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Character theory for number fields.

Notation and background. Let K/Q be a number field, and Gal(K/Q) the Galois group of its normal closure.
A representation will be most often be denoted by ρ:

ρ : Gal(K/Q)−→ GLn(F),

where F is the base field of the representation, or by χ when linear (n = 1). A character on a Galois group,
the trace of a representation, will be typically denoted by Greek letters χ , ψ , ξ , where χ is most often a linear
representation (thus both a representation and a character).

Quadratic fields.

Let χn : Z → {±1} be the quadratic character associated to the Galois extension K/Q = Q(
√

n)/Q. For
squarefree n, the character χn is defined on primes by

χn(p) =


1 p is split in K,

−1 p is inert in K,
0 p |n or p = 2 and n ̸= 3 mod 4

Let PN denote of the set consisting of the first N primes. The Chebotarev density theorem gives the following
orthogonality relations for (quadratic) characters:

lim
n→∞

1
N ∑

p∈PN

χm(p)χn(p) =
{

1 if mn ∈ (Q∗)2,
0 otherwise.

1. Justify the orthogonality relations, describe a computational model to test the relations, and verify their
consistency in Sage.

Cubic fields.

Cyclic cubics. A cubic extension K/Q can be Galois (cylic of order 3) or non-Galois whose Galois closure is
an S3-extension. A universal cubic polynomial with cyclic Galois group is given by:

x3 − sx2 − (s+3)x−1

for s ∈Q, of discriminant (s2+3s+9)2. Such a cubic is called a Morton cubic. The roots α0, α1, α2, permuted
by the transformation

σ(αi) =
−1

(αi +1)
= αi+1.

2. Verify that Galois group is generated by the above transformation, and show that the Galois group induces
a 2-dimensional representation ρ on the subspace of trace zero elements (generated by αi −α j).

3. Show that the character group on G = Gal(K/Q) is generated by a character χ : G → Q(ζ3) such that
χ(σ) = ζ3, and that the trace of χ is the character ψ = χ +χ , in particuler:

ψ(σ) = ψ(σ−1) =−1, and ψ(1) = 2.

4. Denote by ψ(p) the value of the Frobenius automorphism. Show that this character value is determined,
for all p not dividing the discriminant of f , by the character values:

ψ(p) =
{

2 if f (x)≡ (x−a1)(x−a2)(x−a3) mod p,
−1 if f (x) is inert mod p.
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5. Suggest a method to define the character values χ(p) for primes p. In particular, how does one differen-
tiate the inert primes p such that χ(p) = ζ3 from the inert primes q such that χ(q) = ζ 2

3 ?

For cyclic cubic extension K/Q we have equivalent conditions for trivial Frobenius action:

• ψ(p) = 2,
• there exists p|(p) such that OK/p∼= Fp,
• OK/(p)∼= Fp ×Fp ×Fp,
• (p) = p0p1p2,
• f (x)≡ (x−a0)(x−a1)(x−a2) mod p.

and equivalent conditions when the Frobenius lift is nontrivial:

• ψ(p) =−1
• (p) = pOK =P is prime,
• OK/P∼= Fp3 ,
• Gal(K/Q)→ Gal(Fp3/Fp) is an isomorphism.

By the Chebotarev density theorem, the Frobenius automorphism is trivial with probability 1/3 and nontrivial
with probability 2/3, giving the expectation E(ψ) = 0 for the character ψ .

In the latter case, in order to establish if χ(p) = χ(σ) is equivalent to

OK OK

OK/P OK/P

σ

φ

Givent the action σ(α) =−1/(α +1), this reduces to establishing the identity:

φ(α) = α
p ≡ σ(α)≡− 1

(α +1)
mod p.

What does this say about the factorization of the polynomial xp+1 + xp + 1 in in Fp[x]? It should have the
irreducible polynomial f (x) as a factor if σ ≡ φ , and otherwise

φ(α) = α
p ≡ σ

2(α)≡−α +1
α

mod p.

which implies xp+1 + x+1 is divisible by f (x) in Fp[x].

Generic cubics. A universal cubic polynomial with Galois group S3 is f (x) = x3 + sx+ s ∈Q[x], with discrim-
inant −(4s+ 27)s2; in particular, the normal closure contains the extension F = Q(

√
4s+27) whose Galois

group is the quotient group S3/A3 ∼= {±1}. Denote the quadratic character on F by ξ and let ψ be the degree-2
character associated to the standard representation of K =Q[x]/( f (x)).

