
Galois representations and Sato–Tate groups
CIMPA School

Effective Algebra and the LMFDB
Makerere University, Uganda, 13–24 January 2025

Character theory for genus 2 curves.

Notation and background. Let C : y2 +h(x)y = f (x)/Q be a hyperelliptic curve of genus 2: h(x)2 +4 f (x) is
a squarefree polynomial of degree 5 or 6. There exists an analogous construction of the Galois representation
on the Jacobian J = Jac(C) of C, an abelian surface associated to C. In particular we construct the Tate module

Tℓ(J) = lim←−
n

J[ℓn]∼= Z4
ℓ ,

preserving the nondegenerate alternating Weil pairing

Tℓ(J)×Tℓ(J)−→ Tℓ(Gm) = lim←−
n

µℓn ∼= Zℓ.

The characteristic polynomial of Frobenius on Tℓ(J) is a monic integer Weil polynomial:

Fp(x) = x4−a1x3 +(a2 +2p)x2−a1 px+ p2,

such that if αi is a root, |αi|=
√

p, and α i is also a root. We set γi = αi+α i, and define the real Weil polynomial

Gp(x) = x2−a1x+a2 = (x− γ1)(x− γ2).

This gives a decomposition of the quartic extension Z[π] = Z[x]/(Fp(x)) into towers of quadratic extensions:

Z[π] =
Z[γ][x]

(x2− γx+ p)
over Z[γ] =

Z[y]
(Gp(y))

·

1. The roots of Fp(x) satisfy |αi|=
√

p, from which the real roots γi of Gp(x) satisfy the bounds |γi| ≤ 2
√

p.

Use these bounds on γi to establish the identities:

0≤ a2
1−4a2 ≤ 4p, 4p−2a1

√
p+a2 ≥ 0, 4p+2a1

√
p+a2 ≥ 0.

All three identities follow from the inclusion γi ∈ [−2
√

p,2
√

p]. The first of the identities is the discriminant
of the polynomial Gp(x), and the second concerns the positivity of Gp(x) outside of (γ1,γ2)⊆ (−2

√
p,2
√

p).

• 0≤ disc(Gp(x)) = a2
1−4a2 = (γ1− γ2)

2 ≤ 4p.

• −2
√

p− γi ≤ 0≤ 2
√

p+ γi, from which we obtain the two bounds:

Gp(+2
√

p) = (+2
√

p− γ1)(+2
√

p− γ2) = 4p−2a1
√

p+a2 ≥ 0,
Gp(−2

√
p) = (−2

√
p− γ1)(−2

√
p− γ2) = 4p+2a1

√
p+a2 ≥ 0.

Point counting. The Frobenius characteristic polynomial is determined by the number of points of C over Fp

and Fp2 :
NC(p) = |C(Fp)|= p+1−a1, and NC(p2) = |C(Fp2)|= p2 +1−a2

1 +2a2 +4p.

With a model for J, we can also recover (a1,a2) from Np(C) and the group order Np(J) = |J(Fp)|:

NC(p) = |C(Fp)|= p+1−a1, and NJ(p) = |J(Fp)|= (p+1)2−a1(p+1)+a2.

1

2. The numbers of points of C and J over all extensions Fpr are determined by the expressions

NC(pn) = |C(Fpn)|= pn +1−Tr(πn) and NJ(pn) = |J(Fpn)|= N(πn−1).

in the ring Z[π] =Z[x]/(Fp(x)). Determine the initial terms in the two sequences (NC(pn)) and (NJ(pn)).

