodule M = Zσ + Zτ is

∣∣∣∣
Φ(σ, σ) Φ(σ, τ)
Φ(σ, τ) Φ(τ, τ)

∣∣∣∣ = Φ(σ, σ)Φ(τ, τ)− Φ(σ, τ)2.
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This can be seen to be equivalent to the determinant map on End(E2) restricted to
the left ideal Hom(E1, E2)σ̂. For a fixed element σ of Λ we define the determinant
map relative to σ via the bilinear form Φ on Λ as

τ 7−→
∣∣∣∣

Φ(σ, σ) Φ(σ, τ)
Φ(σ, τ) Φ(τ, τ)

∣∣∣∣ ,

which is well-defined on Λ/σZ. Since all End(E2)-module embeddings of Hom(E1, E2)
in End(E2) as left modules over End(E2) are given by

Hom(E1, E2) - Hom(E1, E2)σ̂

τ - τ σ̂,

for some isogeny σ in Hom(E1, E2), it appears reasonable to consider the quadratic
maps derived in this manner. Of course the situation is symmetric, and we may
as well consider this ternary quadratic module as that derived by the embedding of
right End(E1)-modules σ̂Λ ⊆ End(E1) with the determinant map on End(E1). A
more natural approach is to construct a bilinear module which represents all such
maps under all possible embeddings of Hom(E1, E2) in its left or right order. For this
purpose, we define the exterior algebra of Λ, and equip it with the determinant map
derived from Φ.

Let Λ be a module over a ring R. The exterior algebra of the Λ is defined to be an
R-algebra

∧
(Λ) along with an R-module homomorphism ψ : Λ →

∧
(Λ) such that

ψ(v)2 = 0 for all v in Λ and which satisfies the following universal condition. Let
ϕ : Λ→ E be an R-module homomorphism into an R-algebra E such that ϕ(v)2 = 0
for all v in Λ. Then there exists a unique homomorphism of R-algebras η :

∧
(Λ)→ E

such that η ◦ ψ = ϕ.

As a consequence of this definition,
∧

(Λ) is a graded R-algebra generated by the
image of Λ in

∧
(Λ). One can construct

∧
(Λ) explicitly as follows. Let T (Λ) be

the tensor algebra of Λ and let E be the quotient of T (Λ) by the ideal generated
by v ⊗ v for all v in Λ. Then E is isomorphic to

∧
(Λ) via a unique isomorphism

commuting with the inclusion of Λ in each. We denote the product of σ and τ in∧
(Λ) by σ∧τ , and the r-th graded submodule by

∧r(Λ). For a free module Λ over
an integral domain R, the exterior algebra

∧
(Λ) is free of finite rank over R, and in

fact has rank equal to 2d, where d is the rank of Λ. Each
∧r(Λ) has rank

(
d
r

)
. One

notes that the determinant map is not an even bilinear form, so in general we have
no associated quadratic form over R.

By definition
∧

(Λ) is an alternating algebra, so on τ1∧ · · ·∧τr in
∧r(Λ) the determi-

nant map
τ1∧ · · · ∧τr 7−→ det(Φ(τi, τj))

is well-defined. For τ1∧ · · · ∧τr and σ1∧ · · · ∧σr in
∧r(Λ) we define

Φr(σ1∧ · · · ∧σr, τ1∧ · · · ∧τr) = det(Φ(σi, τj)),
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which defines the determinant map Φr as a bilinear map on all of
∧r(Λ) by extending

the definition of Φr linearly to sums. The inclusion of Λ in
∧

(Λ) gives an isometry
of the bilinear module (Λ,Φ) with (

∧1(Λ),Φ1). For simplicity, we denote Φr(ω, ω) by
det(ω) for “pure” forms ω = τ1∧ · · · ∧τr in

∧r(Λ). For supersingular elliptic curves E1

and E2, the bilinear module (Λ,Φ) associated to Hom(E1, E2) the determinant map
on the ideal Λσ̂ has a surjective representation on Λ∧σ ⊆

∧2(Λ) equipped with the
determinant map Φ2.