6. Develop explicit formulas for the characters values of ψ at primes p, in terms of the factorization of
f (x) mod p, and for the

7. Show that the virtual character ring for S3 ∼= Gal(K/Q) is Z[ξ ,ψ] and deduce relations for the characters.

Recall that the virtual character ring consists of elements which are formal sums and differences of charac-
ters. The unique decomposition into direct sums of irreducible characters gives a structure of free Z-module.
Addition corresponds to direct sum ⊕ and multiplication to the tensor product ⊗. Consequently, the ring
structure can be deduced from the values at group elements (or conjugacy classes), in particular from :

(ψ1 ⊕ψ2)(σ) = ψ1(σ)+ψ2)(σ) and (ψ1 ⊗ψ2)(σ) = ψ1(σ)ψ2)(σ).
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There are exactly three conjugacy classes [1], [(12)] and [(123]) in S3, on which the character values are given
in the table below:

[1] [(12)] [(123)]
1 1 1 1
ξ 1 −1 1
ψ 2 0 −1

From the character table, we ξ 2 = 1, ξ ψ = ψ , and ψ2 = ψ +ξ +1, which gives the isomorphisms

Z[ξ ,ψ]∼=
Z[x,y]

(x2 −1,(x−1)y,y2 − x− y−1)
Z[x,y]

(x−1,y−2)
× Z[x,y]

(x+1,y)
× Z[x,y]

(x−1,y+1)
= Z3.

∼=

This isomorphism is obtained by evaluation on the classes [1], [(12)] and [(123)].

For a general cubic extension K/Q we have equivalent conditions for trivial Frobenius action:

• ψ(p) = 2 = deg(ψ) and ξ (p) = 1 = deg(ξ ),
• OK/(p)∼= Fp ×Fp ×Fp,
• (p) = p0p1p2,
• f (x)≡ (x−a0)(x−a1)(x−a2) mod p.

and equivalent conditions when the Frobenius lift is a transposition:

• ψ(p) = 0 and ξ (p) =−1,
• (p) = pOK = pP where N(p) = p,
• OK/P∼= Fp ×Fp2 ,
• f (x)≡ (x− c)(x2 +ax+b) mod p.

and equivalent conditions when the Frobenius lift is cyclic of order 3:

• ψ(p) =−1 and ξ (p) = 1
• (p) = pOK =P is prime,
• OK/P∼= Fp3 ,
• f (x) mod p is irreducible.

By the Chebotarev density theorem, the probabilities of the conjugacy classes are 1/6, 1/2 and 1/3. The
expectation for the trivial character is E(1) = 1, while the expectation for each of the nontrivial characters is
zero:

E(ξ ) =
1
6
·1+ 1

2
· (−1)+

1
3
·1 = 0 = ⟨1,ξ ⟩, and E(ψ) =

1
6
·2+ 1

2
·0+ 1

3
· (−1) = 0 = ⟨1,ψ⟩.

The permutation representation and the standard representation of a number field

Suppose that K = Q[x]/( f (x)) of degree n, and let p be a prime, coprime to disc( f ), and let L ⊂ Q be a
splitting field of K. Then OK/pOK is isomorphic to a product of fields:

OK/pOK ∼= Fpd1 ×·· ·×Fpdt ,

where n = d1 + · · ·+dt . This corresponds to a factorization

f̄ = g1 · · ·gt ∈ Fp[x] where di = deg(gi).

Equivalently the Frobenius automorphism

OK/pOK OK/pOK

α α p

φ
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lifts to a permutation of the roots α1, . . . ,αn ∈ L with cycle structure (d1, . . . ,dt). The characteristic polynomial
of φ is then

P(x) = (xd1 −1) · · ·(xdt −1) = xn −a1xn−1 + · · ·+(−1)t =
n

∑
i=0

(−1)iaixn−i,

referred to as permutation representation of G = Gal(L/Q) = Gal(K/Q). In particular the character (= trace)
of this representation is the number a1 = N f (p) of roots of f̄ ∈ Fp[x] in Fp.

