
The University of Sydney
Math3925 Public Key Cryptography

Semester 2 Solutions for Assignment 1 2004

This assignment will be due on Friday 3 September, should be submitted at 638 Carslaw
by 5PM, and is worth 10% of the assessment for this course.

1. Let n be the integer 3080608377608965627, and define π : Z8 → Z/nZ∗ to be the
homomorphism taking the canonical basis of Z8 to the generators

{−1, 2, 3, 5, 7, 11, 13, 17}.

Verify that the rows of the matrix




2 0 0 0 0 0 0 0
0 396 −214 −386 36 25 −144 426
1 −205 −34 −196 230 83 −662 19
1 −305 528 −358 −250 73 38 277
1 38 −45 −282 584 122 −24 −476
0 127 131 119 369 −633 152 −275
0 436 −54 −138 −442 330 −312 −350
1 82 757 102 372 111 −248 258




·

determine a map φ : Z8 → Z8 with image in the kernel of π.

a. Determine the factorization of n, and the group structure of ker(π)/φ(Z8).

b. Compute the 2-torsion subgroup of Z/nZ∗.
c. Use the above relation matrix to compute an exact sequence

1 → Z8 → Z8 → Z/nZ∗[2] → 1.

Solution

a. Reducing the above matrix modulo 2, we find the kernel (on the left) to be
spanned by vectors {v1, v2, v3, v4}

v1 = (1, 0, 0, 0, 0, 0, 0, 0)
v2 = (0, 1, 0, 0, 1, 0, 0, 1)
v3 = (0, 0, 1, 1, 0, 0, 0, 0)
v4 = (0, 0, 0, 0, 0, 0, 1, 0)

Since for any v in this kernel, vM = (0, 0, 0, 0, 0, 0, 0, 0, 0), if we lift the coor-
dinates to the integers we can form the corresponding product vM as a linear
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combination of the rows of M with even coordinates. Dividing by two we ob-
tain an element u of Z8 such that π(2u) = π(u)2 = 1, i.e. u is a 2-torsion
element. The elements ui corresponding to the basis elements vi are:

u1 =
v1M

2
= (1, 0, 0, 0, 0, 0, 0, 0),

u2 =
v2M

2
= (1, 258, 249,−283, 496, 129,−208, 104),

u3 =
v3M

2
= (1,−255, 247,−277,−10, 78,−312, 148),

u4 =
v4M

2
= (0, 218,−27,−69,−221, 165,−156,−175),

and their images in Z/nZ∗ are:

π(u1) = 3080608377608965626,
π(u2) = 802583131117620736,
π(u3) = 1,
π(u4) = 802583131117620736.

The first element is −1, but the second and fourth give us nontrivial 2-torsion
elements, from which we can factor n:

GCD(802583131117620736− 1, n) = 767205289
GCD(802583131117620736 + 1, n) = 4015363843

In order to find the group structure ker(π)/φ(Z8) we will computer the full
matrix of relations. In retrospect we will see that this full computation is not
needed.

In the previous part we found π(u2) = π(u4) and π(u3) = 1, hence u2−u4 and
u3 are new relations:

(1,−255, 247,−277,−10, 78,−312, 148)
(1, 40, 276,−214, 717,−36,−52, 279)

Appending this to the known relations and reducing to a basis (say by LLL
reduction) we find a new basis matrix of relations:




2 0 0 0 0 0 0 0
0 50 −281 81 240 5 −350 −129
1 −255 247 −277 −10 78 −312 148
0 42 481 316 −345 147 −196 −21
0 396 −214 −386 36 25 −144 426
0 228 −112 −330 −322 −494 −252 20
0 681 256 −156 45 211 298 −90
1 −257 −74 −345 −143 236 −284 −607




.
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Repeating the calculation of the kernel modulo 2 of this new matrix, we find
the same row vectors mapping to the 2-torsion subgroup, plus a new vector
which maps to 1:

(0, 114,−56,−165,−161,−247,−126, 10).

Repeating this process we find another element of the kernel of π:

(1, 313,−206,−378,−70, 225, 108, 108).

Repeating once more, we find that the kernel modulo 2 contains only those
vectors which map under π to the 2-torsion.

