
/Author (David R. Kohel) /Title (Cryptography)

Cryptography

David R. Kohel

January 23, 2007

CONTENTS

1 Introduction to Cryptography 3
1.1 Definitions and Terminology . 3
1.2 String Monoids . 4
1.3 Cryptosystems . 7

2 Classical Cryptography 9
2.1 Substitution Ciphers . 9
2.2 Transposition Ciphers . 13

3 Elementary Cryptanalysis 19
3.1 Classification of Cryptanalytic Attacks . 19
3.2 Cryptanalysis by Frequency Analysis . 20
3.3 Breaking the Vigenère Cipher . 24
3.4 Cryptanalysis of Transposition Ciphers . 26
3.5 Statistical Measures . 26

4 Information Theory 31
4.1 Entropy . 31
4.2 Rate and Redundancy . 33
4.3 Conditional Probability . 33
4.4 Conditional Entropy . 34
4.5 Perfect secrecy and one-time pads . 34

5 Block Ciphers 37
5.1 Product ciphers and Feistel ciphers . 37
5.2 Digital Encryption Standard Overview . 40
5.3 Advanced Encryption Standard Overview 40
5.4 Modes of Operation . 41

6 Stream Ciphers 49
6.1 Types of Stream Ciphers . 49

i

6.2 Properties of Stream Ciphers . 50
6.3 Linear Feedback Shift Registers . 50
6.4 Linear Complexity . 54

7 Elementary Number Theory 59
7.1 Quotient rings . 59
7.2 The mod operator . 60
7.3 Primes and Irreducibles . 61

8 Public Key Cryptography 65
8.1 Public and Private Key Protocols . 65
8.2 RSA Cryptosystems . 68
8.3 ElGamal Cryptosystems . 71
8.4 Diffie–Hellman Key Exchange . 72

9 Digital Signatures 77
9.1 RSA Signature Scheme . 77
9.2 ElGamal Signature Scheme . 77
9.3 Chaum’s Blind Signature Scheme . 78
9.4 Digital Cash Schemes . 78

10 Secret Sharing 81

A SAGE Constructions 85

B SAGE Cryptosystems 95

C Solutions to Exercises 101

D Revision Exercises 131

ii

Preface

When embarking on a project to write a book in a subject saturated with such books,
the natural question to ask is: what niche does this book fill not satisfied by other books
on the subject? The subject of cryptography attracts participants from many academic
disciplines, from mathematics to computer science and engineering. The goal of this book
is to provide an introduction which emphasizes the mathematical and algorithmic compo-
nents and building blocks suitable for mathematics students, while liberally illustrating the
theory with examples. Most textbooks for a mathematics audience limit themselves to pen
and paper calculations, which fails to give the student a sense of either the asymptotic com-
plexity for the algorithms or access to a practical range for cryptographic study. Textbooks
which take a computational view usually miss the conceptual framework of the mathemat-
ics, and are either tied to a particular commercial software package or emphasize low-level
computations in C or Java which requires a stronger computer science background. We
choose to use the computer algebra system SAGE for experimental exploration, since this
package is both freely available and designed for intuitive interactive use. We hope that
this book will fill a niche by emphasizing a mathematical presentation of structures in
cryptography, without sacrificing the explicit exploration of the field.

1

2

CHAPTER

ONE

Introduction to Cryptography

Cryptography is the study of mathematical techniques for all aspects of information secu-
rity. Cryptanalysis is the complementary science concerned with the methods to defeat
these techniques. Cryptology is the study of cryptography and cryptanaylsis. Key fea-
tures of information security information include confidentiality or privacy, data integrity,
authentication, and nonrepudiation.

Each of these aspects of message security can addressed by standard methods in cryptog-
raphy. Besides exchange of messages, tools from cryptography can be applied to sharing
an access key between multiple parties so that no one person can gain access to a vault by
any two of them can. Another role is in the design of electronic forms of cash.

1.1 Definitions and Terminology

Encryption = the process of disguising a message so as to hide the information it contains;
this process can include both encoding and enciphering (see definitions below).

Protocol = an algorithm, defined by a sequence of steps, precisely specifying the actions of
multiple parties in order to achieve an objective.

Plaintext = the message to be transmitted or stored.

Ciphertext = the disguised message.

Alphabet = a collection of symbols, also referred to as characters.

Character = an element of an alphabet.

Bit = a character 0 or 1 of the binary alphabet.

String = a finite sequence of characters in some alphabet.

Encode = to convert a message into a representation in a standard alphabet, such as to
the alphabet {A, . . . , Z} or to numerical alphabet.

3

Decode = to convert the encoded message back to its original alphabet and original form
— the term plaintext will apply to either the original or the encoded form. The process of
encoding a message is not an obscure process, and the result that we get can be considered
equivalent to the plaintext message.

Cipher = a map from a space of plaintext to a space of ciphertext.

Encipher = to convert plaintext into ciphertext.

Decipher = to convert ciphertext back to plaintext.

Stream cipher = a cipher which acts on the plaintext one symbol at a time.

Block cipher = a cipher which acts on the plaintext in blocks of symbols.

Substitution cipher = a stream cipher which acts on the plaintext by making a substitution
of the characters with elements of a new alphabet or by a permutation of the characters
in the plaintext alphabet.

Transposition cipher = a block cipher which acts on the plaintext by permuting the posi-
tions of the characters in the plaintext.

Example. The following are some standard alphabets.

A, . . . , Z 26 symbols Classical alphabet (less punctuation)
ASCII 7-bit words (128 symbols) American standard

extended 8-bit words (256 symbols)
ISO-8859-1 8-bit words (256 symbols) Western European standard
Binary {0,1} Numerical alphabet base 2
Octal {0,. . . ,7} Numerical alphabet base 8
Decimal {0,. . . ,9} Numerical alphabet base 10
Hexadecimal {0,. . . ,9,a,b,c,d,e,f} Numerical alphabet base 16

Example. The following is an example of a substitution cipher:

A B C D E F G H · · · Z

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ · · · ↓ ↓
P C O N A W Y · · · L S

which takes the plaintext BAD CAFE BED to the ciphertext CPOS ANSNO.

1.2 String Monoids

An encoding or cipher is a transformation of data or text, whether expressed in the Ro-
man alphabet, Chinese characters, or some binary, hexadecimal, or byte encoding of this

4 Cryptography

information. We introduce here some of the structures in which this text is stored, as the
natural domain and codomain on which encodings and ciphers operate. First we introduce
the abstract notion of a monoid before specialising to the string monoids which form the
objects of interest.

Monoids

A monoid is a set M together with a binary operation

· : M×M−→M,

which is associative:
(x · y) · z = x · (y · z),

and which contains a distinguished element e such that e · x = x · e = x. We note that a
monoid in which every element x has an inverse element y in M, i.e. such that x · y = e
is called a group. If we both the axiom of existence of inverses and the axiom asserting
existence of an identity, we arrive at the notion of a semigroup.

Monoid homomorphisms

A monoid homomorphism is a map φ : M1 →M2 such that

φ(x · y) = φ(x) · φ(y),

and which takes the identity in M1 to the identity in M2. We denote the set of all monoid
homomorphism M1 →M2 by

HomMon(M1,M2),

or just Hom(M1,M2) when it is clear that M1 and M2 are both monoids. In contrast,
the set of all set-theoretic maps from M1 to M2 is denoted

HomSet(M1,M2).

Strings

Given a finite alphabet A (a finite set of symbols), we write An for the n-fold product
A× · · · × A, whose elements we call strings of length n, and let

A∗ =
∞⋃

n=0

An,

be the disjoint union over strings of all lengths. Then A∗ forms a monoid under string con-
catentation, with identify the unique string in A0, called the empty string. We identity A
with its image A1 in A∗, and write a string in An as x1x2 · · ·xn rather than (x1, x2, . . . , xn).

String Monoids 5

The string monoids A∗ form a very special class of monoids, called free monoids over A,
which are characterized by the “universal” property:

The set A generates A∗, and given any map A →M to a monoid M, there
exists a unique monoid homomorphism A∗ →M which extends A →M.

Since the length of strings adds when composing (i.e. concatenating) them, clearly no
element other than the empty string in A∗ has an inverse, thus it forms a monoid but not
a group.

We are interested in standard string monoids used in language and computers. For
example, we let ASCII be the set of 256 binary strings of length 8, which represent text in
the computer. For instance, we have the following correspondence between characters in
the Roman alphabet, numeric decimal values and the binary representation of the ASCII
alphabet.

Character Number ASCII binary
A 65 01000001
B 66 01000010
...

...
...

Z 90 01001110
...

...
...

a 97 01100001
b 98 01100010
...

...
...

z 122 01111010

Note that the space character ” ” is a valid symbol in the ASCII alphabet, with numeric
value 32. In particular it is a symbol distinct from the identity element of the monoid
ASCII∗.

We now let A be the alphabet consisting of the 26 symbols {A, B, . . . , Z}. There is an
obvious monoid homomorphism ι : A∗ → ASCII∗ induced by the inclusion A ⊂ ASCII. We
can define a map ASCII→ A∗ by extending the map

A 7−→ A a 7−→ A

B 7−→ B b 7−→ B
...

...
Z 7−→ Z z 7−→ Z

to all of ASCII by sending all other characters to the empty string e. This induces a
monoid homomorphism π : ASCII∗ → A∗ such that the composition ι ◦ π is the identity
homomorphism on A∗, but π ◦ ι is far from injective on ASCII∗.

This monoid homomorphism was commonly applied to plaintext in classical cryptosys-
tems, to encode it prior to enciphering. As an example we see that

ι ◦ π(The cat in the hat.) = THECATINTHEHAT,

6 Cryptography

but strings in A∗ map injectively into ASCII∗:

π ◦ ι ◦ π(THECATINTHEHAT) = π(THECATINTHEHAT) = THECATINTHEHAT.

The existence of the empty string is crucial to the definition of the map from ASCII to
A∗, which shows that the concept of a monoid, rather than a semigroup, is the correct one
for study of strings and the transformations which operate on them (under the guise of
encodings or ciphers).

In what follows the domain and codomain of ciphers will be string monoids or a subset
An of a string monoid A∗ (for block ciphers). The latter ciphers may be extended naturally
(in what is called ECB mode in Chapter 5) to the submonoid (An)∗ of A∗ on the larger
alphabet An. The concept of a string monoid gives a useful framework for understanding
ciphers. A first question to ask for a cipher whose domain is a string monoid is whether
that cipher is a monoid homomorphism.

1.3 Cryptosystems

The notion of a cryptosystem or encryption scheme E captures the idea of a distinguished
set of ciphers indexed over some keyspace K:

E = {EK : M→ C : K ∈ K}.

To every enciphering key K there exists a deciphering key K ′ with deciphering map DK′ :
C →M. Now E should be thought of as a pair of algorithms E and D which take inputs
(K, M) and (K ′, C), respectively.

We formalise this definition as follows. First, we require a collection of sets:

A = plaintext alphabet A′ = ciphertext alphabet
M = plaintext space C = ciphertext space
K = (plaintext) keyspace K′ = (ciphertext) keyspace

whereM is a subset of A∗, C is a subset of A′∗, and K and K′ are finite sets. A cryptosystem
or encryption scheme is a pair (E, D) of maps

E : K ×M −→ C
D : K′× C −→M

such that for each K in K there exists a K ′ in K′ such that

D(K ′, E(K, M)) = M

for all M in M.

1.3. Cryptosystems 7

To recover to our original notion, for fixed K we write the cipher

EK = E(K, ·) : M→ C,

and similarly
DK′ = D(K ′, ·) : C →M.

With this notation the condition on E, D, K and K ′ is that DK′ ◦EK is the identity map
on M. In this way, we may express E and D as maps

E : K → HomSet(M, C),
D : K′ → HomSet(C,M).

We will refer to EK as a cipher, and note that a cipher is necessarily injective. For many
cryptosystems, there will exist a unique deciphering key K ′ associated to each enciphering
key K. A cryptosystem for which the deciphering key K ′ equals K (hence K = K′) or
for which K ′ can be easily obtained from K, is said to be symmetric. If the deciphering
key K ′ associated to K not easily computable from K, we say that the cryptosystem is
asymmetric or a public key cryptosystem.

A fundamental principle of (symmetric key) cryptography is Kerckhoff’s principle, that
the security of a cryptosystem does not rest on the lack of knowledge of the cryptosystem
E = (E, D). Instead, security should be based on the secrecy of the keys.

Recall that a protocol is an algorithm, defined by a sequence of steps, precisely spec-
ifying the actions of multiple parties in order to achieve an objective. An example of a
cryptographic protocol, we describe the steps for message exchange using a symmetric key
cryptosystem.

1. Alice and Bob publicly agree on a cryptosystem (E, D).
2. For each message M Alice → Bob:

a) Alice and Bob agree on a secret key K.
b) Alice computes C = EK(M) and sends it to Bob.
c) Bob computes M = DK(C) to obtain the plaintext.

The difficulty of step 2.a) was one of the fundamental obstructions to cryptography before
the advent of public key cryptography. Asymmetric cryptography provides an elegant
solution to the problem of distribution of private keys.

8 Cryptography

CHAPTER

TWO

Classical Cryptography

2.1 Substitution Ciphers

Classically, cryptosystems were character-based algorithms. Cryptosystems would substi-
tute characters, permute (or transpose) characters, or do a combination of those operations.

Notation

Throughout the course we will denote the plaintext alphabet by A and the ciphertext
alphabet by A′. We write EK for the enciphering map and DK′ for the deciphering map,
where K and K ′ are enciphering and deciphering keys.

Substitution Ciphers

We identify four different types of substitution ciphers.

Simple substitution ciphers

In this cryptosystem, the algorithm is a character-by-character substitution, with the key
being the list of substitutions under the ordering of the alphabet. In other words, a simple
substitution cipher is defined by a map A → A′.

Suppose that we first encode a message by purging all nonalphabetic characters (e.g.
numbers, spaces, and punctuation) and changing all characters to uppercase. Then the
key size, which bounds the security of the system, is 26 alphabetic characters. Therefore
the total number of keys is 26!, an enormous number. Nevertheless, we will see that simple
substitution is very susceptible to cryptanalytic attacks.

Example. Consider this paragraph, encoded in this way, to obtain the plaintext:

9

SUPPOSETHATWEFIRSTENCODEAMESSAGEBYPURGINGALLNONALPHABETI
CCHARACTERSEGNUMBERSSPACESANDPUNCTUATIONANDCHANGINGALLCH
ARACTERSTOUPPERCASETHENTHEKEYSIZEWHICHBOUNDSTHESECURITYO
FTHESYSTEMISALPHABETICCHARACTERSTHEREFORETHETOTALNUMBERO
FKEYSISOFENORMOUSSIZENEVERTHELESSWEWILLSEETHATSIMPLESUBS
TITUTIONISVERYSUSCEPTIBLETOCRYPTANALYTICATTACKS

then using the enciphering key UVLOIDTGKXYCRHBPMZJQVWNFSAE, we encipher the plaintext
to obtain ciphertext:

QWMMPQDVKUVFDTXJQVDBOPIDUHDQQUGDLAMWJGXBGURRBPBURMKULDVX
OOKUJUOVDJQDGBWHLDJQQMUODQUBIMWBOVWUVXPBUBIOKUBGXBGURROK
UJUOVDJQVPWMMDJOUQDVKDBVKDCDAQXEDFKXOKLPWBIQVKDQDOWJXVAP
TVKDQAQVDHXQURMKULDVXOOKUJUOVDJQVKDJDTPJDVKDVPVURBWHLDJP
TCDAQXQPTDBPJHPWQQXEDBDNDJVKDRDQQFDFXRRQDDVKUVQXHMRDQWLQ
VXVWVXPBXQNDJAQWQODMVXLRDVPOJAMVUBURAVXOUVVUOCQ

Simple substitution ciphers can be easily broken because the cipher does not change the
frequencies of the symbols of the plaintext.

Affine ciphers. A special case of simple substitution ciphers are the affine ciphers. If we
numerically encode the alphabet {A, B . . . , Z} as the elements {0, 1, . . . , 25} of Z/26Z then
we can operate on the letters by transformations of the form x 7→ ax + b, for any a for
which GCD(a, 26) = 1. What happens if a is not coprime to 26?

An affine cipher for which a = 1 is called a translation cipher. Enciphering in a transla-
tion cipher is achieved by the performing b cyclic shift operations (A 7→ B, B 7→ C, etc.) on
the underlying alphabet. Classically a translation cipher is known as Caesar’s cipher,
after Julius Caesar, who used this method to communicate with his generals. For example,
using b = 3 we obtain the cipher A 7→ D, B 7→ E, . . . , Z 7→ C.

Homophonic substitution ciphers

In this cryptosystem the deciphering is a function from a larger alphabet A′ to the alphabet
A, but an enciphering of the plaintext can take a character to any one of the elements in
the preimage.

One way to realize a homophonic cipher is to begin with m different substitution keys,
and with each substitution, make a random choice of which key to use. For instance,
suppose we take A to be own standard 26 character alphabet, and let the cipher alphabet
A′ be the set of character pairs. Suppose now that we the pair of substitution keys in the
ciphertext alphabet:

10 Chapter 2. Classical Cryptography

LV MJ CW XP QO IG EZ NB YH UA DS RK TF MJ XO SL PE NU FV TC QD RK YH GW AB ZI

UD PY KG JN SH MC FT LX BQ EI VR ZA OW XP HO DJ CY RN ZV WT LA SF BM GU QK IE

as our homophonic key.

In order to encipher the message:

“Always look on the bright side of life.”

we strip it down to our plaintext alphabet to get the plaintext string:

ALWAYSLOOKONTHEBRIGHTSIDEOFLIFE

Then each of the following strings are valid ciphertext:

LVRKYHLVABZVRKHOHOVRHOXPWTLXQOMJNUYHFTNBTCFVYHJNQOHOMCZABQMCSH
UDZAYHUDQKZVZAHOXODSXOMJTCLXSHMJRNBQFTNBWTZVBQXPQOHOIGZABQMCSH
LVRKYHUDQKZVRKXOXODSHOXPTCLXQOPYRNBQEZNBTCFVBQXPSHHOIGZAYHMCSH
LVZABMUDABFVRKHOHODSHOXPWTLXQOPYRNBQEZNBTCZVBQXPQOXOIGZABQMCQO

Moreover, each uniquely deciphers back to the original plaintext.

Polyalphabetic substitution ciphers

A polyalphabetic substitution cipher, like the homophonic cipher, uses multiple keys, but
the choice of key is not selected randomly, rather it is determined based on the position
within the plaintext. Most polyalphabetic ciphers are periodic substitution ciphers, which
substitutes the (mj + i)-th plaintext character using the i-th key, where 1 ≤ i ≤ m. The
number m is called the period.

Vigenère cipher. The Vigenère cipher is a polyalphabetic translation cipher, that is,
each of the m keys specifies an affine translation.

Suppose that we take our standard alphabet {A, B, . . . , Z} with the bijection with
Z/26Z = {0, 1, . . . , 25}. Then beginning with the message:

Human salvation lies in the hands
of the creatively maladjusted.

2.1. Substitution Ciphers 11

This gives the encoded plaintext:

HUMANSALVATIONLIESINTHEHANDSOFTHECREATIVELYMALADJUSTED

The with the enciphering key UVLOID, the Vigenère enciphering is given by performing the
column additions:

HUMANS ALVATI ONLIES INTHEH ANDSOF THECRE ATIVEL YMALAD JUSTED
UVLOID UVLOID UVLOID UVLOID UVLOID UVLOID UVLOID UVLOID UVLOID
--
BPXOVV UGGOBL IIWWMV CIEVMK UIOGWI NCPQZH UOTJMO SHLZIG DPDHMG

Recall that the addition is to be carried out in Z/26Z, with the bijection defined by the
following table:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Polygram substitution ciphers

A polygram substitution cipher is a cryptosystem in which blocks of characters are substi-
tuted in groups. For instance (for a particular key) AA could map to NO, AB to IR, JU to
AQ, etc. These cryptosystems make cryptanalysis harder by destroying the single character
frequencies, preserved under simple substitution ciphers.

General affine ciphers. An affine cipher can be generalised to polygram ciphers. Rather
than a map m 7→ c = ma + b, we can apply a linear transformation of vectors

u = (m1, . . . ,mn) 7→ (c1, . . . , cn) = uA + v,

for some invertible matrix A = (aij) and vector v = (b1, . . . , bn). As before we numerically
encode an alphabet {A, B . . . , Z} as the elements {0, 1, . . . , 25} of Z/26Z. Then each n-tuple
of characters m1m2 . . . mn is identified with the vector u = (m1, m2, . . . ,mn). Note that
matrix multiplication is defined as usual, so that

cj = (
n∑

i=1

miaij) + bj,

with the result interpretted modulo 26 as an element of Z/26Z.

12 Chapter 2. Classical Cryptography

As a special case, consider 2-character polygrams, so that

AA = (0, 0), . . . , ZY = (25, 24), ZZ = (25, 25).

