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The infinitude of primes

In this talk we give a selection of the most elegant proofs of the
infinitude of primes. Precisely, we proof the following theorem.

Theorem

The set of primes in N is infinite.

The earliest known proof is due to Euclid (Elements, ca. 300 B.C.).

We permit ourselves to use more modern notions in mathematics:
arithmetic of Z/nZ and basic results from analysis and topology.
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Primes

Definition
Let &2 denote the set of primes in N. For a real number x € R, we

denote by 2, the subset of primes bounded by x. The cardinality
of this set is denoted by

()= |2 = {pe 2 : p< x|
Finally we denote &2(n) C & to be the set of prime divisors of n.

The infinitude of primes can be expressed equivalently by:
1. & is not finite.
2. Py # & forany x € R.
3. P(n) # & for any n € N.
4. The function 7 : R — N is not bounded.

The earliest proofs assumed that &2 was finite and derived a
contradiction.
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Euclid’s proof

Proof [Euclid].
Suppose that &7 is finite, set
n= 1] »
peEP

and let g be a prime divisor of n+ 1. By construction, g is a prime
divisor of both n and and n+ 1, hence of gcd(n,n+1) =1, a
contradiction. O

Remark. Expressed differently, this argument can be viewed as a
construction of a new prime g outside of any finite subset S C &.
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Proof by Fermat numbers

The next proof constructs an infinite family of subsets S, C &
which are nonempty and pairwise disjoint. In particular, if (a,) is a
sequence such that

ap > 1, and gcd(am, a,) = 1 for all m # n,

then (S,) = (#(an)) is such a family. The infinitude of &7 follows.
Proof [Fermat numbers].

Let (Fn) = (3,5,17,...) the sequence of Fermat numbers, defined
by
Fo=2"+1.

Clearly F, > 1 for all n. It remains to show that gcd(Fn, Fn) =1
(we say that F,, and F, are coprime).
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A recursion for Fermat numbers

Interlude. In order to show that Fermat numbers are coprime, we
prove the following recursion for Fermat numbers.

Lemma
n—1

For all n > 1 the following recursion H Frm = F, — 2 holds.
m=0

Proof by induction.
For n =1 the equality Fop = F; — 2 = 3 is verified. Assuming the

recursion holds for n, then

on+1

[T o (Fr - P = (2 - 1) = 2 1= -2
m=0

and the recursion follows by induction. O
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Coprimality of Fermat numbers

Proof by Fermat numbers continued.

Let r = gcd(Fm, Fn), for m < n. To complete the proof, we show
that r = 1. By the lemma, F,, divides F, —2. Thus r =1 or 2,
and since F, is odd, r = 1.

To conclude, we recall that we have F,, > 1 for all n € N, which
implies that the set Z(F,) of prime divisors of F, is nonempty.
Moreover gcd(Fpm, F) = 1 implies that Z(F,) N Z(F,) =0, and
consequently

U 2(F.)
n=0

is an infinite subset of . O
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Proof by Mersenne numbers

Proof by Mersenne numbers.
Suppose that & is finite and p = max(%?). Let 2P — 1 be the p-th
Mersenne number, and suppose that g is a prime divisor.

Then 2P =1 mod g and since p is prime (and 2 # 1 mod q), the
element 2 has order p in Iy (by Lagrange).

In particular p divdes g — 1, and so p < g, a contradiction. O

Remark. The proof is constructive: for any given finite set of
primes S C & one can construct a new prime outside of S.
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An analytic lower bound

Proof by analysis.

We show that the function 7(x) = |Z«| is bounded below by
log(x). We observe that

X1 1 1
Iog(X)Z/ JAES Ao,
1

for all n < x < n+ 1. If S(x) is the set of positive integers whose
prime divisors are in &2, then

< Y 211 (i;)

meS(x) pEPx \i=0
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An analytic lower bound continued

Proof continued.

This gives the inequality

= 1 1
=< 11 (55) - 1L =5 11 755

peEP, \i=0 pPE Py PE Py

If we denote & = {p1, P2, ..., Pr(x)} such that py < pxi1, and
observe that py > k + 1, then

m(x)

Pk ) k+1
log(x) < [] _1gHT:W(X)+1.
Z1 Pk k=1

=

Thus log(x) — 1 < m(x). Since log(x) is unbounded so is 7(x). [

Remark. This proof is remarkable for giving not only a proof of
infinitude, but also an explicit lower bound on o(x):
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Fursternberg’s exotic topology

Furstenberg's proof uses an exotic topology on Z in order to give
an elegant but nonconstructive proof of the infinitude of primes.
The idea is to declare the arithmetic sequences

S(a,b)=a+bZ ={a+bn : neZ},
to be open. The topology generated by the basis
#=1{S(a,b) : a,beZ},

is called the evenly spaced topology on Z.

We remark that U C Z is an open in this topology if and only for
each x € U, there exists b € Z such that S(x, b) C U.
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Fursternberg’s topological proof

The evenly spaced topology of Furstenberg satisfies the following
propoerties.

1. If U is open then either U = ) or U is not finite.
2. The sets S(a, b) are both open and closed, since Z is the
disjoint union: Z = S(0,b) US(1,b)U---US(b—1,b).
3. Z\{£1} = ] S(0,p).
peEP
These properties give the following simple proof.

Furstenberg’s proof.

If & were finite, then Z\{%1} would be closed by 2, hence {£1}
would be open, contradicting 1. O
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