Theorem 70 Let (Λ,Φ) be a regular bilinear module of rank n over R and let
∧

(Λ)
be the exterior algebra of Λ with the quadratic module structure derived from the

determinant form on the submodules
∧r(Λ). Then for every quadratic submodule M

of of Λ of rank r over R, the determinant of the quadratic module
∧r(M)∧Λ as a

submodule of
∧r+1(Λ) is det(M)n−r−1 det(Λ).

Proof. Let V = Λ ⊗ Q and U = M ⊗ Q. Define W to be the n − r dimensional
orthogonal complement of U in V relative to the bilinear form Φ, and N to be the
projection of Λ to W . Then

∧r(M)∧Λ and
∧r(M)∧N are equal as submodules of∧

(V ), so it suffices to prove the result for
∧r(M)∧N . Let {νi} be any basis for N

and let ωM be a generator for
∧r(M). Since N is orthogonal to M , by the definition

of the bilinear form Φr+1 on
∧r+1(Λ), we have:

(Φr+1(ωM∧νi, ωM∧νj)) = det(M) (Φ(νi, νj)) .

We also have that det(Λ) = det(M ⊕N) = det(M) det(N). Hence it follows that

det(
∧r

(M)∧N)) = det (det(M)N) = det(M)n−r
det(Λ)

det(M)
,

and the result holds.

We can state several corollaries of this theorem. Hereafter, let Λ be a quaternary
quadratic module over Z associated to a left projective module over an order O in a
quaternion algebra over Q.

Corollary 71 For any α in Λ, the determinant of the ternary quadratic submodule

α∧Λ of
∧2(Λ) is Φ(α, α)2 det(Λ).

Proof. Set n = 4 and r = 1 in Theorem 70.

Corollary 72 For any two linearly independent α and β in Λ, the submodule α∧β∧Λ
of
∧3(Λ) is a binary quadratic module of determinant det(α∧β) det(Λ).

Proof. Set n = 4 and r = 2 in Theorem 70.
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Theorem 73 The bilinear module (
∧3(Λ),Φ3) is isometric to the the bilinear sub-

module DΛ of Λ, where D is the different of O. In particular the bilinear form Φ3 is

even, and has content d(O).

Proof. We note that Λ =
∧1(Λ) and

∧3(Λ) are dual with respect to
∧4(Λ) = ωZ.

Let B = {v1, v2, v3, v4} be a basis for Λ. Then

{ω1, ω2, ω3, ω4} = {v2∧v3∧v4,−v1∧v3∧v4, v1∧v2∧v4,−v1∧v2∧v3}

is the dual basis of B with respect to ωZ, and the matrix C = (Φ3(ωi, ωj)) is the
classical adjoint of A = (Φ(vi, vj)). Now let Λ∗ be the dual to Λ with respect to Φ in
Λ⊗Q, and let O∗ be the dual to O. For each v in Λ, the dual to O v is O∗v q(v)−1,
so the dual to Λ is Λ∗ =

⋂
vO∗v q(v)−1 = O∗Λ. Let {v∗1, v∗2, v∗3, v∗4} be the dual basis

to the basis B for Λ. Then (Φ(v∗i , v
∗
j )) is the inverse of the matrix A, and

(Φ(d(O) v∗i , d(O) v∗j )) = det(Λ)(Φ(v∗i , v
∗
j ))

is the classical adjoint. Thus ωi 7→ d(O) v∗i determines an isometry of
∧3(Λ) to Λ

with image d(O)O∗Λ = DΛ.

Corollary 74 Let E1 and E2 be supersingular elliptic curves, and let (Λ,q) be the

quadratic module associated to Hom(E1, E2). Then the bilinear module (
∧3(Λ),Φ3) is

isometric to the quadratic submodule P of Λ associated to the submodule of inseparable

isogenies of Hom(E1, E2) with the degree map as quadratic map.

Proof. The inseparable isogenies in Hom(E1, E2) are precisely the isogenies of degree
divisible by p. Thus the inseparable isogenies are equal to D2 Hom(E1, E2) and also
to Hom(E1, E2)D1, where D1 is the different of O1 = End(E1) and D2 is the different
of O2 = End(E2). The corollary now follows from Theorem 73.