The matrix A given by (
1 8
21 3

)
and vector v = (13, 14) defines a map

AA = (0, 0) 7→ (13, 14) = NO
...

...
ZY = (25, 24) 7→ (18, 23) = WA

ZZ = (25, 25) 7→ (18, 23) = RD

which is a simple substitution on the 2-character polygrams. Note that the number of
affine ciphers is much less than all possible substutions, but grows exponentially in the
number n of characters.

2.2 Transposition Ciphers

Recall that a substitution cipher permutes the characters of the plaintext alphabet, or
may, more generally, map the plaintext characters into a different ciphertext alphabet. In
a transposition cipher, the symbols of the plaintext remain the same unchanged, but their
order is permuted by a permutation of the index positions. Unlike substitution ciphers,
transposition ciphers are block ciphers.

The relation between substitution ciphers and transposition ciphers is illustrated in Ta-
ble 2.1. The characters and their positions of the plaintext string ACATINTHEHAT appear in
a graph with a character axis c and a position index i for the 12 character block 1 ≤ i ≤ n.
We represented as a graph a substitution cipher (with equal plaintext and ciphertext al-
phabets) is realised as a permutation of the rows of the array, while a transposition cipher
is realised by permuting the columns in fixed size blocks, in this case 12.

Permutation groups

The symmetric group Sn is the set of all bijective maps from the set {1, . . . , n} to itself,
and we call an elements π of Sn a permutation. We denote the n-th composition of π with
itself by πn. As a function write π on the left, so that the image of j is π(j). An element
of Sn is called a transposition if and only if it exhanges exactly two elements, leaving all
others fixed.

2.2. Transposition Ciphers 13

Z
Y
X
W
V
U
T T T T
S
R
Q
P
O
N N
M
L
K
J
I I
H H H
G
F
E E
D
C C
B
A A A A

1 2 3 4 5 6 7 8 9 10 11 12

Table 2.1: Transposition and substitution axes for ACATINTHEHAT

List notation for permutations

The map π(j) = ij can be denoted by [i1, . . . , in]. This is the way, in effect, that we have
described a key for a substitution cipher — we list the sequence of characters in the image
of A, B, C, etc. Although these permutations act on the set of the characters A, . . . , Z rather
than the integers 1, . . . , n, the principle is identical.

Cycle notation and orbit structure

Given a permutation π in Sn there exists a unique orbit decomposition:

{1, . . . , n} =
t⋃

k=1

{πj(ik) : j ∈ Z},

where union can be taken over disjoint sets, i.e. ik is not equal to πj(i`) for any j unless
k = `. The sets {πj(ik) : j ∈ Z} are called the orbits of π, and the cycle lengths of π are
the sizes d1, . . . , dt of the orbits.

Asociated to any orbit decomposition we can express an element π as

π =
(
i1, π(i1), . . . , π

d1−1(i1)
)
· · ·
(
it, π(it), . . . , π

dt−1(it)
)

14 Chapter 2. Classical Cryptography

Note that if dk = 1, then we omit this term, and the identity permutation can be written
just as 1. This notation gives more information about the permutation π and is more
compact for simple permutations such as transpositions.

Simple columnar transposition

A classical example of a transposition cipher is an (r, s)-simple columnar transposition.
In this cryptosystem the plaintext is written in blocks as r rows of fixed length s. The
ciphertext is read off as the columns of this array. Suppose we begin with the plaintext:

I was riding on the Mayflower
When I thought I spied some land
I yelled for Captain Arab
I have yuh understand
Who came running to the deck
Said, "Boys, forget the whale
Look on over yonder
Cut the engines
Change the sail
Haul on the bowline"
We sang that melody
Like all tough sailors do
When they are far away at sea

Stripped to our plaintext alphbet and written in lines of 36 characters each, we have the
plaintext:

IWASRIDINGONTHEMAYFLOWERWHENITHOUGHT
ISPIEDSOMELANDIYELLEDFORCAPTAINARABI
HAVEYUHUNDERSTANDWHOCAMERUNNINGTOTHE
DECKSAIDBOYSFORGETTHEWHALELOOKONOVER
YONDERCUTTHEENGINESCHANGETHESAILHAUL
ONTHEBOWLINEWESANGTHATMELODYLIKEALLT
OUGHSAILORSDOWHENTHEYAREFARAWAYATSEA

Reading off the columns, we obtain the following ciphertext under the columnar transpo-
sition cipher:

2.2. Transposition Ciphers 15

IIHDYOOWSAEONUAPVCNTGSIEKDHHREYSEESIDUARBA
DSHICOIIOUDUWLNMNBTLOGEDOTIROLEYHNSNARSEED
TNSFEWOHDTONEWEIARGSHMYNGIAEAEDENNNYLWTEGT
FLHTSTHLEOHCHEODCEHAYWFAWATAEOMHNMRRREAGEE
WCRLELFHAUETOAEPNLHDRNTNOEYAIAIOSLWTINKAIA
HNGOIKYOATNLEAUROOHATGATVALSHBHEULETIERLTA

Simple columnar transpositions impose unnecessarily restrictive conditions on the form of
the transposition, but were widely used as a component of ciphers used until the 1950’s.
More general columnar transpositions allow for permuations of the columns before reading
them off.

General transposition ciphers

A general transposition cipher of block length m allows m! different permuations. For
m = 7, this is a mere 5040 permutations, but for block length 36, this gives

371993326789901217467999448150835200000000

possibilities. One such permutation, given in cycle notation, is:

(1, 12, 5, 36, 30, 31, 4, 28, 33, 22, 26, 17, 10, 16, 14, 23, 18, 35, 32)
(2, 9, 3, 25, 15, 7, 21, 6, 29, 34, 11, 27, 19, 24)(8, 13, 20).

Applied to the above ciphertext this gives a the ciphertext

NNWNTIOTAMERLEDHGHRIIHYWEAFUGHSIWOOT
AMCTIADNPYPEEOSDEBRODALSIELRANIIFLAI
RNRNEICSVNNYOMHTDHEUUUWAADHOTGEHAETN
SBLOROEFCGLSHHIOOEADAETERETOVOKDWYNK
ETEELSHENIHECNCNTUGURTEOGNSHAIDYAHLA
ELLYTLAWTADEHMOEILEWBOGNSNTALKHOTNEI
DOFAAWYOGERSERIWREELAATUHNHTSYHOASAA

Despite the large number of possible permutations, the unmasked stucture of the plaintext
permits an adversary to decipher transposition ciphertext.

16 Chapter 2. Classical Cryptography

Exercises

Substitution ciphers

Exercise 2.1 Determine the number of possible keys for the affine substitution ciphers. Is
this sufficient to have a secure cryptosystem?

Transposition ciphers

Exercise 2.2 Show that for every π in Sn, there exists an positive integer m, such that
πm is the identity map, and such that m divides n!. The smallest such m is called the order
of π.

Exercise 2.3 How many transpositions exist in Sn? Describe the elements of order 2 in
Sn and determine their number.

Exercise 2.4 Show that every element of Sn can be expressed as the composition of at
most n transpositions.

Exercise 2.5 What is the order of a permutation with cycle lengths d1, . . . , dt? How does
this solve the previous exercise concerning the order of a permutation?

Exercise 2.6 What is the block length m of an (r, s)-simple columnar transposition? De-
scribe the permutation. Hint: it may be easier to describe the permutation if the index set
is {0, . . . ,m− 1}.

Exercise 2.7 Show that the (r, r)-simple columnar transposition has order 2. What is the
order of the cipher for (r, s) = (3, 5)? Determine the permutation in cycle notation for
this cipher. Determine the permutation in cycle notation for the (7, 36)-simple columnar
transposition used in this chapter.

2.2. Transposition Ciphers 17

18

CHAPTER

THREE

Elementary Cryptanalysis

The most direct attack on a cryptosystem is an exhaustive key search attack. The key
size therefore provides a lower bound on the security of a cryptosystem. As an example
we compare the key sizes of several of the cryptosystems we have introduced so far. We
assume that the alphabet for each is the 26 character alphabet.

Substitution ciphers:
Simple substitution ciphers: 26!
Affine substitution ciphers: ϕ(26) ·26 = 12 ·26 = 312
Translation substitution ciphers: 26

Transposition ciphers:
Transposition ciphers (of block length m): m!

Enigma :
Rotor choices (3 of 5): 60
Rotor positions: 263 = 17576
Plugboard settings: 105578918576
Total combinations: 111339304373506560

The size of the keyspace is a naive measure, but provides an upper bound on the security
of a cryptosystem. This measure ignores any structure, like character frequencies, which
might remain intact following encryption.

3.1 Classification of Cryptanalytic Attacks

We do not consider enumeration of all keys a valid cryptanalytic attack, since no well-
designed cryptosystem is susceptible to such an approach. The types of legitimate attacks
which we consider can be classified in three categories: ciphertext-only attack, known
plaintext attack, and chosen plainext attack.

19

Ciphertext-only Attack

The cryptanalyst intercepts one or more messages all encoded with the same encryption
algorithm.

Goal: Recover the original plaintext or plaintexts, to discover the deciphering key or find
an algorithm for deciphering subsequent messages enciphered with the same key.

Known Plaintext Attack

The cryptanalyst has access to not only the ciphertext, but also the plaintext for one or
more of the messages.

Goal: Recover the deciphering key or find an algorithm for deciphering subsequent mes-
sages (or the remaining plaintext) enciphered which use the same key.

Chosen Plainext Attack

The cryptanalyst has access to ciphertext for which he or she specified he plaintext.

Goal: Recover the discover the deciphering key or find an algorithm for deciphering sub-
sequent messages enciphered with the same key.

For the remainder of the chapter we consider cryptanalytic techniques employed against
classical cryptosystems for ciphertext-only attacks.

3.2 Cryptanalysis by Frequency Analysis

Given a sample of an English language newspaper text (stripped of spaces, punctuation and
other extraneous characters) the following gives the approximate percentage of occurrences
of each character.

A B C D E F G H I J K L M

7.3 0.9 3.0 4.4 13 2.8 1.6 3.5 7.4 0.2 0.3 3.5 2.5

N O P Q R S T U V W X Y Z

7.8 7.4 2.7 0.3 7.7 6.3 9.3 2.7 1.3 1.6 0.5 1.9 0.1

The relative frequencies can change according to subject matter and style of writing, but
it is still possible to pick out those characters with a high frequency of occurence and those
which are rare:

High frequency: {E, I, O, A} (vowels) Low frequency: {J, K, Q, X, Z}
{T, N, R, S} (consonants)

20 Chapter 3. Elementary Cryptanalysis

Examples of Cryptanalysis

Let’s begin with the substitution ciphertext constructed previously:

QWMMPQDVKUVFDTXJQVDBOPIDUHDQQUGDLAMWJGXBGURRBPBURMKULDVX
OOKUJUOVDJQDGBWHLDJQQMUODQUBIMWBOVWUVXPBUBIOKUBGXBGURROK
UJUOVDJQVPWMMDJOUQDVKDBVKDCDAQXEDFKXOKLPWBIQVKDQDOWJXVAP
TVKDQAQVDHXQURMKULDVXOOKUJUOVDJQVKDJDTPJDVKDVPVURBWHLDJP
TCDAQXQPTDBPJHPWQQXEDBDNDJVKDRDQQFDFXRRQDDVKUVQXHMRDQWLQ
VXVWVXPBXQNDJAQWQODMVXLRDVPOJAMVUBURAVXOUVVUOCQ

We find the following character counts, scaled to that of a 1000 character input text.

A 24.0964
B 54.2169
C 9.0361
D 129.5181
E 6.0241
F 12.0482
G 18.0723
H 18.0723
I 12.0482

J 54.2169
K 51.2048
L 24.0964
M 36.1446
N 6.0241
O 57.2289
P 45.1807
Q 96.3855
R 39.1566

S 0
T 15.0602
U 81.3253
V 99.3976
W 39.1566
X 57.2289
Y 0
Z 0

The distributions look like a frequency preserving substitution cipher. We guess that
the enciphering takes E 7→ D and T 7→ V or T 7→ Q. The most frequent characters are D, V,
Q, V, U, O, J, K, B and E, N, S, Y, Z are of lowest frequency.

Equating high frequency and low frequency characters, we might first guess

{E, I, O, A, T, N, R, S} 7→ {D, V, Q, U, O, J, K, B}

and
{J, K, Q, X, Z} 7→ {E, N, S, Y, Z}

How would you go about reconstructing the entire text?

Index of Coincidence

In the 1920’s William Friedman introduced the index of coincidence as a measure of the
variation of character frequencies in text from a uniform distribution. The index of co-
incidence of a text space (e.g. that of all plaintext or ciphertext) is defined to be the
probability that two randomly chosen characters are equal. In a language over an alphabet

3.2. Cryptanalysis by Frequency Analysis 21

of size n, suppose that pi is the probability of a random character is the i-th character in
a string of length N . Then, in the limit as the string length N goes to infinity, the index
of coincidence in that language is:

n∑
i=1

p2
i .

Over an alphabet of 26 characters, the coincidence index of random text is

26∑
i=1

(1/26)2 = 1/26 ∼= 0.0385.

For English text, the coincidence index is around 0.0661. For a finite string of length N ,
we the index of coincidence is defined to be:∑n

i=1 ni(ni − 1)

N(N − 1)
,

where ni is the number of occurrences of the i-th character in the string.

Theorem 3.1 The expected index of coincidence of a ciphertext of length N , output from
a period m cipher, which is defined by m independent substitutions ciphers at each position
in arithmetic progression the i + jm, is

1

m

(
N −m

N − 1

)
iX +

(m− 1)

m

(
N

N − 1

)
in,

where iX is the index of coincidence of the space X, the size of the alphabet is n, and and
in = 1/n is the index of coincidence of random text in that space.

Example 3.2 Consider the ciphertext enciphered with a Vigenère cipher:

OOEXQGHXINMFRTRIFSSMZRWLYOWTTWTJIWMOBEDAXHVHSFTRIQKMENXZ
PNQWMCVEJTWJTOHTJXWYIFPSVIWEMNUVWHMCXZTCLFSCVNDLWTENUHSY
KVCTGMGYXSYELVAVLTZRVHRUHAGICKIVAHORLWSUNLGZECLSSSWJLSKO
GWVDXHDECLBBMYWXHFAOVUVHLWCSYEVVWCJGGQFFVEOAZTQHLONXGAHO
GDTERUEQDIDLLWCMLGZJLOEJTVLZKZAWRIFISUEWWLIXKWNISKLQZHKH
WHLIEIKZORSOLSUCHAZAIQACIEPIKIELPWHWEUQSKELCDDSKZRYVNDLW
TMNKLWSIFMFVHAPAZLNSRVTEDEMYOTDLQUEIIMEWEBJWRXSYEVLTRVGJ
KHYISCYCPWTTOEWANHDPWHWEPIKKODLKIEYRPDKAIWSGINZKZASDSKTI
TZPDPSOILWIERRVUIQLLHFRZKZADKCKLLEEHJLAWWVDWHFALOEOQW

The coincidence index of this text is 0.0439. This would suggest a period of approximately
5. We will see that this is a bad estimate. Note that this doesn’t disprove the theorem, it
just shows that the statistical errors are too great and that we would need a much larger
sample size to converge to this theoretical expectation, or that the substitutions employed
were not independent.

22 Chapter 3. Elementary Cryptanalysis

Exercise. Explain why ciphertext for a particular key need not follow the behavior pre-
dicted by the theorem.

Decimation of Sequences

For a sequence S = s1s2s3 . . . and positive integers m and k such that 1 ≤ k ≤ m,
we denote the k-th decimation of period m as the sequence sksm+ks2m+k If S is a
ciphertext string (a sequence of characters in the alphabet A′) enciphered by a cipher with
period m, then the decimations of period m capture the structure of the cipher without
periods.

Example 3.3 If we take the previous ciphertext and average the coincidence indices of
each of the k-the decimated sequences of period m, we find:

m CI
1 0.0439
2 0.0438
3 0.0435
4 0.0434
5 0.0421

m CI
6 0.0424
7 0.0442
8 0.0414
9 0.0438

10 0.0407

m CI
11 0.0653
12 0.0408
13 0.0445
14 0.0418
15 0.0423

From this table, the correct period, 11, is obvious.

Exercise. What do you expect to see in such a table if the period is composite? Hint:
consider the period of the decimated sequence, and apply the theorem.

Kasiski method

The Prussian military officer Friedrich Kasiski made the following observation on the Vi-
genère cipher in 1863. If a frequently occurring pattern, such as THE is aligned at the
same position with respect to the period, then the same three characters will appear in
the ciphertext, at a distance which is an exact multiple of m. By looking for frequently
occurring strings in the ciphertext, and measuring the most frequent divisors of the dis-
placements of these strings, it is often possible to identify the period, hence to reduce to a
simple substitution.

Example 3.4 Returning to the ciphertext of Example 3.2, we find that the three substrings
SYE, ZKZ, and KZA each occur three times. The positions of these occurrences are:

SYE: 122, 196, 383
ZKZ: 252, 439, 472
KZA: 253, 440, 473

3.2. Cryptanalysis by Frequency Analysis 23

Note that ZKZ and KZA are substrings of the four character string ZKZA appearing three
times in the ciphertext! Moreover two of the occurences of the string SYE appear as sub-
strings of the longer string SYEV.

Now we look for common divisors of the differences between the positions of the frequently
occurring substrings.

196− 122 = 2 · 37
383− 196 = 11 · 17
383− 122 = 32 · 29

439− 252 = 11 · 17
472− 439 = 3 · 11
472− 252 = 22 · 5 · 11

We see that our guess of 11 for the period appears as a divisor of the distances between
each of the occurrences of the common four character substring, and divides one of the
differences of the other three string characters.

Exercise. If 11 is the correct period, why does it not appear in all of the differences above?
Which of the occurences can be attributed as random?

3.3 Breaking the Vigenère Cipher

Now that we have established that the period is 11, we can write the ciphertext in blocks
and look at the strings which occur frequently at the same position within blocks.

1 2 3 4
1 OOEXQGHXINM FRTRIFSSMZR WLYOWTTWTJI WMOBEDAXHVH

2 SFTRIQKMENX ZPNQWMCVEJT WJTOHTJXWYI FPSVIWEMNUV

3 WHMCXZTCLFS CVNDLWTENUH SYKVCTGMGYX SYELVAVLTZR

4 VHRUHAGICKI VAHORLWSUNL GZECLSSSWJL SKOGWVDXHDE

5 CLBBMYWXHFA OVUVHLWCSYE VVWCJGGQFFV EOAZTQHLONX

6 GAHOGDTERUE QDIDLLWCMLG ZJLOEJTVLZK ZAWRIFISUEW

7 WLIXKWNISKL QZHKHWHLIEI KZORSOLSUCH AZAIQACIEPI

8 KIELPWHWEUQ SKELCDDSKZR YVNDLWTMNKL WSIFMFVHAPA

9 ZLNSRVTEDEM YOTDLQUEIIM EWEBJWRXSYE VLTRVGJKHYI

10 SCYCPWTTOEW ANHDPWHWEPI KKODLKIEYRP DKAIWSGINZK

11 ZASDSKTITZP DPSOILWIERR VUIQLLHFRZK ZADKCKLLEEH

12 JLAWWVDWHFA LOEOQW

Some of the longer strings which appear more than one at distances which are a multiple
of 11 are given in the following table. The first column indicates the number of times the
full string appears.

24 Chapter 3. Elementary Cryptanalysis

1 2 3 4 5 6 7 8 9 10 11
3 Z A Z K

2 N D L W T

2 P W H W E

2 V S Y E

2 L W C

Now let’s guess what the translations are at each of the periods. The following is a table
of common characters in each of the 11 decimations of period 11, organized by the numbers
of their appearances.

i 9 8 7 6 5
1 S,W,Z V

2 L A

3 F T

4 D O R

5 L I,W
6 W L

7 T H W

8 I,S,X E

9 E H

10 Z E,Y
11 I

These characters are not themselves the characters in the key, but if we assume that
one of these frequently occuring characters is the image of E, then we can make a guess
at the key. The table below gives the enciphering characters which take the corresponding
character in the previous table to E.

i 9 8 7 6 5
1 M,I,F J

2 T E

3 Z L

4 B Q N

5 T W,I
6 I T

7 L X I

8 W,M,H A

9 A X

10 F A,G
11 W

3.3. Breaking the Vigenère Cipher 25

Checking possible keys, the partial key I****IL*A*W gives the following text which is
suggestive of English:

1 2 3 4
1 W****OS*I*I N****ND*M*N E****BE*T*E E****LL*H*D

2 A****YV*E*T H****UN*E*P E****BU*W*E N****EP*N*R

3 E****HE*L*O K****EE*N*D A****BR*G*T A****IG*T*N

4 D****IR*C*E D****TH*U*H O****AD*W*H A****DO*H*A

5 K****GH*H*W W****TH*S*A D****OR*F*R M****YS*O*T

6 O****LE*R*A Y****TH*M*C H****RE*L*G H****NT*U*S

7 E****EY*S*H Y****ES*I*E S****WW*U*D I****IN*E*E

8 S****ES*E*M A****LO*K*N G****EE*N*H E****NG*A*W

9 H****DE*D*I G****YF*I*I M****EC*S*A D****OU*H*E

10 A****EE*O*S I****ES*E*E S****ST*Y*L L****AR*N*G

11 H****SE*T*L L****TH*E*N D****TS*R*G H****SW*E*D

12 R****DO*H*W T****E

3.4 Cryptanalysis of Transposition Ciphers

A transposition cipher can easily be recognized by an analysis of character frequencies. It-
erating transposition ciphers can greatly increase security, but as with substitution ciphers,
almost all such ciphers can be broken. Although many modern cryptosystems incorporate
transposition ciphers, the operation on large blocks has the disadvantage of requiring a lot
of memory.