8. Let ed be the number of irreducible divisors of degree d of f̄ ∈ Fp[x]: ed = |{di : 1 ≤ i ≤ n,di = d}|.
Express the numbers N f (pr) of roots of f̄ over Fpr in terms of the numbers (e1, . . . ,en).

The number of roots over Fpr satisfies N f (pr) = ∑
d |r

d ed .

N.B. Furthermore, defining L(x) to be the skew reciprocal polynomial:

L(x) =
t

∏
i=1

(1− xdi) =
n

∏
d=1

(1− xd)ed = (−1)tP
(
x−1)xn =

n

∑
i=0

(−1)iaixi,

the coefficients of L(x) related to the multiplicities (e1, . . . ,en) and the numbers of points N f (pr) through the
generating function:

−d log(L(x))
d log(x)

=−xL′(x)
L(x)

=
t

∑
i=1

dixdi

1− xdi
=

n

∑
d=1

d ed
xd

1− xd =
∞

∑
r=1

N f (pr)xr.

This permutation representation is the induced action on V = L⊗Q K ∼= Ln, in the canonical base for Ln. To
make the isomorphism V ∼= Ln explicit, we note that the canonical isomorphism:

L⊗Q K = L⊗Q
Q[x]
( f (x))

∼=
L[x]

( f (x))

follow from the definitions of K and of the tensor product. Next, the evaluation map

L[x]
( f (x))

L×·· ·×L

g(x) (g(α1), . . . ,g(αn))

is an isomorphism by the Chinese remainder theorem, and its inverse is given by Lagrange interpolation

(γ1, . . . ,γn) 7−→
n

∑
i=1

γiei where ei = ∏
j ̸=i

(x−α j)

(αi −α j)
·

Clearly G acts by permutation on (e1, . . . ,en), and ei maps to the i-th canonical basis element for Ln under the
evaluation map.

9. Justify the assertions regarding the images of the ei, the form of the inverse to the evaluation map, and
show that ei ∈ L⊗Q K are primitive idempotents:

e1 + · · ·+ en = 1,
e2

i = ei for all 1 ≤ i ≤ n,
eie j = e jei = 0 for 1 ≤ i < j ≤ n,

and any idempotent is a sum of a subset of {e1, . . . ,en}.
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We now observe that the vector e = e1 + · · ·+ en ∈V is fixed by the permutation action, and its orthogonal
complement V0, generated by the differences ei − e j, is stablized by G. The G-module decomposition Le+V0,
shows that the permutation character decomposes as 1+ψ , where 1 is the constant linear character. We call ψ

the standard representation of G ⊂ Sn, which is irreducible for G = Sn. The restriction of a Frobenius lift to V0
has characteristic polynomial

P0(x) =
P(x)
(x−1)

=
n−1

∑
i=0

(−1)icixn−i−1.

The coefficients (c1, . . . ,cn−1) are class invariants of the conjugacy class of Frobenius. More specifically they
are values of characters at Frobenius, on the exterior module

∧i(V0), giving |ci| ≤
(n−1

i

)
, with equality for all i

if and only if the conjugacy class of Frobenius is the identity class.

10. Determine the characteristic polynomial P0(x) for each conjugacy class in S3 and S4.

Characters and expectation.

Identifying the set P of primes with their associated Frobenius conjugacy classes in G, we obtain by
restriction a map ψ : P −→ Z such that ψ(p) = N f (p)− 1. This perspective permits us to analyze arbitrary
characters in the virtual character ring R(G) — whose additive structure is defined to be the free abelian group
on the irreducible characters of G — in terms of values at the discrete set of primes.

The Chebotarev density theorem asserts that the Frobenius classes in a Galois group G are equistributed
among the conjugacy classes, with probability distribution |C|/|G| for the class C ⊂ G. A given character ψ

determines a sequence (ψ(p)) indexed by P , equidistributed with respect to this probability. This lets us define
the expectation of the character in terms of this sequence:

E(ψ) = lim
N→∞

1
N ∑

p∈PN

ψ(p),

where PN is the initial segment of N primes. An inner product on complex-valued characters can be defined
in terms of this expectation:

⟨ψ,χ⟩= E(ψχ).

The principle characters we will study are real-valued for which χ = χ . The Schur orthogonality relations
assert that for ψ and χ irreducible:

⟨ψ,χ⟩=
{

1 if ψ = χ

0 otherwise.