A result of Gauss

Gauss showed that if D = −d 6≡ 1 mod 8 is the discriminant of a quadratic imaginary
field extension K of Q, and D is different from −3 and −4 then the number of times
d is represented by a quadratic form

f0(x1, x2, x3) = x2
1 + x2

2 + x2
3

equals either 12 or 24 times the class number ofK, whenD ≡ 0 mod 4 orD ≡ 3 mod 4
respectively. Brezinski and Eichler [2] interpret this and similar class number relations
in terms of the number of embeddings of orders in imaginary quadratic extensions of
Q in the maximal orders of quaternion algebras.
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In the case of the quadratic form f0(x) of Gauss, the number of representations of
a number d can be interpreted as the number of embeddings of an order in K in
a maximal order O of the definite quaternion algebra A over Q ramified at 2 and
at infinity. Since the type number of this algebra is 1, every order which embeds
optimally in a maximal order of A does so in O.

The determinant forms introduced in this section serve as a useful tool for presenting
this phenomenon. One can show that the “correct” quadratic form representing
discriminants of imaginary quadratic subrings of O is

f1(x1, x2, x3) = 3x2
1 + 2x1x2 − 2x1x3 + 3x2

2 + 2x3x2 + 3x2
3.

This is the quadratic form associated to the quadratic module (O∧1,Φ2) by means
of a choice of basis.

Let {v1, v2, v3} be a basis for the quadratic module (Λ0,q0) associated to f0 such that

q0(x1v1 + x2v2 + x3v3) = f0(x1, x2, x3),

and let {u1, u2, u3} be a basis for a quadratic module (Λ1,q1) associated to f1 such
that

q1(x1u1 + x2u2 + x3u3) = f1(x1, x2, x3).

Then the map ι : Λ1 → Λ2 given by

ι(u1) = v1 + v2 + v3

ι(u2) = v1 − v2 + v3

ι(u3) = v1 − v2 − v3

is a representation of Λ1 by Λ0. In terms of the image of {u1, u2, u3} in Λ1, the basis
{v1, v2, v3} for Λ0 is given by

v1 =
ι(u1) + ι(u3)

2
, v2 =

ι(u1)− ι(u2)

2
, v3 =

ι(u2) + ι(u3)

2
,

so that f0(x1, x2, x3) represents an “authentic” discriminant of a rank two subring of
O if and only if x1 ≡ x2 ≡ x3 mod 2. It follows that an integer D represented by f0

is authentic if D ≡ 0, 3 mod 4 and extraneous if D ≡ 1, 2 mod 4.
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Chapter 7

Supersingular elliptic curves

The main objective of this chapter is to prove the following theorem.

Theorem 75 There exists an algorithm that given any supersingular elliptic curve

E over a finite field k computes four endomorphisms in End(E) linearly independent

over Z. For any ε > 0 the algorithm terminates deterministically in O(p3/2+ε) opera-

tions in the field k and probabilistically with expected O(p1+ε) operations in k, where

p is the characteristic of k.

The algorithm is based on the connectedness of the graph of l-isogenies for any prime
l and the bound on the number of supersingular elliptic curves. We note that the
square of the Frobenius endomorphism π is equal to a root of unity times a power of
p. Thus determining the isomorphism type of the commutative ring Endk(E) when
π 6∈ Z amounts to determining if the index of Z[π] in Endk(E) locally at 2. We note
that Endk(E) is always maximal at p, and Z[π] is maximal everywhere outside of 2
and p. This case is solved by a trivial application of the algorithm for ordinary elliptic
curves. Thus we interpret the problem as one of finding the full endomorphism ring
End(E) and hereafter work over the algebraic closure of the finite field k.

The discrepancy between the deterministic running time and the expected probabal-
istic running time is due to the lack of an adequate deterministic polynomial factoring
algorithm over finite fields.

We define a directed pseudo multigraph G as a finite set V of vertices together with
a finite set A of arrows and a function from A to V × V . Functions on arrows which
have image in the diagonal of V × V are not excluded. A graph is called m-regular
if for each v in V , the inverse image of {v} × V in A has m elements. We define
the directed pseudo multigraph G of l-isogenies of supersingular elliptic curves as
follows. Let {Ei} be a complete set of representatives of the isomorphism classes
supersingular elliptic curves over the algebraic closure of k. We define each Ei to be
a vertex of the graph and define an arrow connecting Ei to Ej for each isogeny of
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degree l, taking only one isogeny up to isomorphism of the curve Ej . Thus there are
l+ 1 edges with initial vertex Ei corresponding to the l+ 1 cyclic subgroups of Ei[l],
so G is (l + 1)-regular.

