# CIMPA School at Makerere University Galois representations and the LMFDB Galois representations and Sato-Tate

Research group members: Flugence Bunani Gabiro, Philly Ivan Kimuli, Annet Kyomuhangi, Patrick Masaba, Caroline Namanya

> Research group leaders: Leonardo Colò and David Kohel

> > Makerere University January 24, 2025

Galois representations of number fields

Characters, expectation and orthogonality  $_{\rm O}$ 

Explicit examples

## Group photo



Galois representations of number fields

Characters, expectation and orthogonality  $_{\rm O}$ 

Explicit examples

#### **1** Galois representations of number fields

2 Characters, expectation and orthogonality

3 Explicit examples

## Number fields

Let  $K = \mathbb{Q}[x]/(f(x))$  be a number field defined by a polynomial  $f(x) \in \mathbb{Z}[x]$ , and L is the splitting field of  $K/\mathbb{Q}$ .



We are interested in studying the Galois groups of these fields, from the perspective of character theory of groups.

## Character theory of number fields

Consider the number field defined by

$$f(x) = x^n + c_1 x^{n-1} + \dots + c_0 \in \mathbb{Z}[x],$$

and suppose that  $(p, \operatorname{disc}(f)) = 1$ .

- The factorization type  $f(x) \equiv f_1(x) \cdots f_r(x) \in \mathbb{F}_p[x]$ , determines the cycle type  $(d_1, \dots, d_r) = (\deg(f_i))$  of the Frobenius lift in  $\operatorname{Gal}(L/\mathbb{Q})$ , up to conjugation.
- In the associated permutation representation  $\rho: \operatorname{Gal}(L/\mathbb{Q}) \to S_n$ , the Frobenius lift has characteristic polynomial

$$P(x) = (x^{d_1} - 1) \cdots (x^{d_r} - 1) = x^n - a_1 x^{n-1} + \dots + (-1)^r = \sum_{i=0}^n (-1)^i a_i x^{n-i}$$

Let  $V = \mathbb{R}^n$  whose canonical basis is identified with the roots of f, and define  $V_0 = \mathbb{R}(1, 1, ..., 1)$ .

- The representation decomposes into  $V = V_0 \bigoplus V_0^{\perp}$ , and the representation on  $V_0^{\perp}$  is the standard representation.
- The characteristic polynomial of the Frobenius on  $V_0^{\perp}$  is

$$Q(x) = \frac{P(x)}{x-1} \in \mathbb{Z}[x] = x^{n-1} - a_1 x^{n-2} + \dots + (-1)^{n-1} a_{n-1}$$

and x-1 on  $V_0$ .

- The coefficients (a<sub>0</sub>, a<sub>1</sub>,..., a<sub>n-1</sub>) are class invariants on the set C(G) = {C<sub>0</sub>,..., C<sub>t</sub>} of conjugacy classes in G = C<sub>0</sub> ∪ · · · ∪ C<sub>t</sub>.
- The coefficients are character values, that is,

$$(\chi_0(p), \ldots, \chi_{n-1}(p)) = (a_0, a_1, \ldots, a_{n-1}).$$

Explicit examples

Example (Galois group  $S_3$ ) Let  $f(x) = x^3 + 2x + 2$ . We obtain the polynomials

$$Q(x) \in \{x^2 - 2x + 1, x^2 - 1, x^2 + x + 1\}$$

with corresponding vector sequences  $\{(1,2,1), (1,0,-1), (1,-1,1)\}$ . Thus we obtain the character table:

|       | $C_0$ | $C_1$ | <i>C</i> <sub>2</sub> |
|-------|-------|-------|-----------------------|
| $a_0$ | 1     | 1     | 1                     |
| $a_1$ | 2     | 0     | -1                    |
| $a_2$ | 1     | -1    | 1                     |

The conjugacy classes are  $C_0 = C(1), C_1 = C((12)), C_2 = C((123)).$ 

#### Remark

For  $S_n$ , all of these characters are irreducible, but the situation is much more complicated in general.