We can create the formal ring Z[a1,a2, p][π] in Sage:

PP.<a1,a2,p> = PolynomialRing(ZZ,3)
PX.<x> = PolynomialRing(PP)
f = xˆ4 - a1*xˆ3 + (a2+2*p)*xˆ2 - a1*p*x + pˆ2
QX.<pi> = PX.quotient_ring(f)

and determine the sequence of generic traces:

sage: [(piˆn).trace() for n in range(1,6)]
[a1,
a1ˆ2 - 2*a2 - 4*p,
a1ˆ3 - 3*a1*a2 - 3*a1*p,
a1ˆ4 - 4*a1ˆ2*a2 - 4*a1ˆ2*p + 2*a2ˆ2 + 8*a2*p + 4*pˆ2,
a1ˆ5 - 5*a1ˆ3*a2 - 5*a1ˆ3*p + 5*a1*a2ˆ2 + 15*a1*a2*p + 5*a1*pˆ2]

and the first terms of of generic norms:

sage: [(piˆn-1).norm() - (p+1)ˆ(2*n) + a1ˆr*(p+1)ˆn for n in range(1,3)]
[a2, 2*a2*pˆ2 + a2ˆ2 + 4*a2*p + 2*a2]

For a particular curve C or Jacobian J, we can compute the sequence of integer values for NC(pn) or NJ(pn).

Frobenius distribution. The normalized Frobenius automorphism φ̃p = φp⊗ 1√
p the satisfies the normalized

Weil polynomial
F̃p(x) = x4− ã1x3 +(ã2 +2)x2− ã1x+1,

to which we associate a pair (ψ1,ψ2) of Galois characters on GQ, taking values (ã1, ã2). Under the map
P → GQ sending p to any representative φ̃p of its conjugacy class, we write ψi(p) for its value ãi at φ̃p. The
Weil conjectures imply that (ã1, ã2) lie in the region R:

4 3 2 1 1 2 3 4

4

3

2

1

1

2

3

4

defined by the normalizations of the above bounds: 0≤ ã2
1−4ã2, ã2−2ã1 ≥−4, ã2 +2ã1 ≥−4.

The generalized Sato-Tate conjecture asserts that the polynomials F̃p(x), invariant of the conjugacy class
of φ̃p, follows the distribution induced by the Haar measure on a compact Lie subgroup G of USp(4), the
Sato-Tate group of C. Equivalently the pairs (ψ1(p),ψ2(p)) = (ã1, ã2), are distributed over the above region
with probability density dictated by G. In particular, with respect to the coordinates (s1,s2) (= (ψ1,ψ2)) the
distribution functions for USp(4) are given on R by:√

(s2
1−4s2)(4−2s1 + s2)(4+2s1 + s2)

4π2 ds1ds2,

for SU(2)×SU(2) by √
(4−2s1 + s2)(4+2s1 + s2)

2π2
√

s2
1−4s2

ds1ds2,

2

and for SO(2)×SO(2), by
2ds1ds2

π2
√
(s2

1−4s2)(4−2s1 + s2)(4+2s1 + s2)
·

3. Numerical integration, with respect to the above probability measures for USp(4), SU(2)×SU(2) and
SO(2)×SO(2), of the products ψiψ j, where ψi are the following virtual characters

(ψ0,ψ1,ψ2,ψ3) = (1,ψ1,ψ2,ψ
2
1 −ψ2−2),

yields the respective inner product matrices ⟨ψi,ψ j⟩:
1 0−1 0
0 1 0 0
−1 0 2 0

0 0 0 1

,


1 0 0 0
0 2 0 0
0 0 1 1
0 0 1 3

,


1 0 0 2
0 4 0 0
0 0 4 4
2 0 4 12

·
Give conjectural expressions for decomposition of these virtual characters in terms of irreducible char-
acters on these groups.

4. Suppose that G = SU(2)×SU(2) or G = SO(2)×SO(2). Relate the virtual characters ψ1 and ψ2 to the
pairs of fundamental characters (ϕ1,ϕ2) with respect to the projections to SU(2) or SO(2).

From the inner product matrix for USp(4) one concludes that (1,ψ1,ψ2 + 1,ψ2
1 −ψ2− 2) is a basis of

irreducible characters on USp(4). Similarly, on SU(2)×SU(2) the virtual characters (1,ψ1,ψ2,ψ
2
1 −2ψ2−2)

give rise to the inner product matrix: 
1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

,

which suggest that (1,ψ2) are irreducible and (ψ1,ψ
2
1−2ψ2−2) are sums of two distinct irreducible characters.