We define the additional structure of a dual map on the graph G. The dual map
takes the arrow of an isogeny to that of its dual isogeny. This map is, however, in
general neither surjective nor injective on arrows. An arrow is defined to be an isogeny
ϕ : E1 −→ E2 chosen from the set Aut(E2)ϕ. Thus if E2 has more automorphisms
than E1 there may be multiple arrows from E2 to E1 and one arrow E1 −→ E2 image
of the dual map for all of them.

We will use the following theorem on positive definite quadratic modules to deduce
results on the graph G.

Theorem 76 Let (Λ,q) be a positive definite quadratic module over Z of rank at

least four. Then there exists an integer N such that if n ≥ N is an integer which is

primitively represented by Λ⊗Zl for all primes l, then n is primitively represented by

Λ over Z.

Proof. This is Theorem 1.6 of Chapter 11 in Cassels [3].

The following theorem gives one proof of the connectedness of G. We define an
isogeny ϕ : E1 −→ E2 of degree n, to be primitive if there exists no integer m > 1
and isogeny ψ : E1 −→ E2 such that ϕ = [m] ◦ ψ.

Corollary 77 Let E1 and E2 be supersingular elliptic curves over k in the same

isogeny class and suppose that π lies in Z. Then for every n sufficiently large and

relatively prime to p, there exists a primitive isogeny ϕ : E1 −→ E2 over k of degree

n.

Proof. Since E1 and E2 lie in the same isogeny class the condition that π lies
in Z is unambiguously defined and both Endk(E1) and Endk(E2) are of rank four
over Z. Thus also Homk(E1, E2) = Hom(E1, E2) and we equip the module Λ of k-
isogenies with the structure of a quaternary quadratic module with the degree map.
Theorem 76 implies that it is sufficient to look locally. For all primes l, the projective
Ol module Λl is free of rank one and generated by an isogeny of degree relatively prime
to l. For all primes at which Ol splits, the local condition is trivially satisfied, because
the matrix algebra M2(Z) representes all integers primitively, as is demonstrated by
the example (

n+ 1 1
1 1

)
.

Thus we need only consider the splitting prime p. Here also, every integer n relatively
prime to p is represented, since Op contains an unramified quadratic extension Rp of
Zp, and the reduced norm map on Op induces the surjective norm map on units
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N : R∗
p −→ Z∗

p. Since n lies in Z∗
p, any representation of n is trivially primitive in Λp.

Thus the conditions of Theorem 76 are satisfied, and the corollary follows.

Corollary 78 The graph of l-isogenies of supersingular elliptic curves is connected.

Proof. Corollary 77 proves the existence of an isogeny ϕ : E1 −→ E2 of degree lr for
every pair of elliptic curves E1 and E2 for r sufficiently large.

Note. The standard proof of this fact uses the observation that the number of
connected components of a m-regular graph G is the dimension of the eigenspace
for k in the adjacency matrix for G. The adjacency matrix of the l-isogenies of
supersingular elliptic curves defines the action of the Hecke operator Tl, and the one
dimensional space of Eisenstein series is the eigenspace for l+1. To make Corollary 77
effective, we exploit the interpretation of the adjacency matrix for G as the matrix of
the Hecke operator.

We follow the construction of Mestre and Oesterlé in [20].

Next let M(p) be the free abelian group generated by the H supersingular elliptic
curves over k. For each elliptic curve Ei set

wi =
|Aut(Ei)|

2
,

and define a bilinear map 〈·, ·〉 : M(p) ×M(p) → Z by setting 〈Ei, Ej〉 = 0 for all
i 6= j and 〈Ei, Ei〉 = wi. Set E =

∑
i w

−1
i Ei. Then the orthogonal complement to E

is the subgroup:

S(p) = {
∑

i

niEi :
∑

i

ni = 0}.

For each Ei define Si ∈ S(p) by the decomposition

Ei =
E
〈E , E〉 + Si.

