THE UNIVERSITY OF SYDNEY
MATH3925 PuBLIC KEY CRYPTOGRAPHY

Semester 2 Exercises and Solutions for Week 9 2004

Recall that the cyclotomic polynomials are defined in terms of the factorizations of %V —1

2V —1=]] omlx).

m|N

For a particular m and ¢, you can construct the m-th cyclotomic polynomial in F,[z]
using the Magma commands:

P<x> := PolynomialRing(FiniteField(q));
Phi := P!CyclotomicPolynomial(m) ;

1. a. What is the factorization of ®o6(x) in F3[z|? How many factors are there of each
degree? What are the numbers of factors of each degree in the factorizations
of ®,,(x) for m dividing 26 dividing 80?7 Carry out a similar analysis for m
dividing 63 and ®,,(z) in Fo[z] and for m dividing 124 and ®,,(z) in F;[z].
b. Show that r divides p(p" — 1). Give an example of a p, r, and an m, such that
m divides but is not equal to p” — 1, and such that r divides the degree of every
factor of ®,,(z) in F,[x].

c. Let r be the order of p in Z/mZ*. Show that r is the degree of every irreducible
factor of ®,,(x)

Solution

a. The factorization of ®y6(x) in Fs[z] can be determined in Magma with the fol-
lowing commands.
> P<x> := PolynomialRing(FiniteField(3));
> Factorization(P!CyclotomicPolynomial(26));

[
<x"3 + 2*%x + 1, 1>,
<x"3 + x72 + 2xx + 1, 1>,
<x"3 + 2*%x72 + 1, 1>,
<x"3 + 2%x”2 + x + 1, 1>
]

By its definition, we have that ®o4(z) |2 — 1, and since 26 = 27 — 1 the
polynomial 225 — 1 factors completely over Fy7, but the only factors over Fy
are r + 1 and x + 2. Therefore we could have predicted the factorization into
degree 3 polynomials. Since the degree of this polynomial is ¢(26) = 12 = 3-4,
there are 4 factors.

Similarly, the degrees r and number t of factors of other ®,,(z) in F,[z] are
determined by the minimal r such that m divides p” — 1. Complete data for p,



r, and m dividing 63, 26, 80, and 124 is given in the tables below.

m p(m) p r t m p(m) p r t p m em) r t
63 36 2 6 6 80 32 3 4 8 5 124 60 3 20
9 6 2 6 1 40 16 3 4 4 5 62 30 3 10
7 6 2 3 2 20 8 3 4 2 5 31 30 3 10
3 2 2 2 1 16 8 3 4 2 5 4 2 2 1
1 1 2 1 1 10 4 3 4 1 5 2 1 1 1
m @(m) p r t 8 4 3 2 2 5 1 1 1 1
26 36 3 3 4 5 4 3 4 1
13 6 3 3 4 4 2 3 2 1
2 6 3 1 2 2 1 3 1 1
1 1 3 1 1 1 1 3 1 1

b. The fact that r divides ¢(p” — 1) could be inferred from the fact that all factors
of ®,r_1(x) in F,[z] have degree r. A purely algebraic proof of this fact is
derived from the expression p” = 1 mod p" — 1, which says that p has order r
in Z/(p —1)Z. Thus r divides the order, ¢(p” — 1), of this group.

c. The powers of x in F,[z]/(z™ —1) form an abelian group isomorphic to Z/mZ.
Since p has order r in Z/mZ, the r-th power of the Frobenius endomorphism
7 induces the identity on F,[x]/(z™ — 1) because 7" (z) = 2" = z. Using the
quotient homomorphism

Fplal/ (2™ = 1) — Fyl2] /(P (2)),

the r-th power of the Frobenius endomorphism must also be the identity on
the quotient Fy[z]/(P.,(x)). Since ®,,(z) is squarefree, the latter quotient is
isomorphic to a product of fields, each of which must have degree over F,
dividing . On the other hand the degree of any quotient F,[z]/(¢g(x)) is a
proper divisor s of r if and only if g(z)[z?"~* — 1. But then g(z) must be
a divisor of 2% — 1, where k = GCD(m, p® — 1). By construction, g(x) then
divides ®(z) not ®,,(z) as assumed.

Note that in this exercise, the main idea is that the subgroup (x) of F,[z]/(x™—1)* is
isomorphic to Z/mZ, that this group is mapped injectively into Fy,. = F,[z]/(g(z))",
and that the elements of Z/mZ* are in bijection with the elements of exact order
m in Fy., which in turn are precisely the roots of ®,,(z) in Fr.

. Let F, be a finite field of ¢ elements.

a. What is the number of elements in F; of each order dividing ¢ — 17 Do this
count for ¢ = 27, ¢ = 64, ¢ = 81, and ¢ = 125.

b. Consider the finite fields K = Fs[z]/(2* — 2 + 1) and L = F3[y]/(v* — > + 1).
Define isomorphisms K — L and L — K. What is the compositum of the two
isomorphism you chose?

Solution



a. The number of each element in IF; of each order m dividing ¢ — 1 is ¢(m), as

b.

determined in the tables of the previous exercise.

There are four irreducible polynomials
-z 41 Bt —r+1 23— 2?1 - tr+1

dividing ®g6(x) in F3[z]. For each such g(x), there exists a field extension
F3[x]/(g(x)) of 27 elements, each isomorphic. For each k in Z/mZ*, the map
x +— 2% determines a ring homomorphism of Fs[z]/(®gs(z)) to itself. If we
write this ring as a product of fields:

Falo] o Fala] 5[] o Falr] s [x]
(Pog(z))  (3—2+4+1) (@B+22—2+1) (@3—2241) (23 —22+2+1)

one makes the following observations. The Frobenius homomorphism 7 (a) = a®

induces an automorphism of each factor, so that if 2> —z + 1 = 0 then

m(® —x+1)=(2%)° - (@*)+1=0,
but for each other k in Z/mZ*, the homomorphism sending z +— x* must
permute the factors by taking a root of 3 — 2 + 1 to a root of one of the other
divisors of ®@95(x). In particular we can verify that the map z = y~!
and conversely y = 7! = 2?° determine isomorphisms between K and L.
Composite with any power of the Frobenius automorphism gives the two other
possible isomorphisms.

— P

N.B. A finite field in Magma can be created using the default constructor, or as an explicit
quotient of a polynomial ring:

p := 3;

F := FiniteField(p);

P<x> := PolynomialRing(F);

K<t> := FiniteField(p,3);

L<u> := quo< P | x°3 - x72 + 1 >;

The defining polynomial in the former case, K, is arbitrarily set to be 2® — x + 1, while
we choose the defining polynomial to be 2 — 2% + 1 in the latter. Note that in both
cases the resulting rings are fields of size 27, hence isomorphic. Necessarily, these minimal
polynomials of ¢ and u must then divide 2%7 — z.