11. For each of the polynomials f (x), let K =Q[x]/( f (x)). Determine a set of real irreducible characters on
the Galois group Gal(K/Q) and identify the Galois group from the statistics of its character values.

• f (x) = x4 + x3 + x2 + x+1,
• f (x) = x4 + x3 −2x−1,
• f (x) = x4 − x3 −3x+4
• f (x) = x4 − x+1

Sage modelisation. The orthogonality of characters can be computationally verified in Sage. We begin by
computing the cycle polynomial of the standard representation.

def standard_cycle_polynomial(f,p):
Pk.<t> = PolynomialRing(FiniteField(p))
degs = [ fi[0].degree() for fi in Pk(f).factor() ]
PZ.<x> = PolynomialRing(ZZ)
return prod([ xˆd - 1 for d in degs ])//(x-1)

This polynomial takes the form x2−ψ(p)x+ξ (p). Then for a cubic polynomial, compute the inner product
matrix of the triple of characters (1,ψ,ξ ).
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def chars_matrix(f,num):
n = f.degree()
MatRR = MatrixSpace(RR,n,n)
A = MatRR(0)
N = 0
D = disc(f)
for p in primes(num):

if D.mod(p) == 0: continue
Q = standard_cycle_polynomial(f,p)
chars = [(-1)ˆ(n-i)*Q[i] for i in range(n)]
A += MatRR([[chars[i]*chars[j] for j in range(n)] for i in range(n)])
N += 1

return 1/N*A

When the Galois group is C3, there is a cyclic character χ of order 3 on Gal(K/Q). The degree-2 character
ψ equals χ +χ and ξ = χχ = 1. This yields the inner product matrix1 0 1

0 2 0
1 0 1


for the triple of characters (1,ψ,ξ ) = (1,χ +χ,1).

# Galois group C_3:
P.<x> = PolynomialRing(ZZ)
s = -2
f = xˆ3 - s*xˆ2 + (s-3)*x + 1 # disc(f) = (sˆ2 - 3*s + 9)ˆ2
A = chars_matrix(f,2ˆ12)
print("Inner product matrix for C_3:\n%s" % A)

Inner product matrix for C_3:
[ 1.00000000000000 -0.0301953818827709 1.00000000000000]
[-0.0301953818827709 1.96980461811723 -0.0301953818827709]
[ 1.00000000000000 -0.0301953818827709 1.00000000000000]

When the Galois group is S3, the characters (1,ψ,ξ ) form of basis of distinct irreducible characters, whose
associated inner product matrix the identity matrix.

# Galois group S_3:
P.<x> = PolynomialRing(ZZ)
s = -2
f = xˆ3 - s*x + 1 # disc(f) = 4*sˆ3 - 27
A = cubic_chars_matrix(f,2ˆ12)
print("Inner product matrix for S_3:\n%s" % A)

Inner product matrix for S_3:
[ 1.00000000000000 -0.0106571936056838 -0.00888099467140320]
[ -0.0106571936056838 0.980461811722913 -0.0106571936056838]
[-0.00888099467140320 -0.0106571936056838 1.00000000000000]

The Galois groups C4 (cyclic), D4 (dihedral), A4 (alternating) and S4 (symmetric) are differentiated by the
characters (1,ψ,ξ ,χ) such that

P(x) = x3 −ψ(p)x2 +ξ (p)x−χ(p),

is the characteristic polynomial of Frobenius.

# Galois group C_4:
f = xˆ4 + xˆ3 + xˆ2 + x + 1
A = chars_matrix(f,2ˆ12)
print("Inner product matrix for C_4:\n%s" % A)
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Inner product matrix for C_4:
[ 1.00000000 -0.0195381883 1.00000000 -0.0195381883]
[-0.0195381883 2.96092362 1.94138544 1.00000000]
[ 1.00000000 1.94138544 2.96092362 -0.0195381883]
[-0.0195381883 1.00000000 -0.0195381883 1.00000000]

# Galois group D_4:
f = xˆ4 + xˆ3 - 2*x - 1
A = chars_matrix(f,2ˆ12)
print("Inner product matrix for D_4:\n%s" % A)

Inner product matrix for D_4:
[ 1.00000000 -0.0284697509 -0.0533807829 -0.0213523132]
[-0.0284697509 1.89679715 0.875444840 -0.0533807829]
[-0.0533807829 0.875444840 1.89679715 -0.0284697509]
[-0.0213523132 -0.0533807829 -0.0284697509 1.00000000]