For any prime l different from p, we define a Hecke operator T (l) on M(p) by letting
T (l)Ei be the sum of the final vertices of the arrows in the graph G of having initial
vertex Ei. By definition, the adjacency matrix of G is the matrix of the operator T (l)
in terms of the basis of supersingular elliptic curves, and satisfies the property that
T (l)Ei =

∑
j nijEj where

∑
j nij = l+ 1. From this property, the E is an eigenvector

of the Hecke operator with eigenvalue l + 1, and stabilizes the orthogonal subspace
S(p).

For the graph of supersingular elliptic curves in characteristic 47, we find adjacency
matrices

T2 =




0 1 0 0 0
3 0 2 1 0
0 1 1 0 0
0 1 0 1 1
0 0 0 1 2




and T3 =




1 0 0 0 1
0 1 0 1 2
0 0 0 1 1
0 1 2 2 0
3 2 2 0 0



.
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Here we see that the automorphisms of certain curves result in a nonsymmetric ad-
jacency matrix.

From the definition of E and of 〈·, ·〉 on M(p), the value of 〈E , E〉 is
∑

i w
−1
i and

〈Si,Sj〉 = δijwi −
1

〈E , E〉

where δij = 1 if i = j and 0 otherwise. By Theorem 4.1 of Husemöller [11, §13.5], the
value of 〈E , E〉 is (p− 1)/12. From the orthogonal decomposition of Ei, the number
of isogenies of degree lr from Ei to Ej is

〈T (l)rEi, Ej〉 =
(l + 1)r

〈E , E〉 + 〈T (l)rSi,Sj〉

As noted by Mestre [20], the Hecke operator T (l) is Hermitian with respect to the
inner product 〈·, ·〉. Thus if b is a bound on the eigenvalues of the Hecke operator, we
find a bound

|〈T (l)rSi,Sj〉| ≤ br〈Si,Si〉1/2〈Sj ,Sj〉1/2,
by the Cauchy-Schwartz inequality. Thus for r satisfying the lower bound:

(
l + 1

b

)r
≥ (wj +

1

〈E , E〉)
1/2(wj +

1

〈E , E〉)
1/2〈E , E〉

the number of isogenies of degree lr from Ei to Ej is at least one. The Riemann
hypothesis for function fields, proved by Deligne (see Katz [12]), implies that the
eigenvalues for the Hecke operators are bounded by b = 2

√
l. Both H − 1 and 〈E , E〉

are bounded by (p+ 1)/12, so we obtain a bound of O(log p) on r.

We define the distance between any two vertices in a graph to be the least number of
edges of all paths between them, and the diameter of a graph to be the maximum of
all the distances between pairs of vertices of the graph. We have proved the following
theorem.

Theorem 79 For all primes l, the diameter of the graph of l-isogenies of supersin-

gular elliptic curves is O(log p), where the constant in the bound is independent of

l.

Mestre and Oesterlé [20] use the above results to obtain a complexity bound for the
construction of the graph of l-isogenies.

Theorem 80 Let l be a prime. There exists an algorithm which, given a prime p
and a supersingular elliptic curve E/Fp2, determines the graph of l-isogenies of su-

persingular elliptic curves in characteristic p and for any ε > 0 runs deterministically

in time O(p3/2+ε) and probabilistically in expected time O(p1+ε).
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Proof. The prime l is subsumed in the constant for the complexity bound, thus we
may assume for simplicity that we have an explicit model for the modular equation
for X0(l). For each supersingular elliptic curve Ei, the curves l-isogenous to Ei can
be obtained by solving for the roots of a modular equation over the field Fp2. The
methods of Elkies can be used to produce equations for the kernel of the isogeny.
Factoring polynomials of bounded degree over the field Fp2 can be achieved in time
O(p1/2+ε) or using probabilistic methods, in expected polynomial time in log p. The
number of supersingular elliptic curves is bounded by (p + 1)/12 + 1, so this proves
the result.

Theorem 81 There exists an algorithm which given endomorphisms α and β of E
with degrees n1 and n2 and which are expressed as the composite of isogenies of degree

bounded by S, computes Φ(α, β) in time bounded by a polynomial function in logn1

log n2 and S.