Up to this point it has not been necessary to use the factorization of n. We
know that the group order of Z/nZ∗ is (p−1)(q−1) where n = pq. However, we
find that the determinant of the basis of known kernel elements is five times
larger. Thus we repeat the above procedure by finding a generator for the
kernel of M modulo 5, in order to find an element v = 5u in 5Z8 which is in
the kernel of π. Since five does not divide the group order, in fact this element

u = (1,−20, 134,−161,−364, 53,−62,−13),

itself must lie in ker(π). Adjoining this to our set of relations and row reducing
yields the complete basis matrix for ker(π):

N =




2 0 0 0 0 0 0 0
0 114 −56 −165 −161 −247 −126 10
1 −204 65 −273 87 −22 −124 −147
0 51 −182 4 97 −100 188 −295
1 −20 134 −161 −364 53 −62 −13
1 −84 −91 85 37 305 −286 −152
0 305 16 −178 239 −3 −214 −24
0 28 −356 −39 55 175 384 145




The group structure of ker(π)/φ(Z8) can now be determined by expressing
the rows of the original matrix M in terms of the rows of N which spanning
ker(π). Explicitly, one computes MN−1. This gives a basis matrix for φ(Z8)
as a subgroup of ker(π). From this basis we find

ker(π)/φ(Z8) ∼= Z/2Z× Z/40Z.

Simplification: Alternatively we can compute det(M) = 80|Z/nZ∗| as soon as
we know the factorization of n. From the fact that the dimension of the kernel of
the reduction of M modulo 2 is 4, the group structure follows. Specifically, the
group Z/nZ∗[2] has dimension 2 as a vector space, so a 2-dimensional subspace,
(a group of order 4) must come from 2-torsion in the group ker(π)/φ(Z8).
Since we know the group has order 80, the only possible group structure with
2-torsion of order 4 is Z/2Z× Z/40Z.
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Simplification #2: If n = pq where p = 3 mod 4 and q = 3 mod 4, then Z/nZ∗
has order 4r for some r. Then the composition [r] ◦ π = π ◦ [r] of π with [r]
would give the required surjection Z8 → Z/nZ∗[2]. The map Z8 → Z8 would
be any map with image φ(Z8) + 2Z8. In this case, however, p = 1 mod 4 so
this trick doesn’t apply.

b. Let ψ : Z8 → Z8 and ρ : Z8 → Z/nZ∗[2] be the maps giving the exact sequence
desired. Since we have computed the kernel of π, we define φ to be given by
the matrix N above, so that the following sequence is exact:

1 → Z8 φ−→ Z8 π−→ Z/nZ∗ → 1.

The homomorphism ρ will be the compositum of an isomorphism

ι : Z8 → π−1(Z/nZ∗[2])

with the map π. The map ψ will have image equal to the kernel of ρ. In order
to find ι we adjoin two elements

(1, 0, 0, 0, 0, 0, 0, 0), (1, 258, 249,−283, 496, 129,−208, 104).

generating the kernel. By basis reduction we find a set of eight vectors which
determine the image of the generators for Z8.

Simplification: This entire calculation can again be bypassed, if we recognise
that any map from ρ : Z8 → Z/nZ∗[2] is determined by the images of its eight
generators. Since Z/nZ∗[2] is generated by −1 and 802583131117620736, we
send the first two generators of Z8 to −1 and 802583131117620736, respectively,
and the remainder to 1. Then the inclusion with basis matrix:




2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




determines a map ψ : Z8 → Z8 with image equal to the kernel of ρ as required.
The previous construction in terms of φ and π must differ from this direct
construction only by a change of basis for Z8.

2. a. Prove that the integer

86398677368792768067556452456311743331

is composite.
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b. Prove that the integer

36033031871188819215295041944029897039

is prime, and that 3 is a primitive element.

Solution

a. For this integer n, we find that 2n−1 mod n equals

7513657430681440292268339702541712768.

b. For this integer p, we find that the factorization of p− 1 is

2 · 32 · 43 · 4049 · 33311 · 345163129460764466616589283.

