Five proofs of the infinitude of primes

David Kohel
Institut de Mathématiques de Marseille

Marseille
January 2020
\#1: Euclid
\#2: Fermat numbers
\#3: Mersenne numbers
\#4: Analytic lower bound
\#5: Furstenberg's topological proof

The infinitude of primes

In this talk we give a selection of the most elegant proofs of the infinitude of primes. Precisely, we proof the following theorem.

Theorem

The set of primes in \mathbb{N} is infinite.

The earliest known proof is due to Euclid (Elements, ca. 300 B.C.).

We permit ourselves to use more modern notions in mathematics: arithmetic of $\mathbb{Z} / n \mathbb{Z}$ and basic results from analysis and topology.

Primes

Definition

Let \mathscr{P} denote the set of primes in \mathbb{N}. For a real number $x \in \mathbb{R}$, we denote by \mathscr{P}_{x} the subset of primes bounded by x. The cardinality of this set is denoted by

$$
\pi(x)=\left|\mathscr{P}_{x}\right|=|\{p \in \mathscr{P}: p \leq x\}| .
$$

Finally we denote $\mathscr{P}(n) \subset \mathscr{P}$ to be the set of prime divisors of n.
The infinitude of primes can be expressed equivalently by:

1. \mathscr{P} is not finite.
2. $\mathscr{P}_{x} \neq \mathscr{P}$ for any $x \in \mathbb{R}$.
3. $\mathscr{P}(n) \neq \mathscr{P}$ for any $n \in \mathbb{N}$.
4. The function $\pi: \mathbb{R} \rightarrow \mathbb{N}$ is not bounded.

The earliest proofs assumed that \mathscr{P} was finite and derived a contradiction.

Euclid's proof

Proof [Euclid].

Suppose that \mathscr{P} is finite, set

$$
n=\prod_{p \in \mathscr{P}} p
$$

and let q be a prime divisor of $n+1$. By construction, q is a prime divisor of both n and and $n+1$, hence of $\operatorname{gcd}(n, n+1)=1$, a contradiction.

Remark. Expressed differently, this argument can be viewed as a construction of a new prime q outside of any finite subset $S \subseteq \mathscr{P}$.

Proof by Fermat numbers

The next proof constructs an infinite family of subsets $S_{n} \subseteq \mathscr{P}$ which are nonempty and pairwise disjoint. In particular, if $\left(a_{n}\right)$ is a sequence such that

$$
a_{n}>1, \text { and } \operatorname{gcd}\left(a_{m}, a_{n}\right)=1 \text { for all } m \neq n,
$$

then $\left(S_{n}\right)=\left(\mathscr{P}\left(a_{n}\right)\right)$ is such a family. The infinitude of \mathscr{P} follows.

Proof [Fermat numbers].

Let $\left(F_{n}\right)=(3,5,17, \ldots)$ the sequence of Fermat numbers, defined by

$$
F_{n}=2^{2^{n}}+1
$$

Clearly $F_{n}>1$ for all n. It remains to show that $\operatorname{gcd}\left(F_{m}, F_{n}\right)=1$ (we say that F_{m} and F_{n} are coprime).

A recursion for Fermat numbers

Interlude. In order to show that Fermat numbers are coprime, we prove the following recursion for Fermat numbers.

Lemma

For all $n>1$ the following recursion $\prod_{m=0}^{n-1} F_{m}=F_{n}-2$ holds.

Proof by induction.

For $n=1$ the equality $F_{0}=F_{1}-2=3$ is verified. Assuming the recursion holds for n, then
$\prod_{m=0}^{n} F_{m}=\left(F_{n}-2\right) F_{n}=\left(2^{2^{n}}-1\right)\left(2^{2^{n}}+1\right)=2^{2^{n+1}}-1=F_{n+1}-2$,
and the recursion follows by induction.

Coprimality of Fermat numbers

Proof by Fermat numbers continued.

Let $r=\operatorname{gcd}\left(F_{m}, F_{n}\right)$, for $m<n$. To complete the proof, we show that $r=1$. By the lemma, F_{m} divides $F_{n}-2$. Thus $r=1$ or 2 , and since F_{n} is odd, $r=1$.