Proof. The algorithm is essentially the algorithm of Schoof [27] for computing the
trace of Frobenius. The argument is simplified by the existence of a compact form
for the dual of the isogenies. On each of O(logn) torsion subgroups E[r] for small

primes r we calculate αβ̂ and βα̂ and find t such that Φ(α, β) = αβ̂ + βα̂ equals
multiplication by t on E[r]. Then t can be reconstructed by the Chinese remainder
theorem and the bound t ≤ 4n.

We define a simple cycle of G to be a path in G from a vertex to itself for which
no arrow immediately follows an isogeny with its dual, and which has no repeated
vertices.

Proposition 82 Every simple cycle through E corresponds to a primitive endomor-

phisms of E of degree equal to a power of l.

Proof. The image of the l-torsion of any l-isogeny is a cyclic subgroup C of the
l-torsion group. The dual isogeny kills C. Any other isogeny of degree l necessarily
maps C injectively into the l-torsion of the image curve. Thus the composite of such
of degree l does not kill E[l], and is bijective on all other torsion groups E[r], where
r is relatively prime to l.

We can now prove Theorem 75. A breadth first search of a graph is defined to be
a graph search algorithm which sequentially tests all vertices at distance t from an
initial vertex before moving to vertices at distance t + 1. Let l < 12 prime and
denote by G be the graph of l isogenies of supersingular elliptic curves. By means
of a breadth first search of the G, beginning at the vertex E we build a spanning
tree of the graph of l-isogenies, constructing an arrow and its dual simultaneously.
Theorem 79 implies that the spanning tree so constructed has depth O(log p). Thus
arrows absent from the tree at terminal vertices complete simple cycles through E of
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length O(log p). The entire spanning tree for G can be constructed in the time bound
of Theorem 80.

In this way we find an endomorphism α and can compute its trace to find the dis-
criminant of the ring Z[α] in End(E). By a geometry of numbers argument we expect
to find α with discriminant O(p), though the graph diameter only gives a bound in
terms of a power of p. If a bound of O(p) holds then the class number h of Z[α] is
O(p1/2 log p) and we have narrowed the field of candidate orders from O(p) to h.

We continue, choosing a second endomorphism β and computing Φ(1, β) and Φ(α, β).
In the cycle corresponding to α, the arrows correspond to prime ideals lying over l
in the endomorphism rings of the vertex curves, and α is a generator of the principal
ideal lr in Z[α], where l lies over l and r is the length of the cycle. Provided the
cycle for β is not contained in that for α or its dual, the ring Z〈α, β〉 generated by α
and β is not contained in a rank two order. We can now conclude with the following
proposition.

Proposition 83 The endomorphisms α and β generate a suborder of End(E) of

discriminant (
D1D2 − t2

4

)2

,

where D1 is the discriminant of Z[α], where D2 is the discriminant of Z[β] and where

t = Φ(1, α)Φ(1, β)− Φ(α, β).

Proof. The discriminant is explicitly computed for the basis {1, α, β, αβ}.
This completes the proof of Theorem 75.

Note. The number of maximal orders containing a ring Z〈α, β〉 is greatly constrained
by explicit bounds in terms of the discriminants D1, D2, and t, as noted in [2].

In the following case we can prove that α and β suffice to generate the endomorphism
ring of E.

Theorem 84 Suppose that the norm of α is lh1, where h1 is the class number of the

ring Z[α], and the norm of β is lh2 where h2 is the class number of the ring Z[β].
Then if the cycles for α and β intersect only at E, the endomorphism ring of E is

uniquely determined by the embedding of Z〈α, β〉.

Proof. Let l be a prime of Z[α] lying over the the rational prime l. Then the ideal li

is the intersection with Z[α] of the kernel ideal for the isogeny to the i-th elliptic curve
in the cycle defining α. Since α is a simple cycle, l generates the class group and the
elliptic curves in the cycle of isogenies determining α represent all isomorphism classes
of elliptic curves whose endomorphism ring contains α. By symmetry all isomorphism
classes of elliptic curves are represented by the elliptic curves in the cycle for β. Thus
E and hence the endomorphism ring of E is determined uniquely by α and β.



CHAPTER 7. SUPERSINGULAR ELLIPTIC CURVES 93

The problem of determining necessary and sufficient conditions to determine the
isomorphism type of the endmorphism ring of E is a subject for future research by
the author.
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