3.5 Statistical Measures

So far we have focused on Vigenère ciphers, and their reduction to monoalphabetic sub-
stitutions. Here we show how to use SAGE to complete the final step of breaking these
ciphers. Recall that the reduction to monoalphabetic substitution is done by the process of
decimation, by which we lose all 2-character frequency structure of the language. A more
sophisticated approach will be necessary for breaking more complex ciphers.

Correlation. We first introduce the concept of correlation of two functions. Let X and Y
be discrete random variables on a space Ω of n symbols, with values (x1, x2, . . . , xn) and
(y1, y2, . . . , yn), respectively. For simplicity we assume that all n symbols of Ω occur with
equal likihood. We define the correlation of the two sequences to be

Corr(X, Y) =

∑n
i=1(xi − µ(X))(yi − µ(Y))

σ(X)σ(Y)

26 Chapter 3. Elementary Cryptanalysis

and where µ(X) and µ(Y) are the respective means of X and Y:

µ(X) =
1

n

n∑
i=1

xi, µ(Y) =
1

n

n∑
i=1

yi,

and the terms in the denomiators are:

σ(X) =
(n∑

i=1

(xi − µ(X))2
)1/2

, σ(Y) =
(n∑

i=1

(yi − µ(Y))2
)1/2

,

called the standard deviations of X and Y. The correlation of two sequences will be a
real number between 1 and −1, which measures the linear relation between two sequences.
When the random variables X and Y are probability functions, the means each reduce to
1/n (on a probability space Ω with equal probabilities).

Exercises

One important measure of a cryptographic text is the coincidence index. For random text
(of uniformly distributed characters) in an alphabet of size 26, the coincidence index is
approximately 0.0385. For English text, this value is closer to 0.0661. Therefore we should
be able to pick out text which is a simple substitution or a transposition of English text,
since the a coincidence index remains unchanged.

The SAGE crypto string functions

coincidence index and frequency distribution

provide functionality for analysis of the ciphertexts in the exercises. Moreover, for a SAGE
string s the k-th decimation of period m for that string is given by s[k::m] (short for
s[k:len(s):m]).

Exercise 3.1 Complete the deciphering of the Vigenère ciphertext of Section 3.3 . What
do you note about the relation between the text and the enciphering or deciphering key? A
useful tool for this task could be the following javascript application for analyzing Vigenère
ciphers:

http://echidna.maths.usyd.edu.au/ kohel/tch/Crypto/vigenere.html

Consider those ciphertexts from previous exercises which come from a Vigenère cipher, and
determine the periods and keys for each of the ciphertext samples.

Exercise 3.2 For each of the cryptographic texts from the course web page, compute the
coincidence index of the ciphertexts. Can you tell which come from simple substitution or
transposition ciphers? How could you distinguish the two?

3.5. Statistical Measures 27

Exercise 3.3 For each of the cryptographic texts from the course web page, for various
periods extract the substrings of im + j-th characters. For those which are not simple
substitutions, can you identify a period?

Exercise 3.4 For each of the ciphertexts which you have reduced to simple substitutions,
consider the frequency distribution of the simple substitution texts. Now recover the keys
and original plaintext.

Exercise 3.5 (Correlations of sequence translations) Suppose that pt and ct are
plaintext and ciphertext whose frequency distributions are to be compared. Assume we
have defined:

sage: S = AlphabeticStrings()
sage: E = SubstitutionCryptosystem(S)

The following code finds the correlations between the affine translations of two sequences.

sage: X = pt.frequency_distribution()
sage: Z = ct.frequency_distribution()
sage: Y = DiscreteRandomVariable(X,Z.function())
sage: for j in range(26):
... K = S([(j+k)%26 for k in range(26)])
... print "%s: %s" % (j, X.translation_correlation(Y,E(K)))

What does frequency distribution return, and what are the ciphers e constructed in the
for loop? What does translation correlation return? Note that Ymust be created as a
discrete random variable on the probability space Xin order to compute their correlations.

Exercise 3.6 (Breaking Vigenère ciphers) A Vigenère cipher is reduced to an trans-
lation cipher by the process of decimation. How does the above exercise solve the problem
of finding the affine translation?

Apply this exercise to the Vigenére ciphertext sample cipher01.txt from the course web
page, and the break the enciphering. Recall that you will have to use the decimation (by
ct[i::m]) and coincidence index to first reduce a Vigenère ciphertext to the output of
a monoalphabetic cipher.

28 Chapter 3. Elementary Cryptanalysis

sage: X = frequency_distribution(pt)
sage: m = 11
sage: r = 0.75
sage: match = [[] for i in range(m)]
sage: for i in range(m):
... Z = frequency_distribution(ct[i::m])
... Y = DiscreteRandomVariable(X,Z.function())
... for j in range(26):
... K = S([(j+k)%26 for i in range(26)])
... corr = X.translation_correlation(Y,E(K))
... if corr > r:
... match[i].append(j)

Exercise 3.7 (Breaking substitution ciphers) Suppose that rather than an affine
translation, you have reduced to an arbitrary simple substitution. We need to undo an
arbitrary permutation of the alphabet. For this purpose we define maps into Euclidean
space:

1. A → A2 → R2 defined by

x 7−→ xx 7−→
(
P (x), P (xx)

)
.

2. A → A2 → R3 defined by

x 7−→ xy 7−→
(
P (x), P (xy | y), P (yx | y)

)
,

for some fixed character y.

See the document

http://echidna.maths.usyd.edu.au/ kohel/tch/Crypto/digraph frequencies.pdf

for standard vectors for the English language.

Exercise 3.8 (Breaking transposition ciphers) In order to break transposition ci-
phers it is necessary to find the period m, of the cipher, and then to identify positions
i and j within each block 1+km ≤ i, j ≤ (k+1)m which were adjacent prior to the permu-
tation of positions. Suppose we guess that m is the correct period. Then for a ciphertext
sample C = c1c2 . . . , and a choice of 1 ≤ i < j ≤ m, we can form the digraph decimation
sequence cicj, ci+mcj+m, ci+2mcj+2m,

3.5. Statistical Measures 29

Two statistical measures that we can use on ciphertext to determine if a digraph sequence
is typical of the English language are a digraph coincidence index

n∑
x∈A

n∑
y∈A

nxy(nxy − 1)

N(N − 1)

where N is the total number of character pairs, and nxy is the number of occurrences of
the pair xy, and the coincidence discriminant:

∑
x∈A

∑
y∈A

(
nxy

N
−
(∑

z∈A

nxz

N

)(∑
z∈A

nzy

N

))2

.

The first term is the frequency of xy, and the latter is the product over the frequencies of
x as a first character and y as a second character. The coincidence discriminant measures
the discrepancy between the probability space of pairs xy and the product probability space.

What behavior do you expect for the coincidence index and coincidence discriminant of
the above digraph decimation, if i and j were the positions of originally adjacent char-
acters? Test your hypotheses with decimations of “real” English text, using the SAGE
implementations of coincidence index and coincidence discriminant.

Why can we assume that i < j in the digraph sequence? What is the obstacle to extending
these statistical measures from two to more characters?

30 Chapter 3. Elementary Cryptanalysis

CHAPTER

FOUR

Information Theory

Information theory concerns the measure of information contained in data. The security of
a cryptosystem is determined by the relative content of the key, plaintext, and ciphertext.

For our purposes a discrete probability space – a finite set X together with a probability
function on X – will model a language. Such probability spaces may represent the space
of keys, of plaintext, or of ciphertext, and which we may refer to as a space or a language,
and to an element x as a message. The probability function P : X → R is defined to be a
non-negative real-valued function on X such that∑

x∈X

P (x) = 1.

For a naturally occuring language, we reduce to a finite model of it by considering finite
sets consisting of strings of length N in that language. If X models the English language,
then the function P assigns to each string the probability of its appearance, among all
strings of length N , in the English language.

4.1 Entropy

The entropy of a given space with probability function P is a measure of the information
content of the language. The formal definition of entropy is

H(X) =
∑
x∈X

P (x) log2(P (x)−1).

For 0 < P (x) < 1, the value log2(P (x)−1) is a positive real number, and we define
P (x) log2(P (x)−1) = 0 when P (x) = 0. The following exercise justifies this definition.

Exercise. Show that the limit

lim
x→0+

x log2(x
−1) = 0.

31

What is the maximum value of x log2(x) and at what value of x does it occur?

An optimal encoding for a probability space X is an injective map from X to strings over
some alphabet, such that the expected string length of encoded messages is minimized.
The term log2(P (x)−1) is the expected bit-length for the encoding of the message x in an
optimal encoding, if one exists, and the entropy is the expected number of bits in a random
message in the space.

As an example, English text files written in 8-bit ASCII can typically be compressed to
40% of the original size without loss of information, since the structure of the language
itself encodes the remaining information. The human genome encodes data for producing
sequences of 20 different amino acid, each with a triple of letters in the alphabet {A, T, C, G}.
The 64 possibile “words” (codons in genetics) includes more than 3-fold redundancy, in
specifying one of these 20 amino acids. Moreover, huge sections of the genome are repeats
such as AAAAAA . . . , whose information can be captured by an expression like An. More
accurate models for the languages specified by English or by human DNA sequences would
permit greater compression rates for messages in these languages.

Example 4.1 Let X be the probability space {A, B, C} of three elements, and assume that
P (A) = 1/2, P (B) = 1/4, and P (C) = 1/4. The entropy of the space is then

P (A) log2(2) + P (B) log2(4) + P (C) log2(4) = 1.5.

An optimal encoding is attained by the encoding of A with 0, B with 10, and C with 11.
With this encoding one expects to use an average of 1.5 bits to transmit a message in this
encoding.

The following example gives methods by which we might construct models for the English
language.

Example 4.2 (Empirical models for English) First, choose a standard encoding —
this might be an encoding as strings in the set {A, . . . , Z} or as strings in the ASCII alphabet.
Next, choose a sample text. The text might be the complete works of Shakespeare, the short
story Black cat of Edgar Allan Poe, or the U.S. East Coast version of the New York Times
from 1 January 2000 to 31 January 2000. The following are finite probability spaces for
English, based on these choices:

1. Let X be the set of characters of the encoding and set P (c) to be the probability that
the character c occurs in the sample text.

2. Let X be the set of character pairs over the encoding alphabet and set P (x) to be the
probability that the pair x = c1c2 occurs in the sample text.

3. Let X be the set of words in the sample text, and set P (x) to be the probability that
the word x occurs in the sample text.

32 Chapter 4. Information Theory

For each of these we can extend our model for the English language to strings of length n.

How well do you think each of these model the English language?

4.2 Rate and Redundancy

Let X be a discrete probability space. We define the rate of X to be

r(X) =
H(X)

log2(|X|)
,

and the redundancy to be 1 − r(X). The redundancy in a language derives from the
structures such as character frequency distributions, digram frequency distributions (the
probabilities of ordered, adjacent character pairs), and more generally n-gram frequency
distributions. Global structures of a natural language such as vocabulary and grammar
rules determine yet more structure, adding to the redundancy of the language.

4.3 Conditional Probability

We would now like to have a concept of conditional probability for cryptosystems. Let E
be a cryptosystem, M a plaintext space, K a key space, and C a ciphertext space. For a
symmetric key system the space of plaintext and ciphertext coincide, but the probability
distributions on them may differ in the context of the cryptosystem.

We use P for both the probability function on the plaintext space M and on K. We can
now define a probability function on C relative to the cryptosystem E:

P (y) =
∑
K∈K

P (K)
∑
x∈M

EK(x)=y

P (x).

We can now define P (x, y), for x ∈ M and y ∈ C to be the probability that the pair
(x, y) appears as a plaintext–ciphertext pair. Assuming the independence of plaintext and
key spaces, we can define this probability as:

P (x, y) =
∑
K∈K

EK(x)=y

P (K)P (x).

x and y are said to be independent if P (x, y) = P (x)P (y). For ciphertext y and plaintext
x, define the conditional probability P (y|x) by

P (y|x) =

P (x, y)
P (x)

if P (x) 6= 0

0 if P (x) = 0

4.2. Rate and Redundancy 33

4.4 Conditional Entropy

We can now define the conditional entropy H(M|y) of the plaintext space with respect to
a given ciphertext y ∈ C.

H(M|y) =
∑
x∈M

P (x|y) log2(P (x|y)−1)

The conditional entropy H(M|C) of a cryptosystem (more precisely, of the plaintext with
respect to the ciphertext) as an expectation of the individual conditional entropies:

H(M|C) =
∑
y∈C

P (y)H(M|y)

This is sometimes referred to as the equivocation of the plaintext space M with respect to
the ciphertext space C.

4.5 Perfect secrecy and one-time pads

Perfect Secrecy. A cryptosystem is said to have perfect secrecy if the entropy H(M)
equals the conditional entropy H(M|C).

Let K = k1k2 . . . be a key stream of random bits, and let M = m1m2 . . . be the plaintext
bits. We define a ciphertext C = c1c2 . . . by

ci = mi ⊕ ki,

where ⊕ is the addition operation on bits in Z/2Z. In the language of computer science,
this is the xor operator:

0⊕ 0 = 0, 1⊕ 0 = 1,
0⊕ 1 = 1, 1⊕ 1 = 0.

In general such a cryptosystem is called the Vernam cipher. If the keystream bits are
generated independently and randomly, then this cipher is called a one-time pad.

Note that neither the Vernam cipher nor the one-time pad has to be defined with respect
to a binary alphabet. The bit operation xor can be replaced by addition in Z/nZ, where
n is the alphabet size, using any bijection of the alphabet with the set {0, . . . , n− 1}.

Perfect secrecy of one-time pads

Recall that P (x|y) is defined to be P (x|y) = P (x, y)/P (y) if P (y) 6= 0 and is zero otherwise.
If M is the plaintext space and C the ciphertext space (with probability function defined

34 Chapter 4. Information Theory

in terms of the cryptosystem), then the condidtional entropy H(M|C) is defined to be:

H(M|C) =
∑
y∈C

P (y)H(M|y)

=
∑
y∈C

P (y)
∑
x∈M

P (x|y) log2(P (x|y)−1)

=
∑
y∈C

∑
x∈M

P (x, y) log2(P (x|y)−1).

If for each x ∈ M and y ∈ C the joint probability P (x, y) is equal to P (x)P (y) (i.e. the
plaintext and ciphertext space are independent) and thus P (x|y) = P (x), then the above
expression simplifies to:

H(M|C) =
∑
x∈M

∑
y∈C

P (x)P (y) log2(P (x)−1)

=
(∑

y∈C

P (y)
)∑

x∈M

P (x) log2(P (x)−1)

=
∑
x∈M

P (x) log2(P (x)−1) = H(M).

Therefore the cryptosystem has perfect secrecy.

Entropy of the key space

It can be shown that perfect secrecy (or unconditional security) requires the entropy H(K)
of the key space K to be at least as large as the entropy H(M) of the plaintext space
M. If the key space is defined to be the set of N -bit strings with uniform distribution,
then the entropy of K is N , and this is the maximum entropy for a space of N -bit strings
(see exercise). This implies that in order to achieve perfect secrecy, the number of bits of
strings in the key space should be at least equal the entropy H(M) of the plaintext space.

Exercises

In order to understand naturally occurring languages, we consider the models for finite
languages X consisting of strings of fixed finite length N together with a probability func-
tion P which models the natural language. In what follows, for two strings x and y we
denote their concatenation by xy.

Exercise 4.1 Show that N is the maximum entropy for a probability function on bit strings
of length N .

4.5. Perfect secrecy and one-time pads 35

Exercise 4.2 Show that the rate of a uniform probability space is 1 and that this is the
maximal value for any probability space.

Exercise 4.3 For a given cryptosystem, show that the definition

P (y) =
∑
K∈K

P (K)
∑
x∈M

EK(x)=y

P (x).

determines a probability function on the ciphertext space. Then verify the equalities:

P (y) =
∑
x∈M

P (x, y), and P (x) =
∑
y∈C

P (x, y).

Exercise 4.4 Consider the language of 1-character strings over {A, B, C, D} with associated
probabilities 1/3, 1/12, 1/4, and 1/3. What is its corresponding entropy?

Exercise 4.5 Consider the language X2 of all strings of length 2 in {A, B, C, D} defined by
the probability function of Exercise 1 and 2-character independence: P (xy) = P (x)P (y).
What is the entropy of this language?

Exercise 4.6 Let M be the strings of length 2 over {A, B, C, D} with the following frequency
distribution:

P (AA) = 5/36
P (AB) = 1/36
P (AC) = 7/72
P (AD) = 5/72

P (BA) = 0
P (BB) = 1/144
P (BC) = 1/48
P (BD) = 1/18

P (CA) = 1/12
P (CB) = 1/48
P (CC) = 1/16
P (CD) = 1/12

P (DA) = 1/9
P (DB) = 1/36
P (DC) = 5/72
P (DD) = 1/8

Show that the 1-character frequencies in this language are the same as for the language in
Exercise 2.

Exercise 4.7 Do you expect the entropy of the language of Exercise 3 to be greater or less
than that of Exercise 2? What is the entropy of each language?

Exercise 4.8 Consider the infinite language of all strings over the alphabet {A}, with
probability function defined such that P (A . . . A) = 1/2n, where n is the length of the string
A . . . A. Show that the entropy of this language is 2.

36 Chapter 4. Information Theory

CHAPTER

FIVE

Block Ciphers

Data Encryption Standard

The Data Encryption Standard, or DES, is one of the most important examples of a
Feistel cryptosystem. DES was the result of a contest set by the U.S. National Bureau
of Standards (now called the NIST) in 1973, and adopted as a standard for unclassified
applications in 1977.

The winning standard was developed at IBM, as a modification of the previous system
called LUCIFER. The DES is widely used for encryption of PIN numbers, bank transac-
tions, and the like. DES is also specified as an Australian banking standard.

The DES is an example of a Feistel cipher, which operates on blocks of 64 bits at a time,
with an input key of 64 bits. Every 8th bit in the input key is a parity check bit which
means that in fact the key size is effectively reduced to 56 bits.

Advanced Encryption Standard

In 1997, the NIST called for submissions for a new standard to replace the aging DES.
The contest terminated in November 2000 with the selection of the Rijndael cryptosystem
as the Advanced Encryption Standard (AES).

5.1 Product ciphers and Feistel ciphers

As a precursor to the description of DES, we make the following definitions, which describe
various aspects of the constructions, specific properties, and design components of DES.

A product cipher is a composite of two or more elementary ciphers with the goal of pro-
ducing a cipher which is more secure that any of the individual components. A substitution-
permutation network is a product cipher composed of stages, each involving substitutions
and permutations, in which the blocks can be partitioned into smaller blocks for sub-
stitutions and recombined with permutations. An iterated block cipher is a block cipher

37

involving the repetition of an internal round function, which may involve a key as input.
Each of the sequential steps is termed a round.

We now describe in more detail an example of an iterated block cipher, called a Feistel
cipher. In a Feistel the input block is of even length 2t, of the form L0R0, and outputs
ciphertext of the form RrLr. For each i such that 1 ≤ i ≤ r, the round map takes Li−1Ri−1

to LiRi, where Li = Ri−1 and Ri = Li−1 ⊕ fKi
(Ri−1), where fKi

is a cipher which depends
only on an input subkey Ki, which is derived from the cipher key K.

The flow of the Feistel cipher therefore looks something like:

Li−1

PPPPPPPP
Ri−1

fKi

~~}}
}}

}}
}}

}}
}

⊕
��

Li Ri

We can eliminate the Li by defining R−1 = L0, so that the input is R−1R0, and the round
operations are of the form Ri = Ri−2 ⊕ fKi

(Ri−1), in which case the flow diagram looks
like:

tt

Ri−2

fKi−1

uu

⊕
��

Ri−1

fKi

⊕
��

Ri

The final output of the Feistel cipher is the inverted pair RrLr = RrRr−1, which allows the
Feistel cipher to be inverted by running through the same algorithm with the key sequence
reversed.

