
The University of Sydney
Math3024 Elementary Cryptography and Protocols

Semester 1 Exercises and Solutions for Week 10 2004

Modular Arithmetic

Reduction modulo a polynomial g(x) or modulo an integer m plays a central role in the
mathematics of cryptography. Recall that for a monic polynomial g(x) of positive degree,
we define a(x) mod g(x) to the unique polynomial a0(x) with deg a0(x) < deg g(x) such
that

a(x) = a0(x) + a1(x)g(x).

For an integer m, we define a mod m to be the unique integer a0 with 0 ≤ a0 < m such
that a = a0 + a1m.

Fermat’s little theorem. If p is a prime, then the relation ap−1 ≡ 1 mod p holds for
any integer a not divisible by p.

Note. The Magma function mod is the binary operator, with the syntax:

> m := 101;

> 2^31 mod m;

34

The same mathematical result can be achieved with the Modexp, or modular exponentia-
tion function:

> Modexp(2,31,m);

34

The latter construction, however, in general is more efficient.

Chinese remainder theorem. Let p and q be distinct primes, then for every integer
a and b there exists a unique integer c with 0 ≤ c < pq such that c ≡ a mod p and
c ≡ b mod q.

If a, b, and c are as above, then for any integral polynomial f(x), the integer f(c)
satisfies f(c) ≡ f(a) mod p and f(c) ≡ f(b) mod q. Therefore f(c) mod pq is the unique
solution to the Chinese remainder theorem.

Analogues of Fermat’s little theorem also hold for polynomials.

Polynomial analogue of Fermat. If g(x) is an irreducible polynomial of degree n over
F2, then the relation a(x)2n−1 ≡ 1 mod g(x) holds for any polynomial a(x) not divisible
by g(x).



Chinese remainder theorem. Let g(x) and h(x) be monic polynomials with no common
factors. Given any polynomials a(x) and b(x), there exists a unique polynomial c(x) such
that c(x) ≡ a(x) mod g(x) and c(x) ≡ b(x) mod h(x).

We can create and work with polynomials over F2 as demonstrated by the following
Magma code.

> F2 := FiniteField(2);

> P2<x> := PolynomialRing(F2);

> f := x^17 + x^5 + 1;

> Factorization(f);

[

<x^17 + x^5 + 1, 1>

]

1. Let p be the prime 231 − 1 = 2147483647. Use the Magma function Modexp to verify
Fermat’s little theorem for several values of a. Why would it be a bad idea to compute
ap−1 and then reduce modulo p?

Solution The function Modexp(a,e,p) computes the result of ae mod p by doing
an optimal number of squarings and multiplications, and reducing the intermediate
results. The size of the expanded result ae for large e, such as for e = p−1 = 231−2,
would overflow the internal storage capacity of a computer, so it would be unwise
to attempt to structure the algorithm as a 7→ ae then to reduce modulo p.

2. Let p be as above and let q = (261 + 1)/3 = 768614336404564651. Compute ap−1

mod pq for various primes using Modexp. Then reduce the result modulo p. How
do you explain the result in terms of the Chinese remainder theorem and Fermat’s
little theorem?

Solution For primes p = 231−1 and q = (261−1)/3, we compute for a = 2 the power
Modexp(2, p− 1, pq) = 103161671333561841019606358. If we reduce modulo q, then
result is 624499148328708779 — pretty much a random number of size q. On the
other hand, if we reduce modulo p, the result is 1. This follows from Fermat’s little
theorem, since Modexp(2, p− 1, pq) mod p is equal to the result Modexp(2, p− 1, p).

3. Let g(x) = x17 + x5 + 1, and use the function Modexp to verify the polynomial
analogue of Fermat’s little theorem for the polynomials x, x2 + x + 1, etc.

Solution For the polynomial g(x) = x17+x5+1, we should use exponent e = 217−1,
which we note is prime. We verify that each of the results Modexp(x, e, g) and
Modexp(x2 + x + 1, e, g) is 1. Since e is prime, this proves that g(x) is not only
irreducible, but also primitive.

4. Let h(x) = x17 + x15 + x10 + x5 + 1 and compute a(x)217−1 mod g(x)h(x) for various
a(x). What is the result reduced modulo g(x)? Why does the same not hold true
for a(x)217−1 mod g(x)h(x), reduced modulo h(x)?



Solution With g(x) as above and h(x) = x17 + x15 + x10 + x5 + 1, the results
Modexp(x, e, gh) mod g = 1 holds as expected, exactly as in the third question. In
this case, if h(x) is also irreducible, then the result:

Modexp(x, e, gh) mod h = x16 + x15 + x14 + x11 + x10 + x8 + x6 + x3 + 1

would also have been 1. The fact that this result does not give 1 is a consequence
of the reducibility of h:

h = (x3 + x2 + 1)(x14 + x13 + x11 + x8 + x5 + x4 + x3 + x2 + 1).