Indeed if (ϕ1,ϕ2) are the irreducible characters on the first and second factor of SU(2)×SU(2), respectively,
we have

ψ1 = ϕ1 +ϕ2, and ψ2 = ϕ1ϕ2,

and
ψ

2
1 −2ψ2−2 = (ϕ2

1 −1)+(ϕ2
2 −1) = S2(ϕ1)+S2(ϕ2).

We can relate the theoretical Sato-Tate groups to the character theory of the Galois representations associated
to genus-2 curves.

5. Identify the Sato-Tate group of the following genus-2 curves.

• C0 : y2+(x3+x+1)y=−x5

• C1 : y2 +(x3 + x)y = x4−7

• C2 : y2 +(x3 + x)y =−1

• C3 : y2+(x3+1)y = x4+x2

• C4 : y2 + y = x5

• C5 : y2 + y = x6

In Sage we can construct these curves as follows:

PQ.<x> = PolynomialRing(QQ)
C0 = HyperellipticCurve(-xˆ5,xˆ3 + x + 1)
C1 = HyperellipticCurve(xˆ4 - 7,xˆ3 + x)
C2 = HyperellipticCurve(-1,xˆ3 + x)
C3 = HyperellipticCurve(xˆ4 + xˆ2,xˆ3 + 1)
C4 = HyperellipticCurve(xˆ5,1)
C5 = HyperellipticCurve(xˆ6,1)
Crvs = [C0,C1,C2,C3,C4,C5]

3

In order to look up the data in the LMFDB, it is useful to know the discriminant:

def discriminant(C):
return C.igusa_clebsch_invariants()[3]/2ˆ12

for C in Crvs:
print("C%s: %s" % (Crvs.index(C),discriminant(C).factor()))

C0: 23ˆ2
C1: 2ˆ6 * 7
C2: 2ˆ8 * 7ˆ2
C3: -1 * 2 * 3 * 7ˆ2
C4: 5ˆ5
C5: -1 * 2ˆ4 * 3ˆ6

N.B. For each curve, the Sato-Tate groups can be found in the LMFDB. In particular their connected compo-
nents are as follows:

• SU(2)×SU(2)

• SO(2)×SU(2)

• SU(2)×SU(2)

• SU(2)×SU(2)

• SO(2)×SO(2)

• SO(2)

with respective components groups:

• {1}
• C2

• {1}
• {1}

• C4

• S3

def genus2_inner_product_matrix(C0,C1,chars,max_prime=2ˆ10,prec=32):
Given genus-2 curves C0/Q and C1/Q, and a character sequence
chars = (chi_i(x,y)), compute the expectation of the matrix
(chi_i(psi_C0,1,psi_C0,2)*chi_j(psi_C1,1psi_C1,j)),
over primes up to the bound max_prime.
RR = RealField(prec)
D0 = discriminant(C0); bad_primes0 = D0.numerator() * D0.denominator()
D1 = discriminant(C1); bad_primes1 = D1.numerator() * D1.denominator()
n = len(chars)
A = MatrixSpace(RR,n,n)(0)
num = 0
for p in primes(max_prime):

if bad_primes0.mod(p) == 0: continue
if bad_primes1.mod(p) == 0: continue
FF = FiniteField(p)
sqrtp = RR(p).sqrt()
C0p = C0.base_extend(FF)
f0p = C0p.frobenius_polynomial()
(a0_1,a0_2) = (-RR(f0p[3])/sqrtp,RR(f0p[2])/p-2)
C1p = C1.base_extend(FF)
f1p = C1p.frobenius_polynomial()
(a1_1,a1_2) = (-RR(f1p[3])/sqrtp,RR(f1p[2])/p-2)
for i in range(n):

for j in range(n):
(Fi,Fj) = (chars[i],chars[j])
A[i,j] += RR(Fi(a0_1,a0_2)*Fj(a1_1,a1_2))

num += 1
return A*(1/num)

The following computation suggests that C0 and C1 have independent Galois representations but the charac-
ter ψ2 +1 is not irreducible on either curve, suggesting both Sato-Tate groups are proper subgroups of USp(4).