We now prove that reversing the internal key sequence gives the inverse cipher, by a
comparison of the enciphering and deciphering sequences {Ri} and {R′

j}.
Enciphering. A message M = L0R0 = R−1R0, is enciphered via the iteration:

Ri+1 = Ri−1 ⊕ fKi+1
(Ri), (5.1)

with respect to a key sequence K1, K2, . . . , Kr.

38 Chapter 5. Block Ciphers

Deciphering. Suppose we begin with C = RrRr−1 = R′
−1R

′
0, and a reversed key se-

quence K ′
1, K

′
2 . . . , K ′

r = Kr, Kr−1 . . . , K1. The deciphering follows the same algorithm as
enciphering with respect to this key sequence:

R′
j+1 = R′

j−1 ⊕ fK′
j+1

(R′
j). (5.2)

Setting j = r − i − 1, we have K ′
j+1 = K ′

r−i = Ki+1. We moreover want to show the
relations

R′
−1 = Rr, R′

0 = Rr−1, . . . , R
′
r−1 = R0, R′

r = R−1.

In other words, we want to show that R′
j = Ri whenever i + j = r − 1.

Clearly this relation holds for (i, j) = (r,−1) and (i, j) = (r − 1, 0). Assuming it holds
for j − 1 and j we prove that it holds for j + 1. The deciphering sequence (5.2) can be
replaced by

R′
j+1 = R′

j−1 ⊕ fK′
j+1

(R′
j) = R′

r−i−2 ⊕ fK′
r−i

(R′
r−i−1) = Ri+1 ⊕ fKi+1

(Ri)

The expression Ri+1 = Ri−1⊕fKi+1
(Ri) in (5.2) can be rearranged by adding (= substract-

ing) fKi+1
(Ri) to both sides to get Ri+1⊕fKi+1

(Ri) = Ri−1. We conclude that R′
j+1 = Ri−1,

so the equality holds by induction.

Example 5.1 (Feistel cipher) Let fKi
be the block cipher, of block length 4, which is the

composition of the following maps:

1. The transposition cipher T = [4, 2, 1, 3]; followed by

2. A bit-sum with the 4-bit key Ki; followed by

3. A substitution cipher S applied to the 2-bit blocks

S(00) = 10, S(10) = 01, S(01) = 11, S(11) = 00,

i.e. b1b2b3b4 7→ S(b1b2)S(b3b4).

Let C be the 3-round Feistel cryptosystem of key length 12, where the three internal keys
K1, K2, K3 are the first, second, and third parts of the input key K, and the round function
is fKi

.

Exercise. Compute the enciphering of the text M = 11010100, using the key K =
001011110011.

Feistel ciphers 39

5.2 Digital Encryption Standard Overview

The DES is a 16-round Feistel cipher, which is preceeded and followed by an initial permuta-
tion IP and its inverse IP−1. That is, we start with a message M , and take L0R0 = IP (M)
as input to the Feistel cipher, with output IP−1(R16L16. The 64-bits of the key are used
to generate 16 internal keys, each of 48 bits. The steps of the round function fK is given
by the following sequence, taking on 32-bit strings, expanding them to 48-bit strings, and
applying a 48-bit block function.

1. Apply a fixed expansion permutation E — this function is a permutation the 32 bits
with repetitions to generate a 48-bit block E(Ri).

2. Compute the bit-sum of E(Ri) with the 48-bit key Ki, and write this as 8 blocks
B1, . . . , B8 of 6 bits each.

3. Apply to each block Bj = b1b2b3b4b5b6 a substitution Sj. These substitutions are
specified by S-boxes, which describe the substitution as a look-up table. The output
of the substitution cipher is a 4-bit string Cj, which results in the 32-bit string
C1C2C3C4C5C6C7C8.

4. Apply a fixed 32-bit permutation P to C1C2C3C4C5C6C7C8, and output the result
as fKi

(R).

This completes the description of the round function fKi
.

5.3 Advanced Encryption Standard Overview

In 1997, the NIST called for submissions for a new standard to replace the aging DES.
The contest terminated in November 2000 with the selection of the Rijndael cryptosystem
as the Advanced Encryption Standard (AES).

The Rijndael cryptosystem operates on 128-bit blocks, arranged as 4× 4 matrices with
8-bit entries. The algorithm consists of multiple iterations of a round cipher, each of which
is the composition of the following four basic steps:

• ByteSub transformation. This step is a nonlinear substition, given by a S-box (look-
up table), designed to resist linear and differential cryptanalysis.

• ShiftRow transformation. Provides a linear mixing for diffusion of plaintext bits.

• MixColumn transformation. Provides a similar mixing as in the ShiftRow step.

• AddRoundKey transformation. Bitwise XOR with the round key.

40 Chapter 5. Block Ciphers

The Advanced Encryption Standard allows Rhijndael with key lengths 128, 192, or 256
bits.

The eight-bit byte blocks which form the matrix entries are interpretted as elements of
the finite field of 28 = 256 elements. The finite field is represented by the quotient ring

F28 = F2[X]/(X8 + X4 + X3 + X + 1),

whose elements are polynomials c7X
7 + c6X

6 + c5X
5 + c4X

4 + c3X
3 + c2X

2 + c1X + c0.

We denote by BS, SR, MC, and ARK these four basic steps. There exist corresponding
inverse operations IBS, ISR, IMC, IARK. The flow of the algorithms for enciphering and
deciphering are as follows:

1. ARK

2. BS, SR, MC, ARK

...

3. BS, SR, MC, ARK

4. BS, SR, ARK

1. ARK

2. IBS, ISR, IMC, IARK

...

3. IBS, ISR, IMC, IARK

4. IBS, ISR, ARK

ByteSub. The ByteSub operation is given by the S-box look-up table. Alternatively the
S-box has a description in terms of the structure of the finite fields and linear algebra. Let
x′ be the inverse of x in F28 if x 6= 0 and set x′ = x = 0 otherwise. Then the ByteSub step
is given by x 7→ X6 + X5 + X + 1 + x′A where A is the matrix:

A =

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

5.4 Modes of Operation

Block ciphers can be applied to longer ciphertexts using one of various modes of operation.
We assume that the input is plaintext M = M1M2 . . ., the block enciphering map for given
key K is EK , and the output is C = C1C2 The possible block cipher modes of operation
which we treat are identified by the acronyms ECB, CBC, CFB, and OFB. In each case we
assume that we have a cipher of block length n, with enciphering maps EK and deciphering
maps DK for each key K.

5.4. Modes of Operation 41

5.4.1 Electronic Codebook Mode (ECB)

Electronic codebook mode is the most obvious way to use a block cipher.

Enciphering.

Input:
k-bit key K
n-bit plaintext blocks M = M1M2 . . . Mt.

Algorithm:
Cj = EK(Mj).

Output:
n-bit ciphertext blocks C = C1C2 . . . Ct.

Deciphering.

Input:
k-bit key K
n-bit ciphertext blocks C = C1C2 . . . Ct.

Algorithm:
Mj = DK(Cj).

Output:
n-bit plaintext blocks M = M1M2 . . . Mt.

To explain the name, one should think of this mode as being defined by a lookup table
or codebook. Consider, for example, DES, which operates on 64 bit (binary) strings. These
describe, for instance, 8 characters in 8-bit ASCII (or in 7-bit ASCII with one parity
check bit). For each key K, the codebook contains the ciphertext image of each of these
8 character strings as a lookup table. In order to encipher the message, the electronic
codebook is consulted for the ciphertext encoding of each block. Note that the number of
such hypothetical codebooks is itself enormous – for DES there are 256 possible keys, each
with its own codebook.

We now consider some of the properties and limitations of ECB mode. The categories
below are chosen for comparison with the modes of operations which follow.

Properties:
1. Identical plaintext. The same plaintext block always maps to the same ciphertext
block.
2. Chaining dependencies. Reordering the plaintext blocks induces a reordering of the
same ciphertext blocks.
3. Error propagation. An error in a ciphertext block results in a deciphering error only
in the corresponding plaintext block.

Security Remarks:

42 Chapter 5. Block Ciphers

1. Malicious substitution of a ciphertext block Cj results in substitution of message block
Mj.
2. Blocks Cj do not hide patterns – the same block Mj is enciphered in the same way.

Conclusion. Although commonly used, electronic codebook mode is not recommended
for use if t > 1 with the same key. Security can be improved by inclusion of random
padding bits in each block.

5.4.2 Cipher Block Chaining Mode (CBC)

Cipher block chaining mode involves a vector bit sum operation of the message block with
the previous ciphertext block prior to enciphering. The ciphertext blocks are initialized
with a randomly chosen message which may be transmitted openly, i.e. the security of the
cryptosystem is based on the secrecy of the key, not on the secrecy of initialization vector.

Enciphering.

Input:
k-bit key K
n-bit initialization vector C0

n-bit plaintext blocks M = M1M2 . . . Mt.

Algorithm:
Cj = EK(Cj−1 ⊕Mj).

Output:
n-bit ciphertext blocks C = C0C1 . . . Ct.

Deciphering.

Input:
k-bit key K
n-bit ciphertext blocks C = C0C1 . . . Ct.

Algorithm:
Mj = Cj−1 ⊕DK(Cj).

Output:
n-bit plaintext blocks M = M1M2 . . . Mt.

Properties:
1. Identical plaintext. The same sequence of ciphertext blocks result when the same
key and the same initialization vector are used.
2. Chaining dependencies. The chaining mechanism causes Cj to depend on Cj−1 and
Mj, so enciphering is not independent of reordering.
3. Error propagation. An error in a ciphertext block Cj affects decipherment of Cj and
Cj+1. For a reasonable enciphering algorithm, a single bit error affects 50% of the bits in

Modes of Operation 43

the deciphered plaintext block M ′
j, while the bit error affects only that bit of M ′

j+1.
3. Error recovery. The cryptosystem is said to be self-recovering, in the sense that while
an error in Cj results in incorrectly deciphered plaintext M ′

j and M ′
j+1, the ciphertext Cj+2

correctly deciphers to M ′
j+2 = Mj+2.

5.4.3 Cipher Feedback Mode (CFB)

Cipher feedback mode allows one to process blocks of size r < n at a time. The typical
value for r is 1, while n may be of size 64, using DES.

Enciphering.

Input:
k-bit key K
n-bit initialization vector I1

r-bit plaintext blocks M = M1M2 . . . Mt.

Algorithm:
Cj = Mj ⊕ Lr(EK(Ij)),
Ij+1 = Rn−r(Ij) ||Cj,

where Lr and Rn−r are the operators which take the left-most r-bits and the right-most
n− r-bits, and || is the concatenation operator.

The vector Ij should be thought of as a shift register, a block of n-bits of memory which
stores some state of the algorithm. The formation of Ij+1 is a left-shift by r of this block,
discarding the left-most r bits, with the right-most r bits replaced by Cj.

Deciphering.

Input:
k-bit key K
n-bit initialization vector I1

r-bit ciphertext blocks C = C1C2 . . . Ct.

Algorithm:
Compute I1, . . . , It as in the enciphering algorithm, which can be generated independently
of the deciphered message text, and then compute

Mj = Cj ⊕ Lr(EK(Ij)).

Note that CFB deciphering requires only the block cipher EK , not the inverse block
deciphering map DK .

Properties:
1. Identical plaintext. The same sequence of ciphertext blocks results when the same key
and initialization vector is used. Changing the initialization vector changes the ciphertext.
2. Chaining dependencies. Ciphertext block Cj depends on the previous plaintext

44 Chapter 5. Block Ciphers

blocks Mj−1, . . . ,M1 as well as Mj, so the ciphertext blocks are not reordering independent.
3. Error propagation. An error in Cj affects the decipherment of the next [n/r] plaintext
blocks. The recovered plaintext M ′

j will differ from Mj at exactly the bits for which Cj was
in error. These bit errors will appear in subsequent blocks M ′

j+k at translated positions.
4. Error recovery. Proper deciphering requires the shift register to be correct, for which
the previous [n/r] ciphertext blocks are required. The decipherment is self-recovering from
errors, but only after [n/r] blocks (approximately the same n-bits of the ciphertext block
in error).
5. Throughput. The rate of enciphering and deciphering is reduced by a factor of n/r,
that is, for every r bits of output the algorithm must carry out one n-bit enciphering
operation.

5.4.4 Output Feedback Mode (OFB)

Output feedback mode has a similar use as cipher feedback mode, but is relevant to appli-
cations for which error propagation must be avoided. Output feedback mode is an example
of a synchronous stream cipher (constructed from a block cipher), in which the keystream
is created independently of the plaintext stream.

Enciphering.

Input:
k-bit key K
n-bit initialization vector I0

r-bit plaintext blocks M = M1M2 . . . Mt.

Algorithm:
Ij = EK(Ij−1)
Cj = Mj ⊕ Lr(Ij)

Deciphering.

Input:
k-bit key K
n-bit initialization vector I0

r-bit ciphertext blocks C = C1C2 . . . Ct.

Algorithm:
Compute I1, . . . , It as in the enciphering algorithm.

Mj = Cj ⊕ Lr(Ij)

Properties:
1. Identical plaintext. The same comments for CBC and CFB apply.
2. Chaining dependencies. The ciphertext output is order dependent, but the
keystream I1, I2, . . . is plaintext independent.

Modes of Operation 45

3. Error propagation. An error in a ciphertext bit affects only that bit of the plaintext.
4. Error recovery. The cipher is self-synchronizing, and bit errors in a ciphertext block
affect only that bit of the recovered plaintext. It recovers immediately from bit errors, but
bit losses affect alignment.
5. Throughput. As with CFB, the rate of enciphering and deciphering is reduced by a
factor of n/r, however the vectors Ij can be precomputed from K and I0, independently
of the ciphertext blocks.

Exercises

We summarise the modes of operation covered in this chapter.

Electronic Codebook Mode. For a fixed key K, the output ciphertext is given by
Cj = EK(Mj) with output C1C2

Ciphertext Block Chaining Mode. For input key K, and initialization vector IV = C0,
the output ciphertext is given by Cj = EK(Cj−1 ⊕Mj), with output C0C1C2

Ciphertext Feedback Mode. Given plaintext M1M2 . . . in r-bit blocks, a key K, an
n-bit cipher EK , and an n-bit initialization vector IV = I1, the ciphertext is computed as:

Cj = Mj ⊕ Lr(EK(Ij))
Ij+1 = Rn−r(Ij) ||Cj

where Rn−r and Lr are the operators which take the right-most n−r bits and the left-most
r bits, respectively, and || is concatenation.

Output Feedback Mode. Given plaintext M1M2 . . . in r-bit blocks, a key K, an n-bit
cipher EK , and an n-bit initialization vector IV = I0, the ciphertext is computed as:

Ij = EK(Ij−1)

Cj = Mj ⊕ Lr(Ij),

where Lr is the operator which takes the left-most r bits.

Exercise 5.1 What mode of operation has been used in the assignment and in class up to
this point, and why? What are the security disadvantages of this mode of operation?

Exercise 5.2 Let EK be the 4-bit cipher defined by:

EK(M) = (K ⊕M)

1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1

 = (X1 + X3, X2 + X4, X2 + X3, X1 + X4)

46 Chapter 5. Block Ciphers

where X = K ⊕M = (X1, X2, X3, X4). Encipher the message M given by

11010110111001110010010001001000,

using the key K = 1011, in (i) ECB mode, in (ii) CBC mode with initialization vector
1001, and in (iii) CFB mode with initialization vector 1001 and r = 1.

Exercise 5.3 How many steps are required for error recovery from a ciphertext transmis-
sion error in ECB and CBC modes?

Exercise 5.4 If n = 64 and r = 8, how many steps in CFB mode does it take to recover
from an error in a ciphertext block? What about in OFB mode?

Modes of Operation 47

48

CHAPTER

SIX

Stream Ciphers

A stream cipher enciphers individual characters, usually bits, of a plaintext message one
at a time, with a cipher that varies with time. Block ciphers are memoryless, in the sense
that the same function is used to encipher successive blocks. Stream ciphers, in contrast,
must have memory. As such they are state functions because the current state Si of the
function is recorded in a memory buffer. We saw how various modes of operation (CFB,
OFB) turn a memoryless block cipher into a state function by feedback buffer. A keystream
is a sequence of characters generated from the key and the current state, as input to the
stream cipher.

6.1 Types of Stream Ciphers

In a synchronous stream ciphers the keystream is generated independently of the
plaintext message (or ciphertext). Given a key K, if the initial state is designated S0,
then, for each cycle i = 0, 1, 2, . . . , the following equations describe the generation of the
keystream, ciphertext, and next state:

Key stream function: ki = gK(Si)
Output function: ci = h(ki, mi)

Next state function: Si+1 = fK(Si)

An additive binary stream cipher is defined to be a synchronous stream cipher in which
h = XOR.

A self-synchronizing or asynchronous stream cipher is a stream cipher in which the
keystream is a function of the key and a fixed number of previous ciphertext characters.
Given a key K and initial state S0 = (c−t, . . . , c−1), the keystream and ciphertext are
generated for each cycle i = 0, 1, 2, . . . as for a synchronous stream cipher:

Key stream function: ki = gK(Si)
Output function: ci = h(ki, mi)

with the next state set to Si+1 = (ci+1−t, . . . , ci).

49

6.2 Properties of Stream Ciphers

Synchronous stream ciphers

• Synchronization: Sender and receiver are required to be synchronized in terms of
both state and key.

• Error propagation: None — a bit error in the ciphertext affects precisely one bit in
the deciphered plaintext, provided that synchronization is maintained.

• Attacks and features: Property (1) means that an active adversary can use insertion,
deletion, or replay of ciphertext; property (2) implies that the affects of these changes
effect direct changes on the deciphered plaintext, which might be exploited.

Asynchronous stream ciphers

• Synchronization: An insertion, deletion, or change in ciphertext characters results
in loss of only a fixed number of deciphered plaintext characters, after which the
deciphering self-synchronizes.

• Error propagation: A ciphertext error in transmission affects at most t characters of
the deciphered plaintext.

• Attacks and features: The error propagation makes active modification more easily
detected, while self-synchronization makes insertion, deletion, or reply of ciphertext
blocks more difficult to detect. Since each plaintext character influences subsequent
ciphertext, an asynchronous stream cipher is better at masking plaintext structure
or redundancies.

6.3 Linear Feedback Shift Registers

A linear feedback shift register implements a keystream function, and which can be simply
described by a schematic diagram of the following form:

⊕ ⊕oo oo ⊕ ⊕oo oo

c1 //⊗

OO

c2 //⊗

OO

cn−1 //⊗

OO

cn //⊗

// sn+i · //

OO

· //

OO

// si+2 · //

OO

si+1 · // si . . . s1s0

Rn−1 Rn−2 · · · R1 R0

50 Chapter 6. Stream Ciphers

Before discussing the mathematical definition of linear feedback shift registers (LFSR’s),
we address the question “Why?”. A LFSR is essentially an elementary algorithm for
generating a keystream, which has the following desirable properties:

1. Easy to implement in hardware.

2. Produce sequences of long period.

3. Produce sequences with good statistical properties.

4. Can be readily analyzed using algebraic techniques.

A LFSR is defined by n stages, labelled Rn−1, . . . , R1, R0, each storing one bit, and
having one input and output, and a timer which mark clock cycles i = 0, 1, 2, At the
i-th clock cycle:

1. The contents of stage 0 is output;

2. The contents of Ri moves to Ri−1, for 1 ≤ i ≤ n− 1; and

3. Stage Rn−1 is the bit sum of a prescribed subset of stages 0, 1, . . . , n− 2.

We may denote the contents of stage Rj at time i by si+j, and the algorithm for updating
the contents of stage Rn−1 gives a recurrence relation

sn+i =
n−1∑
j=0

cn−jsi+j,

where cj, 1 ≤ j ≤ n are fixed bit constants specifying the stages which contribute to the
bit sum. By setting c0 = 1 we can express the relation as

∑n
j=0 cn−jsi+j = 0.

We identify the constants ck with coefficients of a polynomial

g(x) =
n∑

k=0

ckx
k,

which we call the connection polynomial of the LFSR. Moreover, if can take the LFSR
output bits sj as the coefficients of a power series

s(x) =
∞∑

j=0

sjx
j,

then the recurrence relation expresses the fact that s(x)g(x) is a polynomial f(x) of degree
less than n. In other words, the power series takes the form s(x) = f(x)/g(x).

6.3. Linear Feedback Shift Registers 51

Exercise. Verify that the equality f(x) = s(x)g(x), for f(x) a polynomial of degree less
than n, gives rise to the the stated recurrence for the coefficients of s(x).

The LFSR is said to be nonsingular if cn 6= 0. It should be clear that the condition
cn = · · · cn−k = 0 describes a LFSR in which the feedback reduces to at most n−k terms,
hence after the initial k bits are output, reduces to a sequence which can be modelled by a
LFSR of length n− k. For this reason we hereafter assume that the LFSR is nonsingular.

