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This research project will focus on Galois representations assocated to arithmetic geometric objects,
with a view to understanding the Sato–Tate group of an elliptic curve — a projective curve with a struc-
ture of abelian group — and its generalization to higher genus curves and abelian varieties — higher
dimensional analogues of elliptic curves.

The Sato–Tate group is a continuous real Lie group, which is constructed from a limit of finite Galois
representations (whose image is a profinite group). In order to motivate the construction of the Sato–
Tate group, we first discuss the Galois theory of number fields, their characters, and class functions
(functions, such as characters, which are well-defined on a conjugacy class). After exploring the (finite)
Galois groups of number fields, we turn to elliptic curves. An elliptic curve E is a plane curve (set of
solutions (x, y) in the plane) of the form

y2 = x3 +ax +b.

For integers a and b, we can study the number of points over a finite field, |E(Fp )| = p +1− t , and in-
terpret the trace of Frobenius t = t (p) as the value of a random variable (at group elements indexed
by primes p). After suitable normalization, the sequence (t̃ (p)) are character values on a compact Lie
group G , called the Sato–Tate group, equidistributed respect to the Haar measure on that group. Finally
we will consider generalizations to genus-2 curves y2 = f (x), where deg( f ) = 5 or 6, or more general
curves or geometric objects. In an analogous fashion, we study the characteristic polynomial of Frobe-
nius :

x4 −a1x3 +a2x2 −pa1x +p2,

of a genus-2 curve, for which the normalized coefficients (ã1, ã2) are the values of class functions of
random elements in an underlying Sato-Tate group.
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