We check that 3p−1 mod p equals 1, so 3 has order dividing p− 1. However for
each m = (p − 1)/r, where r = 2, 3, 43, etc. runs through the prime divisors
of p− 1, we find the 3m mod p is not one:

36033031871188819215295041944029897038
26196303998461744328183977577030316695
28877141472703870017743095112949724239
16924899364389785081988486838678995925
12185493681708568683787524620158562757
35997470466162411157077430182287272757

Thus the order of 3 is exactly p−1. Consequently p is prime and 3 is primitive.

Note that to complete the proof, one needs the recurse on the proof that each
of the prime divisors of p− 1 is in fact prime. Primes up to some fixed bound
(e.g. 10, 100, . . . , 106, etc.) can be proven by prior sieving method. We omit
this recursion on the divisors of p− 1.

3. Given the integer n = 98424217707782056843, find a set of generators for Z/nZ∗.
Find the subgroup H = Z/nZ∗[2] and a group G together with a homomorphism
χ : Z/nZ∗ → G making an exact sequence

1 → H −→ Z/nZ∗ [2]−→ Z/nZ∗ χ−→ G → 1.

Solution The factorization of n is 523 · 1830013 · 102836220757. Since the 2-torsion
subgroup H consists of elements which are ±1 modulo each of these primes, and we
can take as generators those with images (−1, 1, 1), (1,−1, 1), and (1, 1,−1) in

Z/523Z∗ × Z/1830013Z∗ × Z/102836220757Z∗,

with respect this these three primes. Using the Chinese remainder theorem, we find
their representatives in Z/nZ∗ are

(−1, 1, 1) 7→ 31616192303838213289,
(1,−1, 1) 7→ 83451526506434449465,
(1, 1,−1) 7→ 81780716605291450933.
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Thus H = ker([2]) is the 2-torsion subgroup of order 8 generated by these three
elements. We now define G = {±1}3 to be the multiplicative group of order 8 (which
we can identify with a subgroup of Z/523Z∗×Z/1830013Z∗×Z/102836220757Z∗).
The homomorphism from Z/nZ∗ is defined to each components is

x 7→ x261 mod 523
x 7→ x915006 mod 1830013
x 7→ x51418110378 mod 102836220757.

Since the maps

1 → 〈1,−1〉 [2]−→ Z/pZ∗ → Z/pZ∗ χp−→ 〈1,−1〉 → 1

defined by χp(x) = x(p−1)/2 is exact, we conclude also that the the map χ is surjective
and has kernel equal to the image of [2], hence the sequence of homomorphisms is
exact.

4. a. Given an RSA public key (n, e), explain how the knowledge of the RSA private
key (n, d) is probabilistically polynomial time equivalent to the factorization
of n by describing an algorithm to factor n.

b. Let n be the RSA modulus

255323218588166109592798189959884326293097327027305030817530
747345240251392473791503642932659593815276200068924379830529,

with public key (n, e) = (n, 17) and private key (n, d) with d equal to

24030420573003869138145711996224407180526807249628708782826
2885567034957139042736053989307424852494087454007644144753201.

Find a factorization of n.

Solution

a. By construction, aed = a for every a in Z/nZ. In particular this means that
ed = 1 mod m, where m is the exponent of the group Z/nZ∗ (note that m
divides the order ϕ(n) of Z/nZ∗ but ed = 1 mod ϕ(n) is not strictly necessary).

In particular we may apply the following algorithm:

1. let ed− 1 = 2sr for r odd

2. choose a at random in Z/nZ∗ and set u1 = ar

3. if u1 = ±1 then return to 2.

4. for i in [1, . . . , s] {
set u2 = u2

1

if u2 = −1 then

return to 2.

if u2 = +1 then

return GCD(u1 − 1, n)
}
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Since aed−1 = 1, in the course of the algorithm either u2 = 1 or u2 = −1 occurs.
If n is not prime (as is the case in the RSA protocol), then we expect to find
a 2-torsion element u1 (u2 = 1) with probability at least 1/2.

b. We find ed − 1 = 26r for an odd r, but with a = 2 we find that 2r mod n
equals −1 which gives no information. However u1 = 3r mod n is a nontrivial
2-torsion element, and GCD(u1 − 1, n) picks out the factor:

208837501874423119625643364067739053302302858700895305581467

while the other factor is GCD(u1 + 1, n):

1222592763735009121258802915225781634738005421484907170448787

Note that 2 and 3 play the role of “random” elements.
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