We note that since the next state of the shift register (i.e. the contents of the collection
of stages) depends only on the current contents, and there are 2n possible states, it is clear
that the output sequence is eventually periodic. Since the all zero initial state maps to
itself, it is clear that the maximal period for any LFSR of length n is 2n−1. The connection
polynomial is said to be primitive if the period of the LFSR output sequence, beginning
at any nonzero state, is 2n − 1.

We note that the output sequence has period N if and only if (XN+1)s(x) is a polynomial
of degree at most N − 1. On the other hand, since s(x) = f(x)/g(x), if f(x) and g(x)
have no common factor, then it follows by the unique factorization of polynomials that
g(x) divides XN + 1. In particular, if g(x) is irreducible, since deg(f(x)) < deg(g(x)), it
follows that f(x) and g(x) have no common factors. In summary, an irreducible connection
polynomial of a LFSR must divide xN + 1 where N is the period of any nonzero output
sequence.

The theorem below shows that in fact every polynomial g(x) in F2[x] with nonzero
constant term must divides XN+1 for some N . The special feature of irreducible connection
polynomials, and especially primitive polynomials, is that we will be able to compute the
value of N and, for primitive polynomials, that it is takes the the maximal possible value.

Lemma 6.1 If g(x) is not divisible by x, then there exists a polynomial u(x) such that
x u(x) mod g(x) = 1.

Proof. Since the constant term of g(x) is 1, there is a polynomial u(x) such that x u(x) =
g(x) + 1, from which the lemma follows. �

Theorem 6.2 Every polynomial g(x) in F2[x] coprime to x divides xN + 1 for some N .

Proof. Consider the sequence of remainders mod g(x):

1 mod g(x), x mod g(x), x2 mod g(x), x3 mod g(x), . . .

Since every remainder is a unique polynomial of degree at most n−1, there are at most 2n

distinct elements in this sequence. It follows that there is some N such that xi mod g(x)
equals xN+i mod g(x) for all sufficiently large i. Since g(x) is not divisible by x, it follows
from the previous lemma that we can cancel the powers of xi to obtain xN mod g(x) = 1.
We conclude that xN + 1 is divisible by g(x). �

52 Chapter 6. Stream Ciphers

Periods of LFSR’s

We begin with some theorems regarding LFSR’s and their connection polynomials. First,
we make or recall some standard definitions. We define a polynomial g(x) to be irreducible
if the only factorization g(x) = h(x)k(x) is with h(x) or k(x) equal to the constant poly-
nomial. We define the order of x modulo g(x) to be the smallest power xN of x such that
xN mod g(x) equals 1. A polynomial g(x) is of degree n is said to be primitive if the order
of x modulo g(x) is 2n − 1. The next theorem shows that the definition of primitive given
in the previous lecture agrees with the current one.

Theorem 6.3 The period of a sequence generated by a LFSR is independent of the nonzero
initial state if the connection polynomial is irreducible, and the period takes the maximal
value 2n − 1 if and only if the connection polynomial is primitive.

Since there are exactly 2n − 1 possible nonzero states, it is clear that a LFSR that
produces an output sequence with this period in fact cycles through all such states, so the
period is independent of the initial state. As a consequence of the theorem, a primitive
polynomial is irreducible. We now prove the theorem.

Proof. We first note that all possible 2n − 1 output sequences are given by the rational
expressions s(x) = f(x)/g(x), where f(x) runs through the all nonzero polynomials of
degree less than the connection polynomial g(x). If the g(x) is irreducible, then this
expression is minimal — f(x) and g(x) have no common factors, so there is no cancellation.

Next we note that the minimal period N of any power series s(x) is the degree of the
smallest xN + 1 for which (xN + 1)s(x) is a polynomial. If also s(x) = f(x)/g(x) is
in minimal form, then for any such xN + 1, the denominator g(x) divides xN + 1. If the
connection polynomial g(x) is irreducible, then the denominator equals g(x) independently
of s(x) and the initial state which defines it, and so also is the period constant.

Finally the last statement follows by noting that g(x) divides xN + 1 if and only if
xN mod g(x) = 1. �

For cryptographic purposes, it is desirable to have sequences which have very long period.
The advantage of LFSR’s in this respect is that the period grows exponentially in the length
of the shift register. For small value of n, 2, 3, or 4, the value of the maximal possible
period, N = 2n − 1, is still trivially small. But as the table below shows, with modest
values of n we are able to efficiently generate sequences with enormous period.

6.3. Linear Feedback Shift Registers 53

n 2n − 1
1 1
2 3
3 7
4 15
5 31
6 63
7 127
8 255
9 511

10 1023

n 2n − 1
11 2047
12 4095
13 8191
14 16383
15 32767
16 65535
17 131071
18 262143
19 524287
20 1048575

n 2n − 1
21 2097151
22 4194303
23 8388607
24 16777215
25 33554431
26 67108863
27 134217727
28 268435455
29 536870911
30 1073741823

As particular examples, the primitive trinomials such as x23+x5+1, x29+x2+1, x31+x3+1,
and x41 +x3 +1 define very efficiently computable recurrence relations for maximal length
LFSR’s.

6.4 Linear Complexity

In addition to practical applications for generating pseudo-random sequences, LFSR’s are
a useful theoretical tool for the characterization of other binary sequences. The linear
complexity of a binary sequence is a measure of the structure of the sequence – a low linear
complexity implies a cryptographically weak sequence.

An infinite sequence s = s0, s1, . . . is said to be generated by a LFSR if it is the output
sequence of the shift register for some initial state. The linear complexity L(s) for an
infinite sequence s is defined to be 0 if s is the all zero sequence, equal to the minimum
length of a LFSR which generates it if s is periodic, and equal to ∞ otherwise. The linear
complexity L(s) of a finite sequence s = s0, s1, . . . , sn−1 is defined to be the minimum
length of a shift register which generates some sequence with initial segment s. The linear
complexity profile of an infinite sequence s is the sequence L1(s), L2(s), . . . , where Li(s) is
the linear complexity of first i terms of s.

Exercises

Exercise 6.1 Identify each of the key stream, output, and next state functions for the
synchronous stream cipher determined by a block cipher in OFB mode of operation.

Exercise 6.2 Identify the the key stream and output functions for the asynchronizing
stream cipher determined by a block cipher in each of CBC and 1-bit CFB modes.

54 Chapter 6. Stream Ciphers

Linear feedback shift registers (LFSR’s) are an efficient way of describing and generating
certain sequences in hardware implementations. We derive and work with equivalent math-
ematical descriptions of the sequences produced by a LFSR, along with some generalized
sequences which do not arise in this way.

A linear feedback shift register is composed of a shift register R which contains a sequence
of bits and a feedback function f which is the bit sum (xor) of a subset of the entries of
the shift register. The shift register contains n memory cells, or stages, labelled Rn−1,. . . ,
R1, R0, each holding one bit. Each time a bit is needed the entry in stage R0 is output
while the entry in cell Ri is passed to cell Ri−1 and the top stage Rn−1 is updated with the
value f(R).

Exercise 6.3 Consider the following schematic of a linear feedback shift register:

⊕ oo

// R3
//

OO

R2
// R1

// R0
//

Let the initial entries of stages Ri be si, for 0 ≤ i ≤ n. For each of the following initial
entries below:

s3 s2 s1 s0

a) 0 1 1 0
b) 1 1 1 0
c) 1 0 1 0
d) 1 1 0 0

compute the first 16 bits in the output sequence. Show that the output sequence is defined
by the initial entries and the recursion si+4 = si+3 + si.

Exercise 6.4 Show that every linear feedback register defines and is defined by a recursion
of the form si+n =

∑n−1
j=0 cjsi+j, where the cj are bits in Z/2Z; the products cjsi+j and the

summation are operations in Z/2Z.

N.B. The ring Z/2Z is also referred to as F2, the unique finite field of two elements. Note
that the addition operation is the same xor that we have been using and the multiplication
operation is the logical and operation.)

Exercise 6.5 For a linear feedback register of length n, define a power series

s(x) =
∞∑
i=1

six
i

from the output sequence si. Suppose that the linear feedback register defines the recursion
si+n =

∑n−1
j=0 cn−jsi+j. Define a polynomial g(x) =

∑n−1
j=0 cjx

j + 1. Show that f(x) =
g(x)s(x) is a polynomial, that is, all of its coefficients are eventually zero. What is the
polynomial f(x)?

Linear Complexity 55

Exercise 6.6 In the previous exercise we showed that the power series s(x) has the form
f(x)/g(x) in the power series ring F2[[x]]. In SAGE it is possible to form power series
rings in the following way

sage: F2 = FiniteField(2)
sage: PS.<x> = PowerSeriesRing(F2)
sage: f = x^2 + x
sage: g = x^3 + x + 1
sage: f/g + O(x^16)
x + x^4 + x^5 + x^6 + x^8 + x^11 + x^12 + x^13 + x^15 + O(x^16)

Consider the linear feedback shift register at the beginning of the worksheet. Construct
the corresponding power series and verify that these are the same of the output sequences
that you computed.

Statistical Properties. The output of a linear feedback shift operator of length n has a
period, which must divide 2n − 1. The period is independent of the initial state, provided
it is non-zero. If the period equals 2n−1, the output sequence is said to be an m-sequence.
The following theorem describes the statistical properties of m-sequences.

Theorem 6.4 Let s = s0s1 . . . be an m-sequence, and let k be an integer with 1 ≤ k ≤ n.
Then in each subsequence of s of length 2n + k − 2, every finite nonzero binary sequence
of length k appears as a subsequence exactly 2n−k times, and the length k zero subsequence
appears exactly 2n−k − 1 times.

A polynomial g(x) in F2[x] is irreducible if it is not the product of two polynomials of
degree greater than zero. An irreducible polynomial g(x) of degree n is primitive if g(x)
divides xN − 1 for N = 2n − 1 and no smaller value of N . (Equivalently, g(x) is primitive
if the powers xi are distinct modulo g(x), for i with 1 ≤ i ≤ 2n − 1.)

Linear Complexity. A linear feedback shift register is said to generate a binary sequence
s if there exists some initial state for which its output sequence is s. The linear complexity
L(s) of an infinite sequence s is defined to be zero if s is the zero sequence, infinity if s is
generated by no linear feedback shift register, and otherwise equal to the minimal length of
a linear feedback shift register generating s. The linear complexity L(s) of a finite sequence
s is defined to be the minimal length of a linear feedback shift register with initial sequence
s for some initial state.

Linear Complexity Profile. For a sequence s, define Lj(s) to be the linear complexity
of the first j terms of the sequence. The linear complexity profile of an infinite sequence
s is defined to be the infinite sequence L1(s), L2(s), . . . , and for a finite sequence s =
s0s1 . . . sN−1 is defined to be the finite sequence L1(s), L2(s), . . . , Ln(s).

56 Chapter 6. Stream Ciphers

LFSR Cryptosystems We introduce new utilities for binary stream cryptosystems based
on linear feedback shift registers. The functions binary encoding and binary decoding

convert ASCII text into its bit sequence and back. In addition, the new binary cryptosys-
tems are:

LFSRCryptosystem

ShrinkingGeneratorCryptosystem

Unlike the encoding function strip encoding we have used so far, the function
binary encoding is information-preserving, taking 8-bit ASCII input and returning the
binary encoding string. The inverse function binary decoding recovers the original text.

A linear feedback shift register cryptosystem is created in SAGE using the function
LFSRCryptosystem, taking no arguments. A key is defined by means of a pair, consisting
of the connection polynomial g(x) over F2 and a initial bit sequence of length equal to the
degree of the sequence. A sample use of the cryptosystem follows. The shrinking generator
cryptosystem is a cryptosystem based on a pair of LFSR’s as defined in class.

sage: F2 = FiniteField(2)
sage: P2.<x> = PolynomialRing(F2)
sage: g = x^17 + x^5 + 1
sage: IS = [F2.random_element() for i in range(17)]
sage: LFSR = LFSRCryptosystem()
sage: PT = LFSR.encoding("The dog ate my assignment."); PT
010101000110100001100101001000000110010001101111011001110
010000001100001011101000110010100100000011011010111100100
100000011000010111001101110011011010010110011101101110011
0110101100101011011100111010000101110
sage: K = (g,IS)
sage: e = LFSR(K)
sage: CT = e(PT)
sage: PT == e(CT)
True

Note that the encoding of the message is not ciphertext – this is the standard ASCII bit
encoding.

Exercise 6.7 Consider the coefficient sequence for f(x)/g(x) in F2[[x]], where g(x) =
1 + x + x4 and f(x) = 1 + x3. Is g(x) an irreducible polynomial? A primitive polynomial?
Draw the associated linear feedback shift register. What is the initial state of the shift
register?

Exercise 6.8 Compute the linear complexity of the sequences 11, 1011, 10101, 10110, and
10011.

Linear Complexity 57

Exercise 6.9 Compute the first 8 terms of the linear complexity profile of the coefficient
sequence from Exercise 1.

Exercise 6.10 Practice encoding and enciphering with the LFSR stream cryptosystem.
The function binary decoding easily converts this back to ASCII text. Use these functions
to verify that PT is just the binary encoding of the original plaintext message and that the
ciphertext is enciphered.

Exercise 6.11 Since the LFSR is the bitsum of the binary keystream, generated by the
connection polynomial and initial state, why must the inverse key be equal to the key itself?

58 Chapter 6. Stream Ciphers

CHAPTER

SEVEN

Elementary Number Theory

In this lecture we assume that R is one of the rings Z or F2[x], m is an element of R,
and we denote by (m) or mR the set {mx : x ∈ R}, which is called an ideal of R. The
principle goal is to introduce the quotient or residue class rings R/mR and to understand
how to work with its elements. We refer to m as the modulus of R/mR.

7.1 Quotient rings

The residue class ring R/mR is a commutative ring, whose elements are sets, called cosets
of mR, of the form

a = a + mR = {a + mx : xinR},
and multiplication and addition laws are derived from that on R:

a + b = (a + mR) + (b + mR) = (a + b) + mR = (a + b),

a ∗ b = (a + mR) ∗ (b + mR) = (a ∗ b) + mR = (a ∗ b).

The fact that R/mR is a ring means that the addition (+) and multiplication (∗) are
well-defined on cosets, and satisfy the usual associative and distributive laws.

Example. Consider the ring R/mR = Z/mZ with modulus m = 21. We consider the
addition and muliplication of 2 = 23 and −2 = 19, and show that in each pair of equal
elements, we can use either the first or the second representative to define the sum and
product. First, for addition, we find:

2 +−2 = 2 + (−2) = 0,

but on the other hand:
23 + 19 = 23 + 19 = 42,

which equals 0 since 42 is in 21Z. Multiplication is similarly independent of the represen-
tatives we chose:

2 ∗ −2 = 2 ∗ (−2) = −4 = 17,

59

which holds since −4 = 17 + (−1) ∗ 21, or

23 + 19 = 437 = 17,

where the latter identity is determined by 437 = 17 + 420 = 17 + 20 ∗ 21.

7.2 The mod operator

In both rings R = Z and R = F2[x], we have an operator modm for producing a canonical
smallest representative for elements of the quotient rings R/mR. This means that we can
work with this smallest or reduced representative in computations in R/mR. In particular,
we note that working with this representative is well-defined:

((a mod m) + (b mod m)) mod m = (a + b) mod m
((a mod m) ∗ (b mod m)) mod m = (a ∗ b) mod m

since, a mod m = b mod m if and only if a = b.

The value a mod m can be computed by long division — successively subtracting off
multiples until the result is smaller, until the final result is smaller than m. The definition
of x smaller than y is x < y for positive x, y in Z, and deg(x) < deg(y) for polynomials
x, y in F2[x].

N.B. Occasionally we will use the similar binary boolean-valued operator ≡ mod m.
The value a ≡ b mod m is true if and only if a = b, or equivalently if (a − b) mod m is
zero.

Example. We use the operator mod to determine a canonical representative for x7 in
F2[x]/(x2 + x + 1). First we write x7 = (x3)2 ∗ x, and compute:

x3 mod (x2 + x + 1)

= (x3 + x ∗ (x2 + x + 1)) mod (x2 + x + 1)

= (x2 + x) mod (x2 + x + 1)

= ((x2 + x) + (x2 + x + 1)) mod (x2 + x + 1) = 1.

It follows that x7 mod x2 +x+1 = (12 ∗x) mod (x2 +x+1) = x. By explicit long division:

x5+ x4+ x2 + x
x2 + x + 1

)
x7

x7+ x6+ x5

x6+ x5

x6+ x5 + x4

x4

x4 + x3 + x2

x3 + x2

x3 + x2 + x
x

60 Chapter 7. Elementary Number Theory

we find similarly that x7 = (x5 + x4 + x2 + x) ∗ (x2 + x + 1) + x, verifying the equality
x7 mod (x2 + x + 1) = x.

7.3 Primes and Irreducibles

A nonzero ideal (p) in R (= Z or F2[x]) is said to be a prime ideal if p is a prime number
or an irreducible polynomial. The following theorem is a generalization of Fermat’s Little
Theorem.

Theorem 7.1 Let (p) be a prime ideal of R and let N equal #R/(p) − 1. Then aN = 1
for every nonzero a in R/(p). Conversely if there exists an element a in R/(p) of exact
order N , then (p) is prime.

N.B. Recall that we define the polynomial g(x) to be primitive if and only if the element
x has exact order N in R/(g(x)).

Irreducible polynomials

We now want to enumerate the the irreducible polynomials in F2[x] of low degree, and
in the process explain some of the steps for more efficiently determining [ir]reducibility of
polynomials.

Degree 1: The linear polynomials x, x + 1 are necessarily irreducible.

Degree 2: The polynomial x2 + x + 1 is irreducible by the previous theorem and the fact
that x, x2 = x+1, and x3 = 1. Conversely, it is clear to see that the only other candidates:
x2, x2 + x, and x2 + 1 = (x + 1)2 are reducible.

Lemma 7.2 If f(x) is a polynomial, then f(x) mod (x − a) = f(a), and in particular
f(x) = (x− a)g(x) if and only if f(a) = 0

For polynomials over F2, the value f(0) is the constant term, and f(1) is the number of
nonzero coefficients mod2, which gives an easy test for divisibility by linear polynomials.

Degree 3: By the previous test, it is clear that the only nontrivial candidates to consider
are

x3 + x + 1, x3 + x2 + 1,

and that these are automatically irreducible, since they have no linear factor.

Degree 4: We first exclude (x2+x+1)2 = x4+x2+1, the only degree four polynomial which
is divisible by an irreducible polynomial of degree 2. Every other reducible polynomial

7.3. Primes and Irreducibles 61

must therefore have a divisor of degree 1, and we apply the lemma to reduce to the list of
irreducible polynomials:

x4 + x3 + 1, x4 + x + 1, x4 + x3 + x2 + x + 1.

Degree 5: As in degree 4, we exclude those polynomials which have a divisor of degree 2:

(x2 + x + 1)(x3 + x + 1) = x5 + x4 + 1
(x2 + x + 1)(x3 + x3 + 1) = x5 + x + 1,

after which we conclude that all other polynomials of degree 5 with constant term 1 and
an odd number of coefficients are irreducible:

x5 + x3 + 1, x5 + x2 + 1,
x5 + x4 + x3 + x2 + 1, x5 + x4 + x3 + x + 1,
x5 + x4 + x2 + x + 1, x5 + x3 + x2 + x + 1.

Exercise. Determine which of the above polynomials are primitive.

Cyclotomic polynomials

In the previous lecture we found that there are six irreducible polynomials of degree five.
In order to understand and to count the numbers of irreducible and primitive polynomials,
we first introduce cyclotomic polynomials.

Definition. The cyclotomic polynomials ΦN(x) are defined recursively by the identity:

xN − 1 =
∏
m|N

Φm(x).

Example. To demonstrate how this serves to define the cyclotomic polynomials, we
compute the first few examples:

Φ1(x) = x− 1 Φ4(x) = x2 + 1
Φ2(x) = x + 1 Φ5(x) = x4 + x3 + x3 + x2 + x + 1
Φ3(x) = x2 + x + 1 Φ6(x) = x2 − x + 1

Moreover, if p is a prime, then

Φp(x) =
xp − 1

x− 1
= xp−1 + · · ·+ x + 1.

So far, the definition of cyclotomic polynomials does not make use of polynomials being
defined over F2, and if we instead let the coefficient ring be Z, then we have the following
classical result.

62 Chapter 7. Elementary Number Theory

Theorem 7.3 The cyclotomic polynomial ΦN(x) is irreducible over Z, of degree ϕ(N).

The function ϕ(N) is called the Euler ϕ-function, and is defined by

ϕ(N) =
∏

pr||N

pr−1(p− 1),

where pr||N means that pr divides N but that pr1 does not divide N .

The analogous statement about irreducibility over F2 is false, but we can make a very
precise statement of the form of the factorization of cyclotomic polynomials over F2.

Theorem 7.4 An irreducible polynomial g(x) ∈ F2[x] of degree n divides the polynomial
xN + 1 and no other polynomial xm + 1 for m < N if and only if g(x) divides ΦN(x). The
integer N equals 2n − 1 if and only if g(x) is primitive.