4

sage: P2.<s1,s2> = PolynomialRing(QQ,2); one = P2(1)
sage: chars = [one,s1,s2+1]
sage: genus2_inner_product_matrix(C0,C1,chars)
[1.00000000 0.0233165194 0.916698532]
[-0.0191967414 -0.0757464348 -0.130829140]
[0.979408722 -0.0762762215 0.844596297]

On the other hand, the inner product matrix (now with respect to (1,ψ1,ψ2)) suggest a common irreducible
factor of ψ1 on C1 and C3 but no such factor in ψ2.

sage: P2.<s1,s2> = PolynomialRing(QQ,2); one = P2(1)
sage: chars = [one,s1,s2]
sage: genus2_inner_product_matrix(C1,C3,chars)
[1.00000000 0.0428025942 -0.0633599550]
[0.0301490670 0.771475847 0.0329457660]
[-0.0833014680 0.133867857 0.0196059062]

This suggests that C1 and C3 have a common elliptic factor (up to isogeny).

Finally we consider the relation of the characters arising in genus-2 with characters on objects of lower dimen-
sion (elliptic curves and even number fields).

6. Identify which of the following elliptic curves are isogenous to quotients of one of the above genus-2
curves (that is, isogeny factors of their Jacobians).

• E0 : y2 +(x+1)y = x3− x,

• E1 : y2 = x3− x2−4

• E2 : y2 = x3− x

• E3 : y2 + xy = x3 + x

• E4 : y2 = x3 +4

• E5 : y2 + y = x3

Hint. First characterize the Sato-Tate groups as SU(2) or N(U(1)) in order to limit the possibilities, then
compute the inner products with respect to the Frobenius trace character.

The inner product with the characters of the elliptic curves and number fields reveals the isogeny factors and
characters which factor through the component groups. First we implement the inner product with respect to
the respective Frobenius traces.

def genus2_elliptic_inner_product(C,E,max_prime=2ˆ10,prec=24):
Given a genus-2 curve C/Q and and elliptic curve E/Q,
compute the expectation of the matrix the normalized
trace products ((a_C * a_E)/p) over primes p up to the
bound max_prime.
RR = RealField(prec)
D0 = discriminant(C); bad_primes0 = D0.numerator() * D0.denominator()
D1 = discriminant(E); bad_primes1 = D1.numerator() * D1.denominator()
S,num = (RR(0),0)
for p in primes(max_prime):

if bad_primes0.mod(p) == 0: continue
if bad_primes1.mod(p) == 0: continue
FF = FiniteField(p)
Np = C.base_extend(FF).cardinality()
aC = p+1-Np
aE = E.base_extend(FF).trace_of_frobenius()
S += RR(aE*aC)/p
num += 1

return A*(1/num)

Then the given elliptic curves can be created in Sage as follows:

5

E0 = EllipticCurve([1,0,1,-1,0]) # quotient of C1, C2, C3 (14a)
E1 = EllipticCurve([0,-1,0,0,-4]) # quotient of C2 (56a)
E2 = EllipticCurve([0,0,0,-1,0]) # quotient of C1 (32a)
E3 = EllipticCurve([1,0,0,1,0]) # quotient of C3 (21a)
E4 = EllipticCurve([0,0,0,0,4]) # quotient of C5 (108a)
E5 = EllipticCurve([0,0,1,0,0]) # quotient of C5 (27a)
Ells = [E0,E1,E2,E3,E4,E5]

The dependency relation between the Frobenius trace characters on the genus-2 curves and elliptic curves can
be represented in a matrix:

RR = RealField(24)
A = MatrixSpace(RR,6)(0)
for i in range(len(Ells)):

for j in range(len(Crvs)):
A[i,j] = genus2_elliptic_inner_product(Crvs[j],Ells[i])

print("Inner product matrix of genus2 and elliptic traces characters:")
print(A)
print(matrix([[round(A[i,j]) for j in range(6)] for i in range(6)]))