# Galois group A_4:
f = xˆ4 - xˆ3 - 3*x + 4
A = chars_matrix(f,2ˆ12)
print("Inner product matrix for A_4:\n%s" % A)

Inner product matrix for A_4:
[ 1.00000000 -0.0409252669 -0.0409252669 1.00000000]
[-0.0409252669 0.895017794 0.895017794 -0.0409252669]
[-0.0409252669 0.895017794 0.895017794 -0.0409252669]
[ 1.00000000 -0.0409252669 -0.0409252669 1.00000000]

# Galois group S_4:
f = xˆ4 - x + 1
A = chars_matrix(f,2ˆ12)
print("Inner product matrix for S_4:\n%s" % A)

Inner product matrix for S_4:
[ 1.00000000 -0.0337477798 0.0195381883 -0.0124333925]
[-0.0337477798 0.960923624 -0.0515097691 0.0195381883]
[ 0.0195381883 -0.0515097691 0.960923624 -0.0337477798]
[-0.0124333925 0.0195381883 -0.0337477798 1.00000000]

Let f (x) be a monic irreducible polynomial of degree n. Let ψ(p) = N f (p)− 1 be the character of the
standard representation, for p coprime to disc( f ). Observe that

ψ(p) ∈ {−1, . . . ,n−3}∪{n−1}.

12. Define polynomials δs(x) ∈Q[x], for s ∈ Im(ψ), such that δs(t) = 1 for t = s and otherwise δs(t) = 0.

13. Determine the polynomials δs(x) for n = 3 and n = 4, assuming Im(ψ) = {−1, . . . ,n− 3} ∪ {n− 1}.
What is Im(ψ) for G =Cn, and what is the form of the resulting δs(x)?

14. Define Cs(ψ) = {σ ∈ G : ψ(σ) = s}. Observe that Cs(ψ) is a union of conjugacy classes of G, and prove
that the expectation of the composition δs ◦ψ is the density of the class Cs(ψ) in G:

E(δs ◦ψ) = lim
N→∞

1
N ∑

p∈PN

δs(ψ(p)) =
|Cs(ψ)|
|G|

·

15. While one character may be insufficient to separate conjugacy classes in G, one can use multiple charac-
ters ψ , χ to construct intersections,

C =Cs(ψ)∩Ct(χ) = {σ ∈ G : ψ(σ) = s and χ(σ) = t}.

Show that the density of C is the expectation of the product E
(
(δs ◦ψ)(δt ◦χ)

)
=

|C|
|G|

·

N.B. The interpolation polynomials δs and δt can be defined independently with respect to Im(ψ) and
Im(χ), or (with higher degree polynomials) with respect to their union.
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Langrange interpolation gives the polynomials for Im(ψ) = J:

δs(x) = ∏
t∈J
t ̸=s

(x− t)
(s− t)

In particular, when n = 3, the interpolation polynomials for J = {−1,0,2} are:

δ−1(x) =
x(x−2)

3
, δ0(x) =−(x+1)(x−2)

2
, δ2(x) =−x(x+1)

6
,

and when n = 4, the interpolation polynomials for J = {−1,0,1,3} are:

δ−1(x) =−x(x−1)(x−3)
8

, δ0(x) =
(x+1)(x−1)(x−3)

3
,

δ1(x) =−x(x+1)(x−3)
4

, δ3(x) =
x(x+1)(x−1)

24
·

For the cyclic group Cn, the only values are s =−1 and s = n−1. It follows that simpler Lagrange polynomials
suffice (for J = {−1,n−1}):

δ−1(x) =−1
n
(x−n+1), δn−1(x) =

1
n
(x+1).

By definition the sum over δs(ψ(p)) counts the number of coincidences ψ(p) = s, from which the asserted
density follows from the Chebotarev density theorem.

Remark. The above examples are finite groups, of rank 0, in which the character ring is spanned by finitely
many characters. Next, we consider elliptic curves, which give rise to groups of rank 1. In particular, the Sato–
Tate group is SU(2) if non CM or the normalizer of SO(2) in SU(2), an double cover of SO(2). Both SU(2)
and SO(2) are compact connected Lie groups of rank 1, whose virtual character rings are isomorphic to Z[x].
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