Corollary 7.5 The cyclotomic polynomial ΦN(x) ∈ F2[x] for N = 2n − 1 is the product
of the distinct primitive polynomials of degree n.

Example. Previously we found that there were 6 irreducible polynomials of degree 5 in
F2[x]. Since N = 25 − 1 = 31 is prime, every irreducible polynomial of degree 5 is in fact
primitive. Since the degree of Φ31(x) is ϕ(31) = 31− 1 = 30, we could have concluded in
advance that there were exactly 6 primitive and irreducible polynomials of this degree.

LFSR Keystreams

Since the period N = 2n − 1 of the LFSR output sequence, with primitive connection
polynomial, grows exponentially in the size of n, LFSR’s provide good constructions for
sequences of large period. Moreover a LFSR can be made computationally efficient by
choosing a sparse primitive polynomial such as

14 : x14 + x7 + x5 + x3 + 1
15 : x15 + x5 + x4 + x2 + 1
16 : x16 + x5 + x3 + x2 + 1
17 : x17 + x3 + 1

A näıve stream cryptosystem can be built from a LFSR by taking the bit sum of the
keystream with the message stream to produce ciphertext. Unfortunately, knowledge of
just 2n bits of the LFSR keysteam allows the determination of the entire sequence, by an
algorithm due to Berlekamp and Massey. Therefore such a LFSR cryptosystem should be
considered insecure. A relatively new stream cryptosystem, called the shrinking generator
cryptosystem, using two LFSR’s in unison, has so far resisted any such algorithms.

Shrinking generator. Let L1 and L2 be two LFSR’s with output sequences t0t1t2 . . .
and s0s1s2 The first sequence is called the controlling sequence and the second sequence
the input sequence. At clock cycle i bits ti and si are output. If ti is 0 then the bit si is
discarded, and otherwise si forms part of the output keystream. The resulting keystream
si1si2si3 . . . is used for forming the bit sum with the message stream to form ciphertext.

Primes and Irreducibles 63

64

CHAPTER

EIGHT

Public Key Cryptography

The theory of public key cryptography was introduced by Diffie and Hellman in 1976. Pub-
lic key cryptography does not displace symmetric key cryptography — they solve different
problems. The recent NIST contest which resulted in the Advanced Encryption Standard
did not resulted in a new symmetric key, not public key standard. Why? Symmetric key
algorithms do the bulk of encryption, and are orders of magnitude faster than public key
systems of comparable security. They dispense with the restrictive conditions needed to
build the split of public and private keys, and focus on speed. Public key cryptography,
on the other hand, solves the key exchange problem — how to establish a common key
between two parties that may have never met. It also finds use in specialized algorithms
for digital signatures and message authentication.

The foundational concept of public key cryptography is that of the invertible one-way
function f : X → Y — a function which is efficiently computable on any value x ∈ X, but
for which the inverse is hard: given y finding an x such that y = f(x) is computationally
hard. Most public key systems rely on trapdoor one-way functions. For such a function the
constructor of the function has priviledged information which allows the efficient inversion
of the function.

We begin with a description of symmetric and public protocols for message exchange in
order to understand the role of each in cryptography.

8.1 Public and Private Key Protocols

We describe the standard symmetric and public key cryptography protocols, then describe
a hybrid protocol, which could be used to exchange messages efficiently using public key
cryptography for key exchange and symmetric key encryption for the message content.
Each of these protocols describes the sequence of steps by which Alice can send a secure
message to Bob. The word public or sends refer to events or information to which an
adversary can have access. The word private refers to information or an exchange which
is protected from evesdropping.

65

Symmetric Cryptography Protocol

Initial setup:
1. Alice and Bob publicly agree on a cryptosystem.
For each message Alice → Bob:
1. Alice and Bob privately agree on a key.
2. Alice enciphers her plaintext using the agreed key.
3. Alice sends the ciphertext message to Bob.
4. Bob deciphers the ciphertext message to obtain the plaintext.

The need to exchange keys for every exchange was a critical problem prior to the theoret-
ical solution with public key cryptography by Diffie and Hellman. The public key protocol
proceeds as follows, requiring only one initial public key exchange.

Public Key Cryptography Protocol

Initial setup:
1. Alice and Bob publicly agree on a cryptosystem.
2. Bob sends Alice his public key.
For each message Alice → Bob:
1. Alice enciphers her plaintext using Bob’s public key.
2. Alice sends the ciphertext message to Bob.
3. Bob deciphers the ciphertext message using his private key.

As noted in the preceeding discussion, public key cryptosystems are several orders of
magnitude slower than comparable symmetric key cryptosystems. Moreover, a public key
cryptosystem is susceptible to chosen plaintext attacks: an adversary can create a lookup
table of pairs (EK(M), M) for the known public key K. Therefore the amount of public
key ciphertext which is transmitted should be strictly limited.

These considerations lead to the following hybrid protocol, in which the public key
cryptosystem is used for key exchange and a fast symmetric key cryptosystem is used for
message encryption.

Hybrid Cryptographic Protocol

66 Chapter 8. Public Key Cryptography

Initial setup:
1. Alice and Bob publicly agree on a public key cryptosystem and a

symmetric key cryptosystem.
2. Bob sends Alice his public key.
For each message Alice → Bob:
1. Alice generates a random session key K.
2. Alice enciphers K using Bob’s public key.
3. Alice enciphers the plaintext message using K.
4. Alice sends Bob the enciphered session key and the ciphertext mes-

sage.
5. Bob deciphers the enciphered session key using his private key.
6. Bob deciphers the ciphertext message using the session key.

An additional layer can be added to the hybrid exchange, involving a trusted authority,
which carries out the function of certifying the identity of individuals and their public keys,
managing a database of public keys, and handling expiration of public keys. The public
key exchange step, in which Bob sends Alice his public key, in the hybrid protocol can
therefore be replaced with any of the following:

• Alice gets Bob’s key from Bob.
• Alice gets Bob’s key from a trusted authority’s database.
• Alice gets Bob’s key from her private database.

Trapdoor one-way functions

Several years elapsed between when Diffie and Hellman presented their New directions
in cryptography with the theory of public key cryptography based on trapdoor one-way
functions, and the discovery of a practical example of trapdoor one-way functions for
cryptographic use. The principal public key cryptosystems in use today, based on trapdoor
one-way functions, are the RSA cryptosystem and the ElGamal cryptosystem. We describe
the underlying mathematical functions used in the RSA and ElGamal constructions.

RSA.

The trapdoor one-way function used in RSA is a fixed exponentiation in Z/nZ for a
composite integer n.

Z/nZ // Z/nZ

m � // me

The public data is the exponent e and the modulus n, which is presumed to be of the form
pq for distinct primes p and q. The presumed difficulty of inverting this function is based

Public and Private 67

on the difficulty of factoring n, or on the difficulty of a weaker problem version called the
RSA problem. The trapdoor for this function is the knowledge of the factorization of n.

ElGamal.

The ElGamal function is based on the exponentiation of a fixed multiplicative generator
a for F∗p, the group of nonzero elements of the finite field of p elements. The map takes m
to the power am mod p:

Z/(p− 1)Z // F∗p

m � // am

The public data is the generator a and the prime p, and inverting the cryptographic function
is solved by the discrete logarithm problem – finding m given a and am, or on a weaker
problem called the Diffie Hellman problem.

Elliptic Curves.

Alternatively, the ElGamal construction can be solved using the discrete logarithm prob-
lem on an elliptic curve E over a finite field Fq. An elliptic curve is defined by an equation
of the form

y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6

with fixed coefficients a1, a2, a3, a4, a6 in Fq. The set E(Fq) of points (x, y) in F2
q solving

this equation plus a distiguished point O at infinity forms a group law under an addition,
which we denote +. For groups E(Fq) and F∗p of comparable size, the discrete logarithm
problem on the elliptic curve is believed to be a harder problem than the classical one
in F∗p. Elliptic curves will not be a topic of discussion in this book, but are becoming
commonplace in implementations of smart cards and cryptography for low-power devices.

8.2 RSA Cryptosystems

The RSA cryptosystem is based on the difficulting of finding an inverse to exponentiation
by a fixed e on Z/nZ for composite n, applied for n equal to a product of two large
primes p and q. An efficient solution to integer factorization, or a solution to the possibly
weaker RSA problem would render the RSA cryptosystem insecure. The trapdoor for RSA
encryption is the knowledge of the prime factors of n (which allows the determination of
an inverse deciphering exponent d for any enciphering exponent e).

RSA Problem. Given integers e and n = pq such that GCD(e, p−1) = GCD(e, q−1) =
1, and an integer c, find an m such that c = me mod n.

Rule: Let p be a prime, then the reduction mx mod p remains unchanged whenever

(a) m is changed by a multiple of p, or
(b) x is changed by a multiple of p− 1.

68 Chapter 8. Public Key Cryptography

We apply this rule in the RSA algorithm for x ≡ 1 mod p − 1 to conclude that m =
mx mod p.

RSA Protocol

Public key: (e, n) where n = pq for two large primes p and q such that
GCD(e, p− 1) = GCD(e, q − 1) = 1.
Private key: (d, n) where ed ≡ 1 mod (p− 1) and ed ≡ 1 mod (q − 1).
Initial setup:
1. Alice obtains Bob’s public key (e, n).
For each message m Alice → Bob:
1. Alice computes c = me mod n.
2. Alice sends the ciphertext message c to Bob.
3. Bob deciphers the ciphertext message as m = cd mod n.

The correctness of the deciphering follows from the construction of d such that ed ≡
1 mod n. By the above rule, it follows that

m ≡ med mod p and m ≡ med mod q,

from which it follows that m = med mod pq.

Example. Let p = 11 and q = 23, so n = 253, and e = 3. We verify that GCD(e, p−1) = 1
and GCD(e, q − 1) = 1. Suppose that the ciphertext is c = 29 in Z/253Z. To construct
the inverse of exponentiation by e, we need to find d1 and d2 such that

e d1 ≡ 1 mod (p− 1)
e d2 ≡ 1 mod (q − 1)

First we compute the extended GCD’s of the pairs (e, p−1) = (3, 10) and (e, q−1) = (3, 22).
These are given by the relations:

−3 · 3 + 1 · 10 = 1
−7 · 3 + 1 · 22 = 1

giving the equalities −3e ≡ 1 mod 10 and −7e ≡ 1 mod 22. Therefore if ed1 ≡ 1 mod 10,
then we have

d1 ≡ (−3 e) d1 mod 10 ≡ −3 (e d1) mod 10 ≡ −3 mod 10 ≡ 7 mod 10.

Similarly if ed2 ≡ 1 mod 22, then we have

d2 ≡ (−7 e) d2 mod 22 ≡ −7(e d2) mod 22 ≡ −7 mod 22 ≡ 15 mod 22.

Now we can compute the plaintext message m such that c = m3 mod 253. First we compute

m1 = cd1 mod 11 ≡ 77 mod 11 ≡ 74 72 7 mod 11

≡ 3 · 5 · 7 mod 11 ≡ 3 · 2 mod 11 ≡ 6 mod 11,

RSA 69

and similarly

m2 = cd2 mod 23 ≡ 615 mod 23

≡ 68 64 62 6 mod 23 ≡ (−5 · 8) (13 · 6) mod 23

≡ 6 · 9 mod 23 ≡ 8 mod 23.

Now we can combine m1 = 6 mod 11 and m2 = 8 mod 23 by the Chinese remainder
theorem. We expressed the extended GCD of 11 and 23 as:

rp + sq = −2 · 11 + 1 · 23 = 1.

Setting m = m2 + kq, we find m1 = (m2 + kq) mod p, whence

s(m1 −m2) ≡ s(k q) mod p ≡ k(s q) mod p ≡ k mod p.

So we have solved for k ≡ s(m1 − m2) mod p ≡ 1 (6 − 8) ≡ −2 mod p. Therefore m ≡
m1 + kq mod 253 ≡ 6− 46 mod 253 ≡ 213 mod 253.

RSA with exponent 3. A commonly used exponent for RSA encryption is e = 3.
This allows efficient enciphering using only two arithmetic operations (two multiplications
or one squaring and one multiplication). No such gain is achieved for deciphering.

However, this presents algorithm presents the following problem for security. Let m be a
message to be sent to three parties, with RSA moduli n1, n2, and n3. The encoding of the
message satisfies 0 ≤ m < ni. By means of the Chinese remainder theorem, we can recover
c = m3 mod n1n2n3 from the three enciphered messages c1 = m3 mod n1, c2 = m3 mod n2,
and c3 = m3 mod n3. While the latter messages ci, as the modular representatives of some
huge integer, appear random. But from the bounds on m, the cube satisfies the bound:

0 ≤ m3 < n1n2n3,

hence the smallest modular representative c equals m3, and the cube root can be extracted
as an integer to recover m.

A valid protocol to overcome this dilemma, for e = 3, is to never send the same message
to more than one party. This is achieved by adding unique random padding to every
message prior to enciphering. This turns the message m into three distinct messages m1,
m2, and m3. The Chinese remainder theorem then solves for some integer

0 ≤ c < n1n2n3

such that c ≡ mi mod ni, but this integer bears no longer bears any relation to any cube
m3.

70 Chapter 8. Public Key Cryptography

8.3 ElGamal Cryptosystems

The ElGamal Cryptosystem is implicitly based on the difficultly of finding a solution to
the discrete logarithm in F∗p: given a primitive element a of F∗p and another element b,
the discrete logarithm problem (DLP) is the computational problem of finding x = loga(b)
such that b = ax.

Efficient algorithms for the discrete logarithm problem would render the ElGamal Cryp-
tosystem insecure, the possibly weaker Diffie-Hellman problem (DHP) is the precise prob-
lem on which the cryptosystem is based: given b = ax and c = ay in F∗p, compute axy.

Note that axy can not be formed as any obvious algebraic combination of ax and ay

like axay = ax+y. In fact, other cryptosystems rely on the difficult of the Decision Diffie-
Hellman problem (DDHP) being hard: given ax, ay and c, decide whether or not c = axy.
Both the DHP and the DDHP are easy of the DLP is easy.

Definition. Recall that an element a of F∗p is said to be primitive if and only if

1, a, a2, . . . , ap−2

are all distinct. Primitive elements always exist in any finite field.

ElGamal Protocol

Public key: (a, ax, p) where p is a prime, a is a primitive element of F∗p,
and x is an integer 1 ≤ x < p− 1.
Private key: The integer x.
Initial setup:
1. Alice obtains Bob’s public key (a, ax, p).
For each message m Alice → Bob:
1. Alice chooses a private element y randomly in 1 ≤ y < p− 1.
1. Alice r = ay and s = maxy.
2. Alice sends the ciphertext message c = (r, s) to Bob.
3. Bob deciphers the ciphertext message as m = r−xs mod p.

The correctness of the deciphering is verified as follows:

r−xs = (ay)−xmaxy = ma−yxaxy = mayx−xy = m.

Disrete Logarithms

The main known attack on an ElGamal cryptosystem is to solve the discrete logarithm
problem: given both a and ax (in the finite field Fp), find the value for x. In order for
the discrete logarithm problem (DLP) to be hard, it is not enough to choose any prime p.
One needs to select a prime p such that p − 1 has a large prime factor. Suppose, on the
contrary, that p − 1 is divisibly only by primes less than some positive integer B. Such a

8.3. ElGamal Cryptosystems 71

number is said to be B-smooth. The DLP can be reduced to solving a small number of
discrete logarithm problems of “size” B rather than of size p− 1.

As an example, let r be a prime divisor of p−1, and let m = (p−1)/r. Suppose that we
want to solve for x such that b = ax. The exponent is defined up to multiples of p−1. If we
raise both sides to the power m, then for the problem bm = amx a solution x is well-defined
up to multiples of r:

am(x+r) = amx+mr = amxap−1 = amx,

since ap−1 = 1.

If we now find that p− 1 = r1r2 · · · rt for pairwise distinct primes ri, the by the Chinese
remainder theorem the value of x mod p − 1 can be determined from its modular values
x mod ri, for all 1 ≤ i ≤ t. So the hardness of the DLP determined by the size of the
largest prime divisor of p− 1.

Exercise. Suppose that a prime power rk divides p − 1. How would you solve the DLP
for x mod rk?

Algorithmic Considerations

A näıve algorithm for solving the discrete logarithm problem for loga(b) is to compute
1, a, a2, . . . until a match is found with b. As we have just seen, it is possible to replace a
with a1 = am and b with b1 = bm in order to solve loga1

(b1) modulo r such that rm = p−1.
In this way we have to build the list 1, a1, a

2
1, . . . , a

x
1 of length at most r before finding b1.

An alternative approach is called the baby-step, giant-step method. We set s = [
√

r]+ 1
and to form a first list 1, a1, a

2
1, . . . , a

s−1
1 of length s, called the baby steps, then form the

second list b1, a
s
1b1, a

2s
1 b1, . . . , a

s2

1 b1 of giant steps, to find a match.

If a match is found, say ai
1 = b1a

js
1 , then we have found b1 = ai−js

1 , so x = i− js mod r.
On the other hand, if x is a solution to the DLP modr, then we can write x = i − js for
some 0 ≤ i,−j ≤ s, so the above algorithm finds a match.

8.4 Diffie–Hellman Key Exchange

Diffie and Hellman proposed the following scheme for establishing a common key. The
scheme is widely used because of the simplicity of its implementation, however an naive
implementation without identity authentication leaves the protocol subject to a man-in-
the-middle attack.

1. A and B decide on a large prime number p and a primitive element a of Z/pZ, both
of which can be made public.

2. A chooses a secret random x with GCD(x, p− 1) = 1 and B chooses a secret random
y with GCD(y, p− 1) = 1.

72 Chapter 8. Public Key Cryptography

3. A sends Bob ax mod p and Bob sends Alice ay mod p.

4. Each is able to compute a session key K = axy = (ax)y = (ay)x.

An eavesdropper only has knowledge of p, a, ax and ay, and would need to break the
Diffie-Hellman problem to be able to come up with the session key.

Man in the Middle Attack

The man-in-the-middle attack is a protocol for an eavesdropper E to intercept a message
exchange between A and B. The attack is premised on a Diffie-Hellman key exchange, but
the principle applied to any public key cryptosystem for which the keys used for public key
exchange is not certified with a cerification authority.

We assume that A and B have agreed on a prime p and a primitive element a of Z/pZ, and
that E is positioned between A and B. Having observed this Diffie-Hellman initialization
E prepares for the man-in-the-middle attack.

1. A chooses a secret key x, creates a public key ax, and sends it to B, which is intercepted
by E.

2. E chooses a private integer z at random, and creates the alternative public key az

which she sends to B, pretending to be A. At the same time she sends same key az to A,
now posing as B.

3. Now E has established a common session key axz with A and common session key
ayz with B. Message exchanges between A and B pass through E and can be deciphered,
read, modified, re-enciphered, and resent in transit.

The breakdown of the key exchange protocol is due to lack of identity authentication of
the communicating parties. If, for instance the public key (a, ax, p) of A could be confirmed
with an independent certification authority, then B would not have confused E with A.

Exercises

The RSA cryptosystem is based on the difficulty of factoring large integers into its com-
posite primes.

Based on Fermat’s little theorem, we know that am ≡ 1 mod p exactly when p−1 divides
m. Therefore we recover the identity au ≡ a mod p where u is of the form 1 + (p − 1)r.
Now given any e such that e and p−1 have no common divisors, there exists a d such that
ed ≡ 1 mod p− 1. In other words, u = ed is of the form 1 + (p− 1)r. This means that the
map

a 7→ ae mod p

followed by
ae mod p 7→ (ae mod p)d mod p ≡ aed mod p = a mod p

Diffie–Hellman 73

are inverse maps. This only works for a prime p.

Exercise 8.1 Use SAGE to find a large prime p and to compute inverse exponentiation
pairs e and d. The following functions are of use:

random prime, gcd, xgcd, and inverse mod.

The RSA cryptosystem is based on the fact that for primes p and q and any integer e with
no common factors with p− 1 and q − 1, it is possible to find an d1 such that

ed1 ≡ 1 mod (p− 1),
ed2 ≡ 1 mod (q − 1).

Using the Chinese remainder theorem, it is possible to then find the unique d such that

d = d1 mod (p− 1) and d = d2 mod (q − 1)

in the range 1 ≤ d < (p− 1)(q − 1). This d has the property that

aed ≡ a mod n.

The send a message securely, the public key (e, n) is used. First we encoding the message as
an integer a mod n, then form the ciphertext ae mod n. The recipient recovers the message
using the secret exponent d.

Exercise 8.2 Use your exponents e, d, verify the identities mod p:

(ae)d ≡ a mod n, (ad)e ≡ a mod n, and aed ≡ a mod n,

for various random values of a.

Note that after construction of d, the primes p and q are not needed, but that without
knowing the original factorization of n, Fermat’s little theorem does not apply, and finding
the inverse exponent for e is considered a hard problem.