This produces the following inner product matrix:

Inner product matrix of genus2 and elliptic traces characters:
[-0.130043 0.876022 0.867462 0.893295 -0.0151389 -0.0858860]
[-0.133701 -0.0964069 0.832199 -0.0786114 -0.0874424 0.179150]
[0.0539637 0.877716 -0.0877914 -0.121748 -0.0658112 0.0688629]
[0.0000367416 -0.101803 -0.0578966 0.881226 0.00219613 0.0578194]
[-0.000962213 0.0217028 0.0203094 -0.00743401 0.0858841 0.858093]
[-0.186443 -0.0383263 0.0729446 -0.0206447 -0.118797 0.837158]
[0 1 1 1 0 0]
[0 0 1 0 0 0]
[0 1 0 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 0 1]
[0 0 0 0 0 1]

Showing that E0 is a common isogeny factor of C1, C2 and C3, E1 an isogeny factor of C2, E2 an isogeny factor
of C1, and E3 an isogeny factor of C3. This gives

Jac(C1)∼ E0×E2, Jac(C2)∼ E0×E1, Jac(C3)∼ E0×E3,

and finally we have Jac(C5) ∼ E4×E5. The Jacobians of C0 and C4, on the other hand, are simple (indecom-
posable), and have no such elliptic curve factors.

Next we can use the character theory of number fields to analyze the component group of an algebraic curve (or
its Jacobian). We investigate the behavior of the twists of the Frobenius trace character when the component
group is acted on by Galois group of a number field K.

7. Consider the dependency of the normalized Frobenius trace characters of the above genus-2 curves with
respect to the quadratic characters on the Galois groups of the number fields Q(

√
5) or Q(

√
−3), or with

respect to the characters on the Galois group of the cubic field Q[x]/(x3−2). In particular, if χ1, . . . ,χt

are the irreducible characters of (the Galois closure of) a number field K, and ψC the Frobenius trace
character, then how do the inner product matrices (⟨χi,χ j⟩) and (⟨ψχi,ψχ j⟩) = (⟨ψ2χi,χ j⟩) compare?

If the character ψ is independent of (the characters on) G = Gal(K/Q) then we have the relation:

(⟨ψχi,ψχ j⟩) = (⟨ψ2
χi,χ j⟩) = (⟨ψ2

χi,χ j⟩) = ⟨ψ,ψ⟩(⟨χi,χ j⟩).

In particular, if ψ is irreducible, then the inner product matrices are equal. On the other hand, if the Frobenius
representation is not independent of G, due to nontrivial action on the component group, then this can be
measured in the inner product matrix of the twists ψχi.

6

Appendix. We give below some code for the numerical integration, decomposing the region of integration into
slices, since Sage doesn’t currently have a function for integration over a non rectangular regions.

Each of the following three functions defines an integration over a function f with respect to a probability
density funcction µ(s1,s2) on USp(4), SU(2)×SU(2), or SO(2)×SO(2).

Groups=(’USp(4)’,’SU(2)xSU(2)’,’SO(2)xSO(2)’)

def haar_measure(s1,s2,Group="USp(4)"):
D0 = (s1ˆ2 - 4*s2)
D1 = (4 - 2*s1 + s2)*(4 + 2*s1 + s2)
if G=="USp4":

return sqrt(D0*D1)
elif G=="SU(2)xSU(2)":

return sqrt(D1/D0)
elif G=="SO(2)xSO(2)":

return sqrt(1/(D0*D1))
else:

assert False, "Group must be in %s" % Groups

def haar_integral(f,Group="USp(4)",N=2ˆ10,epsilon=0.1ˆ12):
s1,s2 = f.parent().gens()
if f(-s1,s2) == -f(s1,s2):

return RR(0)
if f(-s1,s2) == f(s1,s2):

(B,mult) = (0,2)
else:

