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Abstract. We introduce a constructive model for algebraic tori based
on reduced divisors on singular curves. By using a singular hyperelliptic
model, this provides an alternative representation, and computational
model, for groups of rational points on an algebraic tori [4]. We obtain
a represention of elements on certain tori of dimension r in compact
representation using r +1 elements. By embedding the ElGamal discrete
logarithm of a composite degree field in an algebraic torus, we obtain an
attack on the discrete logarithm problem based on index calculus in the
generalized Jacobian of a hyperelliptic curve.
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1 Introduction

The Jacobian of a nonsingular curve is an abelian variety, whose set of
rational points is equipped with the structure of an abelian group. In
the simplest nontrivial case, that of an elliptic curve, the group of ra-
tional points is represented by defining equations for the abelian variety,
which is canonically identified with the curve itself. Curves of genus two
are represented by an equation of a hyperelliptic curve C : y2 = f(x),
where f(x) is of degree 5 or 6. Rational points on the Jacobian J , an
abelian variety of dimension two, are represented by reduced divisors on
the curve, identifying the rational points of J with reduced divisors on C.
The Cantor reduction algorithm [1] provides an effective model for com-
putation in the Jacobian of a hyperelliptic curve using reduced divisors.
Analogous algorithms have been worked out for representing elements of
the Jacobians of curves in other families, such as superelliptic and Cab
curves.

Often with little or no modification, the algorithmic models for rep-
resenting elements of the Jacobian carry over to singular curves in the
respective families – hyperelliptic, superelliptic, or Cab curves. The geo-
metric object modelled by the divisor groups is a generalized Jacobian [3].



This geometric object is still a group scheme, but will be of mixed type,
with simple quotients isomorphic to affine space, algebraic tori, or abelian
varieties. Following [4], we denote by Tn/Fq the simple algebraic torus of
dimension ϕ(n), with |Tn(Fqr)| = Φn(qr), for any extension degree r co-
prime to n, where Φn(x) is the n-th cyclotomic polynomial of degree ϕ(n).
As a first case, we describe the basic arithmetic properties of degenerate
elliptic curves. We then present a more general model for tori in terms of
singular hyperelliptic curves, for which the generalized Jacobians are pure
algebraic tori, whose factors are of the form Tn. As a consequence, we are
able to carry over both the explicit constructive theory of hyperelliptic
curves to the setting of algebraic tori, but also to apply the destructive
potential of subexponential hyperelliptic curve algorithms for large genus
curves.

2 Degenerate Elliptic Curves

The singular elliptic curve E/Fq : v2 = u2(u + δ), where δ 6= 0, provides
the first nontrivial example of a singular curve whose generalized Jacobian
gives a algebraic torus. The nonsingular points – those other than (0, 0)
– form a group with the point O at infinity as the identity. The standard
addition law on an elliptic curve determines the group law:

[2](u, v) =
( u2

4(u+ δ)
,
(u3 − 2δ)uv
8(u+ δ)2

)
and (u1, v1) + (u2, v2) = (u3, v3), where

u3 =
(u1u2(u1 + u2 + 2δ)− 2v1v2)

(u1 − u2)2
,

v3 =
(u1 + 3u2)u2

1v2 − (3u1 + u2)u2
2v1 + 2δ(u1v2 − u2v1)(u1 + u2)

(u1 − u2)3
·

Cantor reduction for curves of hyperelliptic type determines the same
group law on the nonsingular points E(Fq)\{(0, 0)}. This group maps
injectively to the unit group Fq[γ]∗, where γ is a square root of δ, by the
map

(u, v) 7−→ v − γu
v + γu

. (1)

This map is a homomorphism of groups, with image F∗q when δ is a square,
or surjects on the cyclic subgroup of order q + 1 in Fq[γ]∗ consisting of
elements of norm 1. The generalized Jacobian J of E is a torus canonically
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identified with the open subscheme E\{(0, 0)} of nonsingular points on
E together with the point at infinity as identity. In the notation of Rubin
and Silverberg, this torus is J = T1 when δ is a square in F∗q , and J = T2

otherwise.
Note that in either case, the torus is of dimension 1, and we have

achieved a representation of J as a curve of arithmetic genus 1, for which
points are specified using two coefficients u, v. A rational model for this
curve would achieve the desired goal of Rubin and Silverberg [4] of rep-
resenting the torus of dimension one with exactly one coefficient. In this
case we can achieve this minimal representation, using the inclusion of
the coordinate ring in its integral closure:

Fq[u, v]
(v2 − u3 − δu2)

⊆ Fq[z], (2)

where z = v/u, so that (u, v) = (z2−δ, z(z2−δ)). Thus there is a bijective
correspondence between points (u, v) in E\{(0, 0)} and z with z2 6= δ.