Exercise 8.3 Use the above factorization to reproduce the private key L (generated but not
printed above) for this K.

Exercise 8.4 Why is the choice for which key is the public key and which key is the
private key arbitrary? Practice encoding, decoding, enciphering, and deciphering with the
RSA cryptosystem. Why do the member functions enciphering and deciphering return
the same values?

An ElGamal cryptosystem is based on the difficulty of the Diffie–Hellman problem:
Given a prime p, a primitive element a of (Z/pZ)∗ = {c ∈ Z/pZ : c 6= 0}, and elements
c1 = ax and c2 = ay, find the element axy in (Z/pZ)∗.

74 Chapter 8. Public Key Cryptography

Exercise 8.5 Recall the discrete logarithm problem: Given a prime p, a primitive element
a of (Z/pZ)∗, and an element c of (Z/pZ)∗, find an integer x such that c = ax. Explain
how a general solution to the discrete logarithm problem for p and a implies a solution to
the Diffie–Hellman problem.

Exercise 8.6 Fermat’s little theorem tells us that ap−1 = 1 for all a in (Z/pZ)∗. Recall
that a primitive element a has the property that Z/(p − 1)Z → (Z/pZ)∗ given by x 7→ ax

is a bijection.

1. Show that a is primitive if and only if ax = 1 only when p− 1 divides x.

2. Let p be prime 232 + 15. Show that a = 3 is a primitive element of (Z/pZ)∗. Use the
SAGE function log to compute discrete logarithms of elements of FiniteField(p)
with respect to a.

3. Let p be the prime 232 + 61. Show that the element a = 2 is a primitive element for
(Z/pZ)∗. Use the SAGE function log to compute discrete logarithms of elements of
FiniteField(p) with respect to a.

Exercise 8.7 Compare the times to compute discrete logarithms in the previous exercise.
Now factor p − 1 for each p. What difference do you note? Explain the timings in terms
of the Chinese remainder theorem for Z/(p− 1)Z.

Exercise 8.8 Let p be the prime 2131 + 1883 and verify the factorization

p− 1 = 2 · 3 · 5 · 37 · 634466267339108669 · 3865430919824322067.

Let a = 109 and c = 1014452131230551128319928312434869768346 and set

n5 = (p− 1) div 634466267339108669

n6 = (p− 1) div 3865430919824322067.

Then verify that cn5 = a129n5 and cn6 = a127n6. Find similar relations for

n1 = (p− 1) div 2 n3 = (p− 1) div 5,
n2 = (p− 1) div 3 n4 = (p− 1) div 37.

and use this information to find the discrete logarithm of c with respect to a.

Diffie–Hellman 75

76

CHAPTER

NINE

Digital Signatures

A digital signature is the digital analoque of a handwritten signature. The signature of a
message is data dependent on some secret known only to the signer and on the content of
the message. A digital signature must be verifiable without access to the signer’s private
key.

9.1 RSA Signature Scheme

The RSA signature scheme is a signature scheme with message recovery — the signed
message is recovered from the signature.

Key generation. This step is exactly as for RSA enciphering. The signer generates a
public key (e, n) and guards a private key (d, n), where n = pq is the product of two large
primes.

Signature generation. Encode the message m in Z/nZ, and output the signature s =
md ∈ Z/nZ, computed using the private key (d, n).

Verification. Compute m = se ∈ Z/nZ.

9.2 ElGamal Signature Scheme

The ElGamal signature scheme requires an encoding of the message m as an element of
Z/(p− 1)Z.

Key generation. This step is exactly as for ElGamal enciphering. The signer generates
a public key (p, a, c), where c = ax mod p, and guards the private key (p, a, x), where a
is a primitive element of Z/pZ and x is an integer in the range 1 ≤ x < p − 1 with
GCD(x, p− 1) = 1.

Signature generation. The signer selects a random secret integer k in the range 1 ≤

77

k < p− 1 with GCD(k, p− 1) = 1, and computes

r = ak mod p and s = l(m− rx) mod (p− 1),

where l = k−1 mod (p− 1), and the signature (r, s) is output.

Note that r is well-defined in Z/pZ, but that to form s it is necessary to choose a minimal
positive integer representative and reinterpret it mod(p− 1).

Verifcation. The signature is verified first that 1 ≤ r ≤ p− 1, or rejected. The values

v1 = crrs mod p, and v2 = am mod p,

are next computed, and the equality v1 = v2 is verified or the signature rejected.

Proof of equality. v1 = crakl(m−xr) = axram−xr = am = v2.

9.3 Chaum’s Blind Signature Scheme

Chaum’s blind signature scheme is an RSA-based scheme, adapted for blind signatures.
In the protocol below we assume that Bob has set up a public RSA key (e, n) with corre-
sponding private key (d, n), so that Bob’s RSA signature functions is SB(m) = md.

1. Initial setup: Alice obtains Bob’s public key (e, n) and chooses a ran-
dom public session key k, such that 0 < k < n and GCD(k, n) = 1.

2. Blinding: Alice computes m∗ = mke, and sends m∗ to Bob.
3. Signing: Bob computes s∗ = m∗d, which he sends back to Alice.
4. Unblinding: Alice computes s = k−1s∗, which equals SB(m) = md.

As an application we mention a naive digital cash scheme. Suppose that Alice wants to
withdraw a digital $100 from her account to be spent anonymously at a later date. She
writes 1000 notes from the bank, each certifying its value to be $100, and blinds them,
each with a separate session key. The bank asks for the session keys to 999 of these notes,
verifies that each has the correct value, and blindly signs the last one, deducting $100 from
her account, and returns the blinded signed $100 note to Alice for use as cash.

9.4 Digital Cash Schemes

We won’t go into details of a particular digital cash protocol, but list the ideal proper-
ties which such a scheme should satisfy, as spelled out by Okomoto and Ohta in 1991
(Crypto’91).

1. Digital cash can be sent securely through an insecure channel.

2. Digital cash can not be copied or reused.

78 Chapter 9. Digital Signatures

3. The spender remains anonymous under legitimate use of the protocol.

4. Spending does not require communication with a bank or external agency.

5. The cash is transferable.

6. The cash can be subdivided.

There are several proposed digital cash schemes, which provide both partial and full
solutions to these sets of conditions. Okamoto and Ohta provide a solution to all six of
these conditions. Chaum has proposed a variety of schemes which give partial solutions
to different subsets of the above, and Brands has a scheme which satisfies the first four
properties. The complexity of the scheme is largely dependent on the number of these
properties which it satisfies, so that the most complete scheme may not be the easiest to
describe or to implement.

We note that anonymity, property three of this list, relies on an analogue blind signatures
called restricted blind signatures, as in the naive example above. The naive example fails
the above criteria, for instance, failing to ensure against multiple spending.

9.4. Digital Cash Schemes 79

80

CHAPTER

TEN

Secret Sharing

A secret sharing scheme is a means for n parties to carry shares or parts si of a message s,
called the secret, such that the complete set s1, . . . sn of the parts determines the message.
The secret sharing scheme is said to be perfect if no proper subset of shares leaks any
information regarding the secret.

Two party secret sharing. Let s be a secret, encoding as an integer in Z/mZ. Let
s1 ∈ Z/mZ be generated at random by a trusted party. Then the two shares are defined
to be s1 and s− s1. The secret is recovered as s = s1 + s2.

Multiple party secret sharing. Let s ∈ Z/mZ be a secret to be shared among n
parties. Generate the first n− 1 shares s1, . . . , sn−1 at random and set

sn = s−
n−1∑
i=1

.

The secret is recovered as s =
∑n

i=1 si.

A (t, n) threshold secret sharing scheme is a method for n parties to carry shares si of a
message s such that any t of the them to reconstruct the message, but so that no t− 1 of
them can easy do so. The threshold scheme is perfect if knowledge of t− 1 or fewer shares
provides no information regarding s.

Shamir’s (t, n)-threshold scheme. A scheme of Shamir provide an elegant construc-
tion of a perfect (t, n)-threshold scheme using a classical algorithm called Lagrange inter-
polation. First we introduce Lagrange interpolation as a theorem.

Theorem 10.1 (Lagrange interpolation) Given t distinct points (xi, yi) of the form
(xi, f(xi)), where f(x) is a polynomial of degree less that t, then f(x) is determined by

f(x) =
t∑

i=1

yi

∏
1≤j≤t

i6=j

x− xj

xi − xj

. (10.1)

81

Shamir’s scheme is defined for a secret s ∈ Z/pZ with p prime, by setting a0 = s, and
choosing a1, . . . , at−1 at random in Z/pZ. The trusted party computes f(i), where

f(x) =
t−1∑
k=0

akx
k,

for all 1 ≤ i ≤ n. The shares (i, f(i)) are distributed to the n distinct parties. Since the
secret is the constant term s = a0 = f(0), the secret is reovered from any t shares (i, f(i)),
for I ⊂ {1, . . . , n} by

s =
∑
i∈I

cif(i), where each ci =
∏
j∈I
j 6=i

i

j − i
.

Properties. Shamir’s secret sharing scheme is (1) perfect — no information is leaked by
the shares, (2) ideal — every share is of the same size p as the secret, and (3) involves no
unproven hypotheses. In comparison, most public key cryptosystems rely on certain well-
known problems (integer factorization, discrete logarithm problems) to be hard in order to
guarantee security.

Proof of Lagrange interpolation theorem. Let g(x) be the right hand side of (10.1).
For each xi in we verify directly that f(xi) = g(xi), so that f(x)−g(x) is divisible by x−xi.
It follows that

t∏
i=1

(x− xi)
∣∣(f(x)− g(x)), (10.2)

but since deg(f(x)−g(x)) ≤ t, the only polynomial of this degree satisfying equation (10.2)
is f(x)− g(x) = 0.

Example. Shamir secret sharing with p = 31. Let the threshold be t = 3, and the secret
be 7 ∈ Z/31Z. We choose elements at random a1 = 19 and a2 = 21 in Z/31Z, and set
f(x) = 7 + 19x + 21x2. As the trusted pary, we can now generate as many shares as we
like,

(1, f(1)) = (1, 16) (5, f(5)) = (5, 7)
(2, f(2)) = (2, 5) (6, f(6)) = (6, 9)
(3, f(3)) = (3, 5) (7, f(7)) = (7, 22)
(4, f(4)) = (4, 16) (8, f(8)) = (8, 15)

which are distributed to the holders of the share recipients, and the original polynomial
f(x) is destroyed. The secret can be recovered from the formula

f(x) =
t∑

i=1

yi

∏
1≤i≤t

i6=j

x− xj

xi − xj

=〉 f(0) =
t∑

i=1

yi

∏
1≤i≤t

i6=j

xj

xj − xi

82 Chapter 10. Secret Sharing

using any t shares (x1, y1), . . . , (xt, yt). If we take the first three shares (1, 16), (2, 5), (3, 5),
we compute

f(0) =
16 · 2 · 3

(1− 2)(1− 3)
+

5 · 1 · 3
(2− 1)(2− 3)

+
5 · 1 · 2

(3− 1)(3− 2)

= 3 · 2−1 + 15 · (−1) + 10 · 2−1 = 17− 15 + 5 = 7.

This agrees with the same calculation for the shares (1, 16), (5, 7), and (7, 22),

f(0) =
16 · 5 · 7

(1− 5)(1− 7)
+

7 · 1 · 7
(5− 1)(5− 7)

+
22 · 1 · 5

(7− 1)(7− 5)

= 2 · 24−1 + 18 · (−8)−1 + 17 · 12−1 = 13 + 21 + 4 = 7.

Exercises

Secret Sharing 83

84

APPENDIX

A

SAGE Constructions

SAGE is a computer algebra system providing a common mathematical interface to many
common open source computer algebra packages. The SAGE shell is a customised shell
iPython to the standard Python language. The design of SAGE aims to provide an intu-
itive, mathematically rigorous interface to a large code base of algorithms. Its name is an
acronym for

Software for Algebra and Geometry Experimentation.

In this course we use SAGE to experiment with cryptographic algorithms and constructions
with a custom cryptosystem package.

Obtaining SAGE

SAGE is a freely available computer algebra system which can be downloaded from any
of the following mirrors:

1. http://sage.math.washington.edu/sage

2. http://modular.fas.harvard.edu/sage

3. http://echidna.maths.usyd.edu.au/sage

4. http://sage.scipy.org/sage

5. http://cocoa.mathematik.uni-dortmund.de/sage

The SAGE Shell

To start the SAGE shell, just type:

> sage

You should see something like:

85

> sage
--
| SAGE Version 1.5.3, Build Date: 2007-01-05 |
Distributed under the GNU General Public License V2.

sage:

Entering commands.

Basic types like integers and rational numbers are built in and can be typed directly at
the command line.

sage: 1 + 1
2
sage: (2^64+1).factor()
274177 * 67280421310721
sage: 231/23 * 2/55
42/115

(The symbol sage: is the prompt and not typed.) Basic operations such as +, -, *, /

invoke underlying commands in the SAGE library of functions (with automatically recog-
nition of the types of the arguments and application the correct algorithm which applies).
More advanced functions like factor are also linked into the underlying code base of SAGE.

Types and Parents

Every object in SAGE have a type and a parent. The type may be either a standard
Python classes or a class implemented in SAGE.

86 Appendix A. SAGE Constructions

sage: x = 2
sage: type(x)
<type ’sage.rings.integer.Integer’>
sage: y = 2/1
sage: type(y)
<type ’sage.rings.rational.Rational’>
sage: z = ’2’
sage: type(z)
<type ’str’>

The class of an object determines which functions apply to it. The printing of an object
does not in general determine the object itself.

Each class of object has special member functions which apply to it; the result depends
on the function definition. A member function is called by typing the object name, a ’.’,
followed by the function name and any arguments it takes in parentheses. For instance,
the integer 2 is not a unit in Z, since there is no element 1/2 in Z. In contrast, the element
2 as a rational number is a unit.

sage: x.is_unit()
False
sage: y.is_unit()
True

An easy way to determine what member functions exist is to type the first few characters
and a TAB to see what functions complete it:

sage: x.is
x.is_nilpotent x.is_prime x.is_squarefree x.is_zero
x.is_one x.is_square x.is_unit x.isqrt
sage: x.is

To determine what a function does, type (the object, ’.’, and) the function name, followed
by a ? (and return):

87

sage: x.is_unit?
Type: builtin_function_or_method
Base Class: <type ’builtin_function_or_method’>
String Form: <built-in method is_unit of sage.rings.integer.Integer object at 0x86676f0>
Namespace: Interactive
Docstring:

Returns true if this integer is a unit, i.e., 1 or -1.

EXAMPLES:
sage: for n in srange(-2,3):

print n, n.is_unit()
-2 False
-1 True
0 False
1 True
2 False

Typing a double question mark ?? returns the same documentation string plus the source
code which implements the function in Python.

The parent of an object is itself a object in SAGE, which represents the mathematical
structure to which an object belongs:

sage: parent(x)
Integer Ring
sage: parent(y)
Rational Field

These parent classes admit their own member functions:

sage: ZZ = parent(x)
sage: ZZ.is_field()
False
sage: QQ = parent(y)
sage: QQ.is_field()
True

Assignment and output

As we have seen, the assignment operator is =. To print an object in SAGE, just type it

88 Appendix A. SAGE Constructions

at the command line:

sage: x = 2
sage: y = 2/1
sage: z = ’2’
sage: x
2
sage: y
2
sage: z
’2’

The operator == tests mathematical equality, which may involve an evaluation of one object
in the parent of the other to carry out the comparison.

> x == y
True
> z == y
False

In the first line above, the integer x is interpretted as a rational number and found to be
equal to y (and vice versa).

Booleans and boolean operators

The boolean truth values True and False have their own types in SAGE (in fact in
Python), which take the special binary boolean operators and, or, and unary operator
not.

sage: a = True
sage: type(a)
<type ’bool’>
sage: b = False
sage: a and b
False
sage: a or b
True
sage: not a
False

Lists, tuples, sets, and dictionaries

89

Python (hence SAGE) has useful datastructures called lists, tuples, and dictionaries which
can be used to collect objects in SAGE.

sage: type([])
<type ’list’>
sage: type(())
<type ’tuple’>
sage: type({})
<type ’dict’>

The list and tuple types collects sequences of data which is indexed like strings:

sage: s = [16, 9, 4, 1, 0, 1, 4, 9, 16]
sage: t = (16, 9, 4, 1, 0, 1, 4, 9, 16)
sage: [s[i] == t[i] for i in range(9)]
[True, True, True, True, True, True, True, True, True]

Note that all strings, lists, and tuples are indexed from 0 and range(n) returns the list of
elements from 0 to 9:

sage: range(9)
[0, 1, 2, 3, 4, 5, 6, 7, 8]

The main distinction is that tuples are immutable:

sage: t[0] = 4

<type ’exceptions.TypeError’> Traceback (most recent call last)

...

<type ’exceptions.TypeError’>: ’tuple’ object does not support item assignment

while list elements can be reassigned:

sage: s[0] = 4
sage: s[8] = 4
sage: s
[4, 9, 4, 1, 0, 1, 4, 9, 4]

90 Appendix A. SAGE Constructions

A set in SAGE (i.e. Python) represents a mathematical set – an unordered collection of
objects with each object represented only once.

sage: s = set([16, 9, 4, 1, 0, 1, 4, 9, 16])
sage: s
set([16, 9, 4, 0, 1])
sage: 16 in s
True
sage: len(s) # the cardinality of the set
5

The set type has very fast hashed lookup, so that membership test is efficient for sets of
large (finite) cardinality.

A dictionary is a useful tool for specifying a lookup table of data indexed by keys:

sage: u = { 0 : ’yes’, 1 : ’no’, 2 : ’no’, 3 : ’yes’ }
sage: u[0]
’yes’
sage: u[-1] = ’no’
sage: u[-2] = ’no’
sage: u[-3] = ’yes’
sage: u
{0: ’yes’, 1: ’no’, 2: ’no’, 3: ’yes’, -1: ’no’, -3: ’yes’, -2: ’no’}
sage: u.keys()
[0, 1, 2, 3, -1, -3, -2]

Loops and flow control

Recall that range(n) returns the sequence of integers (actually Python int’s) from 0

up to n. We demonstrate the use of for and if loops by printing the elements in 0,..,12

which are coprime to 12:

91

sage: n = 12
sage: for i in range(n):
....: if gcd(i,n) == 1:
....: print i # now hit enter twice
....:
1
5
7
11

Putting together our use of sets, we demonstrate the use of if and while loops to construct
the same set of integers in 0,..,n:

sage: n = 12
sage: r = euler_phi(n)
sage: i = 1
sage: S = set([i])
sage: while len(S) < r:
....: i += 1
....: if GCD(i,n) == 1:
....: S.add(i) # hit enter twice
....:
sage: S
set([1, 11, 5, 7])

In each instance the indentation level is crucial to determine the limits of the loops, which
can consist of several lines of commands.

Python Strings

A useful Python types for this course will be strings, which can be created by enclosing
input in double quotes or in single quotes.

