#1: Euclid#2: Fermat numbers#3: Mersenne numbers#4: Analytic lower bound#5: Furstenberg's topological proof000000000000

Five proofs of the infinitude of primes

David Kohel Institut de Mathématiques de Marseille

Marseille January 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

#1: Euclid	#2: Fermat numbers	#3: Mersenne numbers	#4: Analytic lower bound	#5: Furstenberg's topological proof
000	000	0	00	00

#1: Euclid

- **#2:** Fermat numbers
- **#3:** Mersenne numbers
- #4: Analytic lower bound

#5: Furstenberg's topological proof

The infinitude of primes

In this talk we give a selection of the most elegant proofs of the infinitude of primes. Precisely, we proof the following theorem.

Theorem

The set of primes in \mathbb{N} is infinite.

The earliest known proof is due to Euclid (*Elements*, ca. 300 B.C.).

We permit ourselves to use more modern notions in mathematics: arithmetic of $\mathbb{Z}/n\mathbb{Z}$ and basic results from analysis and topology.

Primes

Definition

Let \mathscr{P} denote the set of primes in \mathbb{N} . For a real number $x \in \mathbb{R}$, we denote by \mathscr{P}_x the subset of primes bounded by x. The cardinality of this set is denoted by

$$\pi(x) = |\mathscr{P}_x| = |\{p \in \mathscr{P} \ : \ p \leq x\}|.$$

Finally we denote $\mathscr{P}(n) \subset \mathscr{P}$ to be the set of prime divisors of n.

The infinitude of primes can be expressed equivalently by:

- **1.** \mathscr{P} is not finite.
- **2.** $\mathscr{P}_x \neq \mathscr{P}$ for any $x \in \mathbb{R}$.
- **3.** $\mathscr{P}(n) \neq \mathscr{P}$ for any $n \in \mathbb{N}$.
- **4.** The function $\pi : \mathbb{R} \to \mathbb{N}$ is not bounded.

The earliest proofs assumed that \mathscr{P} was finite and derived a contradiction.

Euclid's proof

Proof [Euclid].

Suppose that \mathscr{P} is finite, set

$$n = \prod_{p \in \mathscr{P}} p,$$

and let q be a prime divisor of n + 1. By construction, q is a prime divisor of both n and and n + 1, hence of gcd(n, n + 1) = 1, a contradiction.

Remark. Expressed differently, this argument can be viewed as a construction of a new prime q outside of any finite subset $S \subseteq \mathcal{P}$.

Proof by Fermat numbers

The next proof constructs an infinite family of subsets $S_n \subseteq \mathscr{P}$ which are nonempty and pairwise disjoint. In particular, if (a_n) is a sequence such that

$$a_n>1, ext{ and } \gcd(a_m,a_n)=1 ext{ for all } m
eq n,$$

then $(S_n) = (\mathscr{P}(a_n))$ is such a family. The infinitude of \mathscr{P} follows.

Proof [Fermat numbers].

Let $(F_n) = (3, 5, 17, ...)$ the sequence of Fermat numbers, defined by

$$F_n=2^{2^n}+1.$$

Clearly $F_n > 1$ for all n. It remains to show that $gcd(F_m, F_n) = 1$ (we say that F_m and F_n are coprime).

A recursion for Fermat numbers

Interlude. In order to show that Fermat numbers are coprime, we prove the following recursion for Fermat numbers.

For all
$$n > 1$$
 the following recursion $\prod_{m=0}^{n-1} F_m = F_n - 2$ holds.

Proof by induction.

For n = 1 the equality $F_0 = F_1 - 2 = 3$ is verified. Assuming the recursion holds for n, then

$$\prod_{m=0}^{n} F_m = (F_n - 2)F_n = (2^{2^n} - 1)(2^{2^n} + 1) = 2^{2^{n+1}} - 1 = F_{n+1} - 2,$$

ヘロア 人間 アメヨアメヨア

Sac

and the recursion follows by induction.

#1: Euclid 000 #2: Fermat numbers 000 #3: Mersenne numbers 0 #4: Analytic lower bound 00 #5: Furstenberg's topological proof 00

Coprimality of Fermat numbers

Proof by Fermat numbers continued.

Let $r = \text{gcd}(F_m, F_n)$, for m < n. To complete the proof, we show that r = 1. By the lemma, F_m divides $F_n - 2$. Thus r = 1 or 2, and since F_n is odd, r = 1.

