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The infinitude of primes

In this talk we give a selection of the most elegant proofs of the
infinitude of primes. Precisely, we proof the following theorem.

Theorem

The set of primes in N is infinite.

The earliest known proof is due to Euclid (Elements, ca. 300 B.C.).

We permit ourselves to use more modern notions in mathematics:
arithmetic of Z/nZ and basic results from analysis and topology.
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Primes

Definition

Let P denote the set of primes in N. For a real number x ∈ R, we
denote by Px the subset of primes bounded by x . The cardinality
of this set is denoted by

π(x) = |Px | = |{p ∈P : p ≤ x}|.

Finally we denote P(n) ⊂P to be the set of prime divisors of n.

The infinitude of primes can be expressed equivalently by:

1. P is not finite.

2. Px 6= P for any x ∈ R.

3. P(n) 6= P for any n ∈ N.

4. The function π : R→ N is not bounded.

The earliest proofs assumed that P was finite and derived a
contradiction.
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Euclid’s proof

Proof [Euclid].

Suppose that P is finite, set

n =
∏
p∈P

p,

and let q be a prime divisor of n + 1. By construction, q is a prime
divisor of both n and and n + 1, hence of gcd(n, n + 1) = 1, a
contradiction.

Remark. Expressed differently, this argument can be viewed as a
construction of a new prime q outside of any finite subset S ⊆P.
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Proof by Fermat numbers

The next proof constructs an infinite family of subsets Sn ⊆P
which are nonempty and pairwise disjoint. In particular, if (an) is a
sequence such that

an > 1, and gcd(am, an) = 1 for all m 6= n,

then (Sn) = (P(an)) is such a family. The infinitude of P follows.

Proof [Fermat numbers].

Let (Fn) = (3, 5, 17, . . . ) the sequence of Fermat numbers, defined
by

Fn = 22
n

+ 1.

Clearly Fn > 1 for all n. It remains to show that gcd(Fm,Fn) = 1
(we say that Fm and Fn are coprime).
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A recursion for Fermat numbers

Interlude. In order to show that Fermat numbers are coprime, we
prove the following recursion for Fermat numbers.

Lemma

For all n > 1 the following recursion
n−1∏
m=0

Fm = Fn − 2 holds.

Proof by induction.

For n = 1 the equality F0 = F1 − 2 = 3 is verified. Assuming the
recursion holds for n, then

n∏
m=0

Fm = (Fn − 2)Fn = (22
n − 1)(22

n
+ 1) = 22

n+1 − 1 = Fn+1 − 2,

and the recursion follows by induction.
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Coprimality of Fermat numbers

Proof by Fermat numbers continued.

Let r = gcd(Fm,Fn), for m < n. To complete the proof, we show
that r = 1. By the lemma, Fm divides Fn − 2. Thus r = 1 or 2,
and since Fn is odd, r = 1.

To conclude, we recall that we have Fn > 1 for all n ∈ N, which
implies that the set P(Fn) of prime divisors of Fn is nonempty.
Moreover gcd(Fm,Fn) = 1 implies that P(Fm) ∩P(Fn) = ∅, and
consequently

∞⋃
n=0

P(Fn)

is an infinite subset of P.
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Proof by Mersenne numbers

Proof by Mersenne numbers.

Suppose that P is finite and p = max(P). Let 2p − 1 be the p-th
Mersenne number, and suppose that q is a prime divisor.

Then 2p ≡ 1 mod q and since p is prime (and 2 6≡ 1 mod q), the
element 2 has order p in F∗q (by Lagrange).

In particular p divdes q − 1, and so p < q, a contradiction.

Remark. The proof is constructive: for any given finite set of
primes S ⊂P one can construct a new prime outside of S .
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An analytic lower bound

Proof by analysis.

We show that the function π(x) = |Px | is bounded below by
log(x). We observe that

log(x) =

∫ x

1

1

t
dt ≤ 1 +

1

2
+ · · · 1

n
,

for all n ≤ x < n + 1. If S(x) is the set of positive integers whose
prime divisors are in Px , then

log(x) ≤
∑

m∈S(x)

1

m
=
∏

p∈Px

( ∞∑
i=0

1

pi

)
·
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An analytic lower bound continued

Proof continued.

This gives the inequality

log(x) ≤
∏

p∈Px

( ∞∑
i=0

1

pi

)
=
∏

p∈Px

1

1− 1/p
=
∏

p∈Px

p

p − 1
·

If we denote Px = {p1, p2, . . . , pπ(x)} such that pk < pk+1, and
observe that pk ≥ k + 1, then

log(x) ≤
π(x)∏
k=1

pk
pk − 1

≤
π(x)∏
k=1

k + 1

k
= π(x) + 1.

Thus log(x)− 1 ≤ π(x). Since log(x) is unbounded so is π(x).

Remark. This proof is remarkable for giving not only a proof of
infinitude, but also an explicit lower bound on π(x).
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Fursternberg’s exotic topology

Furstenberg’s proof uses an exotic topology on Z in order to give
an elegant but nonconstructive proof of the infinitude of primes.
The idea is to declare the arithmetic sequences

S(a, b) = a + bZ = {a + bn : n ∈ Z},

to be open. The topology generated by the basis

B = {S(a, b) : a, b ∈ Z},

is called the evenly spaced topology on Z.

We remark that U ⊂ Z is an open in this topology if and only for
each x ∈ U, there exists b ∈ Z such that S(x , b) ⊆ U.
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Fursternberg’s topological proof

The evenly spaced topology of Furstenberg satisfies the following
propoerties.

1. If U is open then either U = ∅ or U is not finite.

2. The sets S(a, b) are both open and closed, since Z is the
disjoint union: Z = S(0, b) ∪ S(1, b) ∪ · · · ∪ S(b − 1, b).

3. Z\{±1} =
⋃
p∈P

S(0, p).

These properties give the following simple proof.

Furstenberg’s proof.

If P were finite, then Z\{±1} would be closed by 2, hence {±1}
would be open, contradicting 1.
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