In the section which follows, we generalize this construction to reduced
divisors on singular hyperelliptic curves of arithmetic genus r+1 in order
to represent certain torus of dimension r by 2r+2 coefficients in a standard
model, and r+1 coefficients in compact form. Thus we are able to achieve
a model for these algebraic tori which is near the optimal representation
achieved by a birational map to Ar.

3 Hyperelliptic Models for Tori

In this section we propose singular hyperelliptic curves as a computa-
tional model for representing algebraic tori. The algorithms for Cantor
reduction [1] and arithmetic of reduced divisors on hyperelliptic curves is
well-developed and composition and divisor reduction carry over essen-
tially unmodified to singular hyperelliptic curves. Thus we obtain efficient
models for arithmetic on algebraic tori using existing computational ma-
chinery.

We propose using reduced divisors on singular hyperelliptic curves of
geometric genus 0 of the form

C : y2 = cxf(x)2, (3)

for c in Fq and f(x) squarefree in Fq[x] as a model for algebraic tori. The
generalized Jacobian J of C is then a torus of dimension equal to n =
deg(f(x)). A point on J is represented by a reduced divisor, determined
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by an ideal (a(x), y − b(x)), where a(x) is a monic polynomial of degree
n and b(x) is a polynomial of degree less than that of a(x). Thus we
need 2n coefficients to specify a point on the torus of dimension n in this
representation.

If f(x) factors as f1(x)f2(x), we note that we obtain quotients to the
curves Ci given by

Ci : y2
i = cxfi(x)2,

by taking (x, y) 7→ (x, y/f3−i(x)). The induced maps on divisors imply
that the generalized Jacobian is isogenous over Fq to the product J1× J2

of generalized Jacobians of C1 and C2. In particular, J is not simple.
If we apply the same principle over a splitting field Fqn for f(x), we

obtain an isomorphism of J with the Weil restriction of Gm = T1/Fqn

or T2/Fqn to Fq, as we now explain. Explicitly we proceed as above and
reduce to the case of the degenerate elliptic curve. Let δ be a root of f(x)
in Fqn , and write f(x) = (x−δ)g(x). Then C has a map to the degenerate
elliptic curve

Eδ : v2
δ = cu2(u+ δ), (4)

given by
(x, y) 7→ (u, v) = (x+ δ, y/g(x+ δ)).

As in the previous section we find that Eδ is isomorphic to either T1/Fqn or
T2/Fqn , depending on whether or not cδ is a square in Fqn . By descending
back to Fq, we conclude that J is isomorphic to the Weil restriction of
T1/Fqn or T2/Fqn , and we therefore find the splitting

J ∼
∏
m|n

Tm or J ∼
∏
m|n

T2m

up to isogeny. If n is odd, then for each fixed f(x), the class of c in F∗q/F∗q2
determines which of the two cases occurs. We summarise this result in
the following theorem.

Theorem 1. For n odd and coprime to q, the algebraic tori Tn and T2n

can be represented as subschemes of the generalized Jacobians of the sin-
gular hyperelliptic curves

C : y2 = cxf(x)2,

for irreducible polynomials f(x) of degree n in Fq[x]. The codimension of
Tn or T2n in J is n− ϕ(n).
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In particular for n an odd prime, the tori Tn and T2n can be repre-
sented as subschemes of codimension 1 in some generalized Jacobians.

Example 1. The 2-dimensional torus T6/F13 embeds in the 3-dimensional
generalized Jacobian of the curve

C1 : y2 = x(x3 + x+ 5)2.

One checks that the group J(F13) is a cyclic group of order 133 + 1. The
image of T6(F13) determines a subgroup of order 157 = 132 − 13 + 1, for
which the reduced divisor

(x3 + 2x2 + 4x+ 3, y − x2 − x+ 2)

is a generator. Using this divisor representation, each point is specified
by 6 coefficients, as would be necessary for the embedding in F∗136 .

The arithmetic of the generalized Jacobian carries over to curves which
are not absolutely irreducible. For f(x) of odd degree, Cantor reduction
can be extended to irreducible curves C of the form y2 = cf(x)2, despite
the fact that C splits into a union of two curves over a quadratic extension.

Example 2. The 2-dimension torus T6/F13 can be represented more com-
pactly as the generalized Jacobian of the absolutely reducible curve

C2 : y2 = 2(x3 + x+ 5)2.

Since C2 itself has no rational points over F13, every reduced divisor is of
the form (a(x), y−b(x)) where a(x) is an irreducible polynomial of degree
2 and b(x) has degree 1, a typical example being the divisor

(x2 + 3x+ 6, y − x− 1),

which generates the group J(F13) of order 157. With this model only 4
coefficients are necessary to specify a point.