## Characters and Expectation

 Let G be a finite group, then if χ, ψ are irreducible characters over C,

$$\langle \chi, \psi \rangle = \begin{cases} 0 & \text{if } \chi \neq \psi, \\ 1 & \text{if } \chi = \psi \end{cases} \quad \text{where } \langle \chi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} (\chi \bar{\psi})(g)$$

 Let G = Gal(L/Q). We define the expectation of a character as an average over its values at the first N primes:

$$\mathbb{E}(\chi) = \lim_{N \to \infty} \frac{1}{N} \sum_{p \in \mathscr{P}_N} \chi(p),$$

where  $\chi(p)$  is the character value at the Frobenius lift. This allows us to compute the inner product as the expectation

$$\langle \chi, \psi \rangle = \mathbb{E}(\chi \bar{\psi}).$$

For  $S_3$ , using primes  $\leq 2^{12}$ , an explicit computation in Sage, with respect to the characters  $(1, \psi, \chi)$ , such that

 $(1(p), \psi(p), \chi(p)) = (a_0, a_1, a_2),$ 

gives the inner product matrix

[ 1.0000000 -0.0285204991 -0.0231729055] [-0.0285204991 0.948306595 -0.0285204991] [-0.0231729055 -0.0285204991 1.00000000 ]

This gives a good approximation of the identity matrix:

$$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

This confirms that the characters 1,  $\psi$ ,  $\chi$  are irreducible and distinct.

**Example (Galois group**  $D_4$ ) Let  $f(x) = x^4 + x^3 - 2x - 1$ . We obtain the polynomials

 $O(x) \in \{x^3 - 3x^2 + 3x - 1, x^3 + x^2 - x - 1, x^3 - x^2 - x + 1, x^3 + x^2 + x + 1\}$ 

with corresponding vector sequences

$$\{(1,3,3,1), (1,-1,-1,1), (1,1,-1,-1), (1,-1,1,-1)\}$$

Thus we obtain the character table:

|       | $C_0$ | $C_1$ | <i>C</i> <sub>2</sub> | $C_4$ |
|-------|-------|-------|-----------------------|-------|
| $a_0$ | 1     | 1     | 1                     | 1     |
| $a_1$ | 3     | -1    | 1                     | -1    |
| $a_2$ | 3     | -1    | -1                    | 1     |
| $a_3$ | 1     | 1     | -1                    | -1    |

where  $C_0 = C(1), C_1 = C((12)), C_2 = C((12)(34)), C_4 = C((1234)).$ 

For  $D_4$ , using primes  $\leq 2^{12}$ , an explicit computation in Sage, with respect to the characters  $(\chi_0, \chi_1, \chi_2, \chi_3)$ , gives the inner product matrix

[1.0000000 -0.0284697509 -0.0533807829 -0.0213523132][-0.0284697509 1.89679715 0.875444840 -0.0533807829][-0.0533807829 0.875444840 1.89679715 -0.0284697509][-0.0213523132 -0.0533807829 -0.0284697509 1.0000000]

This approximates

| ( | 1 | 0 | 0 | 0 |    |
|---|---|---|---|---|----|
|   | 0 | 2 | 1 | 0 |    |
|   | 0 | 1 | 2 | 0 | Ι. |
|   | 0 | 0 | 0 | 1 | J  |

From the inner product matrix, we can conclude:

- $\chi_0$  and  $\chi_3$  are irreducible and distinct
- $\chi_1$  and  $\chi_2$  are reducible, and moreover

 $\chi_1 = \psi + \xi_1$  and  $\chi_2 = \psi + \xi_2$ 

for irreducible characters  $\psi$ ,  $\xi_1$  and  $\xi_2$ .

**Question:** How do we find  $\psi$ ,  $\xi_1$  and  $\xi_2$ ?

Galois representations of number fields

Characters, expectation and orthogonality  $_{\rm O}$ 

Explicit examples

#### The End

#### Thank you for your attention!