To conclude, we recall that we have $F_n > 1$ for all $n \in \mathbb{N}$, which implies that the set $\mathscr{P}(F_n)$ of prime divisors of F_n is nonempty. Moreover $gcd(F_m, F_n) = 1$ implies that $\mathscr{P}(F_m) \cap \mathscr{P}(F_n) = \emptyset$, and consequently

$$\bigcup_{n=0}^{\infty} \mathscr{P}(F_n)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

is an infinite subset of \mathcal{P} .

Proof by Mersenne numbers

Proof by Mersenne numbers.

Suppose that \mathscr{P} is finite and $p = \max(\mathscr{P})$. Let $2^p - 1$ be the *p*-th Mersenne number, and suppose that *q* is a prime divisor. Then $2^p \equiv 1 \mod q$ and since *p* is prime (and $2 \not\equiv 1 \mod q$), the element 2 has order *p* in \mathbb{F}_q^* (by Lagrange). In particular *p* divdes q - 1, and so p < q, a contradiction.

Remark. The proof is constructive: for any given finite set of primes $S \subset \mathscr{P}$ one can construct a new prime outside of S.

An analytic lower bound

Proof by analysis.

We show that the function $\pi(x) = |\mathscr{P}_x|$ is bounded below by $\log(x)$. We observe that

$$\log(x) = \int_1^x \frac{1}{t} dt \le 1 + \frac{1}{2} + \cdots + \frac{1}{n}$$

for all $n \le x < n + 1$. If S(x) is the set of positive integers whose prime divisors are in \mathscr{P}_x , then

$$\log(x) \leq \sum_{m \in S(x)} \frac{1}{m} = \prod_{p \in \mathscr{P}_x} \left(\sum_{i=0}^{\infty} \frac{1}{p^i} \right)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

An analytic lower bound continued

Proof continued.

This gives the inequality

$$\log(x) \leq \prod_{p \in \mathscr{P}_x} \left(\sum_{i=0}^\infty rac{1}{p^i}
ight) = \prod_{p \in \mathscr{P}_x} rac{1}{1-1/p} = \prod_{p \in \mathscr{P}_x} rac{p}{p-1}$$

If we denote $\mathscr{P}_x = \{p_1, p_2, \dots, p_{\pi(x)}\}$ such that $p_k < p_{k+1}$, and observe that $p_k \geq k+1$, then

$$\log(x) \leq \prod_{k=1}^{\pi(x)} \frac{p_k}{p_k - 1} \leq \prod_{k=1}^{\pi(x)} \frac{k + 1}{k} = \pi(x) + 1.$$

Thus $\log(x) - 1 \le \pi(x)$. Since $\log(x)$ is unbounded so is $\pi(x)$.

Fursternberg's exotic topology

Furstenberg's proof uses an exotic topology on \mathbb{Z} in order to give an elegant but nonconstructive proof of the infinitude of primes. The idea is to declare the arithmetic sequences

$$S(a,b) = a + b\mathbb{Z} = \{a + bn : n \in \mathbb{Z}\},\$$

to be open. The topology generated by the basis

 $\mathscr{B} = \{ S(a, b) : a, b \in \mathbb{Z} \},\$

is called the *evenly spaced topology* on \mathbb{Z} .

We remark that $U \subset \mathbb{Z}$ is an open in this topology if and only for each $x \in U$, there exists $b \in \mathbb{Z}$ such that $S(x, b) \subseteq U$.

Fursternberg's topological proof

The evenly spaced topology of Furstenberg satisfies the following propoerties.

- **1.** If *U* is open then either $U = \emptyset$ or *U* is not finite.
- **2.** The sets S(a, b) are both open and closed, since \mathbb{Z} is the disjoint union: $\mathbb{Z} = S(0, b) \cup S(1, b) \cup \cdots \cup S(b 1, b)$.

3.
$$\mathbb{Z}\setminus\{\pm 1\} = \bigcup_{p\in\mathscr{P}} S(0,p).$$

These properties give the following simple proof.

Furstenberg's proof.

If \mathscr{P} were finite, then $\mathbb{Z} \setminus \{\pm 1\}$ would be closed by **2**, hence $\{\pm 1\}$ would be open, contradicting **1**.