While the latter construction is more efficient in the hyperelliptic di-
visor representation, it fails to yield the more compact form of the next
section, so we will not pursue this representation further. However, we
do note that for any reduced divisor (a(x), y − b(x)) in this model, the
factorizations of a(x) have the interesting property of consisting only of
even degree polynomials. This property may have relevance to the subex-
ponential attacks of the final section.
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4 Compact Divisor Representations

In this section we make use of the integral closure, analogous to (2),
in order to find a compact representation for points on J . The integral
closure of the coordinate ring of the curve (3) is a polynomial ring:

Fq[x, y]
(y2 − cxf(x)2)

⊆ Fq[z]

where x = z2/c and y = f(x)z. A reduced divisor (a(x), y − b(x)) in J
will be coprime to f(x), and is determined by a unique monic polynomial
of degree at most n in z. This gives a rational model for the generalized
Jacobian J , and when n is prime, a torus T isomorphic to Tn or T2n

embeds as a subscheme of codimension 1. As a result, points are thus
specified by n = dim(T ) + 1 coefficients, which is near the optimal which
would be achieved by a rational representation of T itself.

5 Attacks by Weil Descent to Tori

The reduction of a generalized Jacobian to the singular elliptic curve
(4), followed by the map (1) to a multiplicative group can be applied in
reverse, to pull back a discrete logarithm problem in a finite field extension
to an algebraic torus over a subfield. The isomorphic discrete logarithm
problem may then be attacked by subexponential algorithms.

We indicate, by way of example, how the discrete logarithm problem
on a torus represented in terms of singular hyperelliptic divisors is open
to such an attack. For this purpose the arithmetic of singular hyperellip-
tic curves, their generalized Jacobians, and index calculus attacks were
implemented in Magma [2].

Example 3. Let C/F17 be the singular hyperelliptic curve given by the
Weierstrass equation:

y2 = x(x7 + 11x4 + 14x3 + 15x2 + 16x+ 10)2.

The generalized Jacobian J of C is isogenous to T2×T14, where T2 is the
nontrivial quadratic twist of Gm with

T2(F17) ∼= {x ∈ F∗172 |N(x) = 1},

and T14 is a Galois twist of G6
m such that T14(F17) is isomorphic to the

cyclic subgroup of F∗1714 of prime order

Φ14(p) = p6 − p5 + p4 − p3 + p2 − p+ 1 = 22796593.
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Conventional wisdom would suggest that the best subexponential attacks
on the discrete logarithm in T14(F17) are obtained by embedding the DLP
in F∗1714 , a group of order

1714 − 1 = 168377826559400928,

thus the security of the DLP should be judged in terms of näıve square
root attacks on a group of order O(p6) or subexponential attacks on a
group of order O(p14). However, using the native representation of T14 in
J , the nine points

{(0, 0), (1, 1), (2, 3), (4, 3), (8, 6), (9, 1), (13, 1), (15, 5), (16, 3)},

on C give rise to a factor basis of reduced degree one divisors on J , over
which we can attempt to find smooth relations among the reduced divisors
of degree 7. This yields the relation matrix:

2 0 0 0 0 0 0 0 0
1 0 −1 5 3 0 1 −1 4
1 3 1 2 4 4 −3 −2 −1
1 6 0 4 −4 1 −4 5 −2
0 5 −5 −3 1 3 7 2 −2
0 2 1 4 3 −4 4 0 −8
1 3 3 0 6 −2 −2 9 3
0 3 −4 −3 −3 −3 −1 −9 8
0 3 23 3 −9 5 8 −4 2


much more readily than would the corresponding factor basis of degree
one polynomials among the degree 13 representatives for F∗1714 . We note
that in this example, we made use of auxilliary divisors of degree two
which were subsequently eliminated.

Note that the torus T14 of dimension six can also be represented in terms
of reduced divisors on the absolutely reducible curve:

y2 = c(x7 + 11x4 + 14x3 + 15x2 + 16x+ 10)2,

where c is any nonsquare in F∗17. There exist no rational points on this
curve over any odd degree extension, thus the only possible smooth ele-
ments over which we can factor divisors have even degree.
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6 Torus-based Cryptanalysis

We have shown that certain algebraic tori have a representation which is
both practical for efficient implementations, and, in large dimension, am-
menable to subexponential attacks. In general the probability of finding
smooth divisors in these representations of algebraic tori may be lower
than for finite field extensions, due to the relative lack of degree one ele-
ments. However the existence of a native subexponential attack on certain
algebraic tori suggests that the minimal dimension r = ϕ(n) of a torus
in which a group G embeds, not the dimension n of the field Fnq into
which G can be mapped, is a more conservative measure of the security
of G against subexponential attacks. We are careful to point out that the
cryptanalytic potential for toric cryptography is asymptotic in the dimen-
sion, and that for any fixed dimension, the best asymptotic attacks will
be fully exponential. One might, however, reassess the security against
attacks on XTR, torus cryptography in T6, or an MOV reduction to F∗p6
as giving comparable security as the analogous subgroups of F∗p3 . A more
significant case to reconsider is the level of security conferred when a dis-
crete logarithm problem in G embeds in a large degree extension F∗pn of
the prime field.
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