(B,mult) = (-4*N+1,1)
Fix the integration constant, and set bounds away
from the boundary to avoid integration at infinity.
if Group == "USp(4)":

cc,e1,e2 = (1/(4*RR.pi()ˆ2),0,0)
elif Group == "SU(2)xSU(2)":

cc,e1,e2 = (1/(2*RR.pi()ˆ2),0,epsilon)
elif Group == "SO(2)xSO(2)":

cc,e1,e2 = (2/RR.pi()ˆ2,epsilon,epsilon)
else:

assert False, "Group must be in %s" % Groups
Riemann sums of integrals:
I0 = 0
s2 = var(’s2’)
for i in range(B,4*N):

s1 = i/N
(a,b) = (2*abs(s1)-4+e1,s1ˆ2/4-e2)
mu = haar_measure(s1,s2,Group)
I0 += mult*numerical_integral(f([s1,s2])*mu,a,b)[0]/N

return cc*I0

Next we define a function for the inner product matrix determined by each of these probability integrals. For a
given list of (virtual) characters, the integrals over products ψχ gives the inner product ⟨ψ,χ⟩ as expectation.

def haar_inner_product_matrix(B,Group="USp(4)"):
n = len(B)
A = MatrixSpace(RR,n,n)(0)
for i in range(n):

A[i,i] = haar_integral(B[i]ˆ2,Group)
for j in range(i+1,n):

A[i,j] = haar_integral(B[i]*B[j],Group)
A[j,i] = A[i,j]

return A

7

Finally we can compute the inner product matrices associated to the virtual characters

(ψ(0,0),ψ(1,0),ψ(0,1),ψ(2,0)) = (1,ψ1,ψ2,ψ
2
1 −ψ2−2).

P2.<S1,S2> = PolynomialRing(ZZ,2); one = P2(1)
chars = [one,S1,S2,S1ˆ2-(S2+2)]
RR = RealField(32)

A44 = haar_inner_product_matrix(chars,"USp(4)")
print("Numerical integral for USp(4):")
print(A44)
print(matrix(matrix([[round(A44[i,j]) for j in range(4)] for i in range(4)])))

B44 = haar_inner_product_matrix(chars,"SU(2)xSU(2)")
print("Numerical integral for SU(2)ˆ2:")
print(B44)
print(matrix(matrix([[round(B44[i,j]) for j in range(4)] for i in range(4)])))

C44 = haar_inner_product_matrix(chars,"SO(2)xSO(2))
print("Numerical integral for SO(2)ˆ2:")
print(C44)
print(matrix(matrix([[round(C44[i,j]) for j in range(4)] for i in range(4)])))

This gives the following inner product for USp(4):

Numerical integral for USp(4):
[1.00042218 0.000000000 -1.00072372 -0.000120619627]
[0.000000000 1.00000000 0.000000000 0.000000000]
[-1.00072372 0.000000000 2.00160828 -0.000160827678]
[-0.000120619627 0.000000000 -0.000160827678 1.00040207]
[1 0 -1 0]
[0 1 0 0]
[-1 0 2 0]
[0 0 0 1]

for SU(2)×SU(2):

Numerical integral for SU(2)ˆ2:
[1.00026278 0.000000000 -0.000211950900 -0.000317057902]
[0.000000000 1.99999655 0.000000000 0.000000000]
[-0.000211950900 0.000000000 1.00036036 1.00005759]
[-0.000317057902 0.000000000 1.00005759 3.00056566]
[1 0 0 0]
[0 2 0 0]
[0 0 1 1]
[0 0 1 3]

and for SO(2)×SO(2):

Numerical integral for SO(2)ˆ2:
[1.00235557 0.000000000 -0.00967552672 2.00367177]
[0.000000000 3.99870738 0.000000000 0.000000000]
[-0.00967552672 0.000000000 4.03559572 3.97860427]
[2.00367177 0.000000000 3.97860427 12.0011784]
[1 0 0 2]
[0 4 0 0]
[0 0 4 4]
[2 0 4 12]

8