To conclude, we recall that we have $F_{n}>1$ for all $n \in \mathbb{N}$, which implies that the set $\mathscr{P}\left(F_{n}\right)$ of prime divisors of F_{n} is nonempty. Moreover $\operatorname{gcd}\left(F_{m}, F_{n}\right)=1$ implies that $\mathscr{P}\left(F_{m}\right) \cap \mathscr{P}\left(F_{n}\right)=\emptyset$, and consequently

$$
\bigcup_{n=0}^{\infty} \mathscr{P}\left(F_{n}\right)
$$

is an infinite subset of \mathscr{P}.

Proof by Mersenne numbers

Proof by Mersenne numbers.

Suppose that \mathscr{P} is finite and $p=\max (\mathscr{P})$. Let $2^{p}-1$ be the p-th Mersenne number, and suppose that q is a prime divisor.
Then $2^{p} \equiv 1 \bmod q$ and since p is prime $($ and $2 \not \equiv 1 \bmod q)$, the element 2 has order p in \mathbb{F}_{q}^{*} (by Lagrange).
In particular p divdes $q-1$, and so $p<q$, a contradiction.

Remark. The proof is constructive: for any given finite set of primes $S \subset \mathscr{P}$ one can construct a new prime outside of S.

An analytic lower bound

Proof by analysis.

We show that the function $\pi(x)=\left|\mathscr{P}_{x}\right|$ is bounded below by $\log (x)$. We observe that

$$
\log (x)=\int_{1}^{x} \frac{1}{t} d t \leq 1+\frac{1}{2}+\cdots \frac{1}{n}
$$

for all $n \leq x<n+1$. If $S(x)$ is the set of positive integers whose prime divisors are in \mathscr{P}_{x}, then

$$
\log (x) \leq \sum_{m \in S(x)} \frac{1}{m}=\prod_{p \in \mathscr{P}_{x}}\left(\sum_{i=0}^{\infty} \frac{1}{p^{i}}\right)
$$

An analytic lower bound continued

Proof continued.

This gives the inequality

$$
\log (x) \leq \prod_{p \in \mathscr{P}_{x}}\left(\sum_{i=0}^{\infty} \frac{1}{p^{i}}\right)=\prod_{p \in \mathscr{P}_{x}} \frac{1}{1-1 / p}=\prod_{p \in \mathscr{P}_{x}} \frac{p}{p-1}
$$

If we denote $\mathscr{P}_{x}=\left\{p_{1}, p_{2}, \ldots, p_{\pi(x)}\right\}$ such that $p_{k}<p_{k+1}$, and observe that $p_{k} \geq k+1$, then

$$
\log (x) \leq \prod_{k=1}^{\pi(x)} \frac{p_{k}}{p_{k}-1} \leq \prod_{k=1}^{\pi(x)} \frac{k+1}{k}=\pi(x)+1
$$

Thus $\log (x)-1 \leq \pi(x)$. Since $\log (x)$ is unbounded so is $\pi(x)$.
Remark. This proof is remarkable for giving not only a proof of infinitude, but also an explicit lower bound on $\pi(x)$.

Fursternberg's exotic topology

Furstenberg's proof uses an exotic topology on \mathbb{Z} in order to give an elegant but nonconstructive proof of the infinitude of primes. The idea is to declare the arithmetic sequences

$$
S(a, b)=a+b \mathbb{Z}=\{a+b n: n \in \mathbb{Z}\},
$$

to be open. The topology generated by the basis

$$
\mathscr{B}=\{S(a, b): a, b \in \mathbb{Z}\}
$$

is called the evenly spaced topology on \mathbb{Z}.
We remark that $U \subset \mathbb{Z}$ is an open in this topology if and only for each $x \in U$, there exists $b \in \mathbb{Z}$ such that $S(x, b) \subseteq U$.

Fursternberg's topological proof

The evenly spaced topology of Furstenberg satisfies the following propoerties.

1. If U is open then either $U=\emptyset$ or U is not finite.
2. The sets $S(a, b)$ are both open and closed, since \mathbb{Z} is the disjoint union: $\mathbb{Z}=S(0, b) \cup S(1, b) \cup \cdots \cup S(b-1, b)$.
3. $\mathbb{Z} \backslash\{ \pm 1\}=\bigcup_{p \in \mathscr{P}} S(0, p)$.

These properties give the following simple proof.

Furstenberg's proof.

If \mathscr{P} were finite, then $\mathbb{Z} \backslash\{ \pm 1\}$ would be closed by 2 , hence $\{ \pm 1\}$ would be open, contradicting 1 .