92 Appendix A. SAGE Constructions

sage: S = ’This\n is\n a \n string’
sage: S
’This\n is\n a \n string’
sage: print S
This
is
a
string

sage: T = "This\n is\n a \n string"
sage: T
’This\n is\n a \n string’
sage: S == T
True

As seen above, a string can contain newline characters and spaces. The two characters
\, ", and ’ have special functionality, and must be typed as \\, \", and \’, respectively
(not quite True). The newline string can be created directly by "\n" or carriage return
"\r". Strings are like lists of characters, for which S[i] gives access to the i-th character
of string S. The member function join can be used to concatenate strings, but must be
applied to a string object! We demonstrate the use of these operators in the following
construction:

sage: s = "But Angie, Angie, ain’t it time we said good-bye?\n"
sage: t = "With no loving in our souls "
sage: u = "and no money in our coats\n"
sage: v = "You can’t say we’re satisfied\n\n"
sage: w = "...they can’t say we never tried"
sage: null = ’’
sage: angie = null.join([s,t,u,v,w])
sage: print angie
But Angie, Angie, ain’t it time we said good-bye?
With no loving in our souls and no money in our coats
You can’t say we’re satisfied
<BLANKLINE>
...they can’t say we never tried

and subsequently we cat deconstruct and reassemble our strings:

93

sage: I = [55+i for i in range(3)] + [124 + i for i in range(6)]
sage: I += [4,143,138,164,56,55]
sage: print null.join([angie[i] for i in I])
no satisfAction

94 Appendix A. SAGE Constructions

APPENDIX

B

SAGE Cryptosystems

String monoids

The main classes of string monoids are classical alphabetic string monoids, binary, and
hexadecimal string monoids.

sage: S = AlphabeticStrings()
sage: S
Free alphabetic string monoid on A-Z
sage: H = HexadecimalStrings()
sage: H
Free hexadecimal string monoid
sage: B = BinaryStrings()
sage: B
Free binary string monoid

Elements of these strings can be created either by accessing the generators:

sage: S.gens()
(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z)
sage: B.gens()
(0, 1)
sage: H.gens()
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f)

For example

95

sage: I = [7, 4, 11, 11, 14, 22, 14, 17, 11, 3]
sage: hello = S(’’)
sage: for i in I:
....: hello *= S.gen(i)
....:
sage: hello
HELLOWORLD

Alternatively we can either recognize a Python string in the given string monoid:

sage: S(’ABC’)
ABC
sage: H(’0a91’)
0a91
sage: B(’0110’)
0110

or use standard encodings to map ASCII strings to the monoid:

sage: S.encoding(’abc’)
ABC
sage: H.encoding(’abc’)
616263
sage: B.encoding(’abc’)
011000010110001001100011

Note that the first construction gives a non-injective map from ASCII strings to upper
case (stripping away non-alphabetic characters by mapping them to the empty string).
The latter two give the hexadecimal and binary encodings of the underlying ASCII bytes
for the characters. These altter are injective maps:

sage: S.encoding(’abc’).decoding()
ABC
sage: H.encoding(’abc’).decoding()
abc
sage: B.encoding(’abc’).decoding()
abc

96 Appendix B. SAGE Cryptosystems

Cryptosystems

Specific cryptosystem can be created in SAGE with the following commands:

sage: S = AlphabeticStrings()
sage: S
Free alphabetic string monoid on A-Z
sage: E = SubstitutionCryptosystem(S)
sage: T = TranspositionCryptosystem(S,15)
sage: T
Transposition cryptosystem on Free alphabetic string monoid on A-Z
of block length 15

The latter constructor (of the transposition cryptosystem) specifies a key length of 15
characters. The SAGE cryptosystem represents a ...

sage: K = E.random_key()
sage: K
HYTIKQRWXUPZBJSCANEFODLVMG # random

sage: K = S(’HYTIKQRWXUPZBJSCANEFODLVMG’)
sage: e = E(K)
sage: e
HYTIKQRWXUPZBJSCANEFODLVMG
sage: e(S(’THECATINTHEHAT’))
FWKTHFXJFWKWHF

sage: m = E.encoding("This is sample message text to be encoded.")
sage: m
THISISSAMPLEMESSAGETEXTTOBEENCODED
sage: c = e(m)
sage: c
FWXEXEEHBCZKBKEEHRKFKVFFSYKKJTSIKI
sage: L = E.inverse_key(K)
sage: E.enciphering(L,c)
THISISSAMPLEMESSAGETEXTTOBEENCODED
sage: E.deciphering(K,c)
THISISSAMPLEMESSAGETEXTTOBEENCODED

97

Exercises

Read over the above SAGE tutorial and become familiar with the concepts of type, parent,
assignment, basic constructions of integers, rationals, and strings, and with simple looping
and boolean operations.

Exercise B.1 For the function strip encoding, type the function name followed by a ?

at the SAGE prompt to display the docstring for the function. Do the same for

SubstitutionCryptosystem and TranspositionCryptosystem.

What are the components of this information, and what does it tell you?

Create a cryptosystem E and type

E.encoding?, E.random key? and E.enciphering?

to read the corresponding docstrings.

Solution. The docstring details of the path for the function and a description of its use.

Exercise B.2 Create the string in SAGE

“I am standing up at the water’s edge in my dream”

and assign it to a variable W . Next create the string monoid S of AlphabeticStrings.
Apply the member function encoding to W , while reassign W to be the output. What is
the encoded plaintext that you obtain?

Solution. The command encoding gives IAMSTANDINGUPATTHEWATERSEDGEINMYDREAM.

Exercise B.3 Define K to be the output of E.random key() for a substitution cryptosys-
tem. What is your key? Using the cipher E(K), to find the enciphering of W with respect
to the key K.

Solution. The substitution key UVLOIDTGKYZCRHBPMJQWXNFSAE enciphers the above plain-
text as KURQWUHOKHTXPUWWGIFUWIJQIOTIKHRAOJIUR.

Exercise B.4 Show that the deciphering map with respect to K is also a simple substitu-
tion. What is the inverse substitution key with respect to your particular K? Verify this
by creating the inverse key and enciphering the ciphertext with respect to it.

98 Appendix B. SAGE Cryptosystems

Solution. The inverse of the above substitution key is

YOLFZWHNERICQVDPSMXGABTUJK.

This can be verified by the following lines in SAGE:

sage: S = AlphabeticStrings()
sage: K = S(’UVLOIDTGKYZCRHBPMJQWXNFSAE’)
sage: E = SubstitutionCryptosystem(S)
sage: E.inverse_key(K)
YOLFZWHNERICQVDPSMXGABTUJK
sage: L = E.inverse_key(K)
sage: E.en
E.enciphering E.encoding
sage: E.enciphering(K,L)
ABCDEFGHIJKLMNOPQRSTUVWXYZ
sage: E.enciphering(L,K)
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Note that ABCDEFGHIJKLMNOPQRSTUVWXYZ is the identity substitution key.

99

100

APPENDIX

C

Solutions to Exercises

Introduction to Cryptography

Classical Cryptography

Substitution ciphers

Exercise 2.1 Determine the number of possible keys for the affine substitution ciphers. Is
this sufficient to have a secure cryptosystem?

Transposition ciphers

Exercise 2.2 Show that for every π in Sn, there exists an positive integer m, such that
πm is the identity map, and such that m divides n!. The smallest such m is called the order
of π.

Exercise 2.3 How many transpositions exist in Sn? Describe the elements of order 2 in
Sn and determine their number.

Exercise 2.4 Show that every element of Sn can be expressed as the composition of at
most n transpositions.

Exercise 2.5 What is the order of a permutation with cycle lengths d1, . . . , dt? How does
this solve the previous exercise concerning the order of a permutation?

Exercise 2.6 What is the block length m of an (r, s)-simple columnar transposition? De-
scribe the permutation. Hint: it may be easier to describe the permutation if the index set
is {0, . . . ,m− 1}.

101

Solution. The block length is the number of characters which are involved in each per-
mutation, which equals rs for an (r, s)-simple columnar transposition. In terms of maps
of indices, the k-th position maps to (i, j) in an array where i = ((k − 1) mod s) + 1 and
j = (k− 1) div s (for k in 1, . . . , rs). The transpose maps (i, j) to (j, i), which goes to the
new position π(k) = i + (j − 1)r in the ciphertext. The map k 7→ π(k) determines the in-
verse of the permutation on indices. The inverse permutation is determined by exchanging
the roles of r and s.

Exercise 2.7 Show that the (r, r)-simple columnar transposition has order 2. What is the
order of the cipher for (r, s) = (3, 5)? Determine the permutation in cycle notation for
this cipher. Determine the permutation in cycle notation for the (7, 36)-simple columnar
transposition used in this chapter.

Solution. For a (r, r)-simple columnar transposition one writes each r2-block into an r×r
array, applies a transposition, and reads the columns off as rows. It has order 2 since
two-fold application of the cipher acts as the identity on every r2-block.

In general, an (r, s)-simple columnar tranposition cipher does not have order 2 since the
transpose matrix does not have the same form, so r characters are read from each column,
while s characters are written into each row at the next application of the cipher. The
inverse of an (r, s)-simple columnar transposition is an (s, r)-simple columnar transposition.

The (3, 5)-simple columnar transposition is determined by the following map of indices

1 7→ 1, 2 7→ 6, 3 7→ 11, . . .

giving the map in list notation

[1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14, 5, 10, 15]

In SAGE we can construct this sequence and determine the cycle notation for the permu-
ation as follows:

sage: (r,s) = (3,5)
sage: G = SymmetricGroup(r*s)
sage: S = [i+s*j for i in range(1,s+1) for j in range(r)]
sage: S
[1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14, 5, 10, 15]
sage: G(S)
(2,6,12,14,10,4)(3,11,9,13,5,7)

The equivalent construction for (r, s) = (7, 36) follows.

102 Appendix C. Solutions to Exercises

sage: (r,s) = (7,5)
sage: G = SymmetricGroup(r*s)
sage: S = [i+s*j for i in range(1,s+1) for j in range(r)]
sage: G(S)
(2,6,26,24,14,32,20,28,34,30,10,12,22,4,16,8)
(3,11,17,13,27,29,5,21,33,25,19,23,9,7,31,15)

Elementary Cryptanalysis

One important measure of a cryptographic text is the coincidence index. For random text
(of uniformly distributed characters) in an alphabet of size 26, the coincidence index is
approximately 0.0385. For English text, this value is closer to 0.0661. Therefore we should
be able to pick out text which is a simple substitution or a transposition of English text,
since the a coincidence index remains unchanged.

The SAGE crypto string functions

coincidence index and frequency distribution

provide functionality for analysis of the ciphertexts in the exercises. Moreover, for a SAGE
string s the k-th decimation of period m for that string is given by s[k::m] (short for
s[k:len(s):m]).

Exercise 3.1 Complete the deciphering of the Vigenère ciphertext of Section 3.3 . What
do you note about the relation between the text and the enciphering or deciphering key? A
useful tool for this task could be the following javascript application for analyzing Vigenère
ciphers:

http://echidna.maths.usyd.edu.au/ kohel/tch/Crypto/vigenere.html

Consider those ciphertexts from previous exercises which come from a Vigenère cipher, and
determine the periods and keys for each of the ciphertext samples.

Exercise 3.2 For each of the cryptographic texts from the course web page, compute the
coincidence index of the ciphertexts. Can you tell which come from simple substitution or
transposition ciphers? How could you distinguish the two?

103

Solution. The coicidence index for each of the ciphertext samples is given in the table
below.

1. 0.0438722554890219
2. 0.0657023320387985
3. 0.0447239692522711
4. 0.0629545310820211
5. 0.0412801243845555
6. 0.0655225068362645
7. 0.0412339115637173
8. 0.0674918061066068
9. 0.0685573482676622

10. 0.0657341758094024
11. 0.0665847779993272

All but ciphertexts 1, 3, 5 and 7 are consistent with output from a simple substitution or
transposition cipher. It is likely that the exceptional ones employ a polyalphabetic cipher.
In order to distinguish substitution and transposition ciphers, it is necessary to look at
character distributions, e.g. a close match with the frequency distribution of English (or a
modern language) suggests a transposition cipher.

Exercise 3.3 For each of the cryptographic texts from the course web page, for various
periods extract the substrings of im + j-th characters. For those which are not simple
substitutions, can you identify a period?

Solution. Using the average coincidence index of the ciphertext decimations, we find that
the periods of the ciphertexts 1, 3, 5, and 7 are 11, 6, 14, and 9, respectively. The code to
verify this is:

sage: ct05 = strip_encoding(open("Ciphertext/cipher05.txt").read())
sage: n = len(ct05)
sage: for m in range(1,10):

cis = [ct05[i:n:m].coincidence_index() for i in range(m)]
print "%s : %s" % (m, sum(cis)/m)

with output:

104 Appendix C. Solutions to Exercises

1 : 0.0412801243845555
2 : 0.0424744413115725
3 : 0.0411679856535807
4 : 0.0432876773672201
5 : 0.0406338756102603
6 : 0.0431854895350470
7 : 0.0547229569294580
8 : 0.0428701713243436
9 : 0.0423160002107370

Noting the minor peak at m = 7, we continue with the loop:

sage: for m in range(10,19):
cis = [coincidence_index(ct05[i:n:m]) for i in range(m)]
print "%s : %s" % (m, sum(cis)/m)

to find the true period is m = 14:

10 : 0.0420455268414958
11 : 0.0418377321603127
12 : 0.0438681932102984
13 : 0.0391335947128655
14 : 0.0728669127225357
15 : 0.0393529497877323
16 : 0.0442427680090754
17 : 0.0417945039178898
18 : 0.0446147902288252
19 : 0.0393532851737185

Note that the coincidence index for each even test period is slightly higher, since these
involve an averaging over only 7, rather than 14, distinct substitutions.

Exercise 3.4 For each of the ciphertexts which you have reduced to simple substitutions,
consider the frequency distribution of the simple substitution texts. Now recover the keys
and original plaintext.

Solution. The first step in recovering the keys and plaintext is to determine the type of
cipher; further techniques are studied in later tutorials. Note that the ciphertexts 1, 3,
5, and 7 are the result of Vigenère cryptosystems, and can be deciphered by statistical

105

analysis of the each of the decimations with respect to their periods. A javascript program
from the course web page can be used for this purpose.

Exercise 3.5 (Correlations of sequence translations) Suppose that pt and ct are
plaintext and ciphertext whose frequency distributions are to be compared. Assume we
have defined:

sage: S = AlphabeticStrings()
sage: E = SubstitutionCryptosystem(S)

The following code finds the correlations between the affine translations of two sequences.

sage: X = pt.frequency_distribution()
sage: Z = ct.frequency_distribution()
sage: Y = DiscreteRandomVariable(X,Z.function())
sage: for j in range(26):
... K = S([(j+k)%26 for k in range(26)])
... print "%s: %s" % (j, X.translation_correlation(Y,E(K)))

What does frequency distribution return, and what are the ciphers e constructed in the
for loop? What does translation correlation return? Note that Ymust be created as a
discrete random variable on the probability space Xin order to compute their correlations.

Solution. Given two strings S1 = pt and S2 = ct with this computes their frequency
distributions, X1 and X2 (as discrete probability spaces). At each iteration of the for

loop, an affine translation cipher (a cyclic shift by k characters) is constructed. Then for
such cipher e, the correlation of X1 with X2 ◦ e is constructed. By comparing a standard
plaintext pt against affine translations of decimations of ciphertext ct we are able to break
the Vigenère enciphering in the exercise below.

Exercise 3.6 (Breaking Vigenère ciphers) A Vigenère cipher is reduced to an trans-
lation cipher by the process of decimation. How does the above exercise solve the problem
of finding the affine translation?

Apply this exercise to the Vigenére ciphertext sample cipher01.txt from the course web
page, and the break the enciphering. Recall that you will have to use the decimation (by
ct[i::m]) and coincidence index to first reduce a Vigenère ciphertext to the output of
a monoalphabetic cipher.

106 Appendix C. Solutions to Exercises

sage: X = frequency_distribution(pt)
sage: m = 11
sage: r = 0.75
sage: match = [[] for i in range(m)]
sage: for i in range(m):
... Z = frequency_distribution(ct[i::m])
... Y = DiscreteRandomVariable(X,Z.function())
... for j in range(26):
... K = S([(j+k)%26 for i in range(26)])
... corr = X.translation_correlation(Y,E(K))
... if corr > r:
... match[i].append(j)

Solution. We have already surmised that the first sample ciphertext, cipher01.txt, is
output from a Vigenére cipher of period 11. We the definitions as below:

sage: S = AlphabeticStrings()
sage: E = SubstitutionCryptosystem(S)
sage: pt = S.encoding(open("Plaintext/blackcat.txt").read())
sage: ct = S.encoding(open("Ciphertext/cipher01.txt").read())

the output of the above code gives

sage: match
[[], [7], [0], [], [], [18], [3], [4], [0], [], [4]]

A translation by 7 corresponds to the character H, by 0 to A, by 18 to S, and by 3 and 4
to Dand E, respectively. This gives the partial enciphering key *HA**SDEA*E. Deciphering
with respect to this key gives the plaintext blocks *HE**OETI*I, *KT**NPOM*N, etc.

Relaxing the bound from r = 0.75 to 0.50, one finds multiple solutions among them the
correct solution SHAKESPEARE, giving the plaintext

WHENMOSTIWINKTHENDOMINEEYESBESTSEEFORALLTHEDAYTHEYVIEWTHINGSUNRESP

Why is this a bad key choice?

Exercise 3.7 (Breaking substitution ciphers) Suppose that rather than an affine
translation, you have reduced to an arbitrary simple substitution. We need to undo an

107

arbitrary permutation of the alphabet. For this purpose we define maps into Euclidean
space:

1. A → A2 → R2 defined by

x 7−→ xx 7−→
(
P (x), P (xx)

)
.

2. A → A2 → R3 defined by

x 7−→ xy 7−→
(
P (x), P (xy | y), P (yx | y)

)
,

for some fixed character y.

See the document

http://echidna.maths.usyd.edu.au/ kohel/tch/Crypto/digraph frequencies.pdf

for standard vectors for the English language.

Solution. These maps can be applied to the solution of substitution ciphers by finding
nearest elements to a known standard for the English language. For instance, assume that
the ciphertext image x of E has been identified, one can look for pairs xy which are the
image of the plaintext pair ER, by searching for a nearest vector to:

(0.05674, 0.13071, 0.11352).

This will determine the ciphertext image y of R. This bootstrapping procedure successively
determines the substitution from the digraph frequencies of the ciphertext.

Exercise 3.8 (Breaking transposition ciphers) In order to break transposition ci-
phers it is necessary to find the period m, of the cipher, and then to identify positions
i and j within each block 1+km ≤ i, j ≤ (k+1)m which were adjacent prior to the permu-
tation of positions. Suppose we guess that m is the correct period. Then for a ciphertext
sample C = c1c2 . . . , and a choice of 1 ≤ i < j ≤ m, we can form the digraph decimation
sequence cicj, ci+mcj+m, ci+2mcj+2m,

Two statistical measures that we can use on ciphertext to determine if a digraph sequence
is typical of the English language are a digraph coincidence index

n∑
x∈A

n∑
y∈A

nxy(nxy − 1)

N(N − 1)

108 Appendix C. Solutions to Exercises

where N is the total number of character pairs, and nxy is the number of occurrences of
the pair xy, and the coincidence discriminant:

∑
x∈A

∑
y∈A

(
nxy

N
−
(∑

z∈A

nxz

N

)(∑
z∈A

nzy

N

))2

.

The first term is the frequency of xy, and the latter is the product over the frequencies of
x as a first character and y as a second character. The coincidence discriminant measures
the discrepancy between the probability space of pairs xy and the product probability space.

What behavior do you expect for the coincidence index and coincidence discriminant of
the above digraph decimation, if i and j were the positions of originally adjacent char-
acters? Test your hypotheses with decimations of “real” English text, using the SAGE
implementations of coincidence index and coincidence discriminant.

Why can we assume that i < j in the digraph sequence? What is the obstacle to extending
these statistical measures from two to more characters?

Solution. If i and j are the ciphertext images of adjacent positions k, k +1, in each block
of length m, then the sequence

cicj, ci+mcj+m, ci+2mcj+2m, . . .

will have the coincidence index and coincidence discriminant of the plaintext. Note that
the measures are invariant under a substitution, so can be used to break a combination
substitution-transposition cipher, by first breaking the transposition. The result will be a
sequence i1, i2, . . . , im of indices of positions which “want” to be associated.

Note that the measures, coicidence index and coincidence discriminant, will also be the
same for the sequence

cjci, cj+mci+m, cj+2mci+2m, . . .

so we do not directly distinguish the correct order from its reverse, im, . . . , i2, i1. This one
bit of information can be determined at the end, with the savings of being able to assume
i < j in testing for statistically associated pairs {i, j}.

Note also that for the incorrect period m there will be little or no tendency for statistical
association of characters, so by first varying the triples (i, j,m), with fixed i = 1 and
1 < j ≤ m, we can determine the probable period m and then recover the entire sequence
i1, i2, . . . im by letting i vary.

Information Theory

109

In order to understand naturally occurring languages, we consider the models for finite
languages X consisting of strings of fixed finite length N together with a probability func-
tion P which models the natural language. In what follows, for two strings x and y we
denote their concatenation by xy.

Exercise 4.1 Show that N is the maximum entropy for a probability function on bit strings
of length N .

Solution. None provided.

Exercise 4.2 Show that the rate of a uniform probability space is 1 and that this is the
maximal value for any probability space.

Solution. None provided.

Exercise 4.3 For a given cryptosystem, show that the definition

P (y) =
∑
K∈K

P (K)
∑
x∈M

EK(x)=y

P (x).

determines a probability function on the ciphertext space. Then verify the equalities:

P (y) =
∑
x∈M

P (x, y), and P (x) =
∑
y∈C

P (x, y).

Solution. None provided.

Exercise 4.4 Consider the language of 1-character strings over {A, B, C, D} with associated
probabilities 1/3, 1/12, 1/4, and 1/3. What is its corresponding entropy?

Solution. The entropy of the language is

1

3
log2(3) +

1

12
log2(12) +

1

4
log2(4) +

1

3
log2(3)

=
2

3
log2(3) +

1

12
(2 + log2(3)) +

1

2
=

2

3
+

3

4
log2(3),

which is approximately 1.855.

Exercise 4.5 Consider the language X2 of all strings of length 2 in {A, B, C, D} defined by
the probability function of Exercise 1 and 2-character independence: P (xy) = P (x)P (y).
What is the entropy of this language?

110 Appendix C. Solutions to Exercises

Solution. By rearranging the sum∑
x∈X

∑
y∈X

P (xy) log2(P (xy))

=
∑
x∈X

∑
y∈X

P (x)P (y)
(
log2 P (x) + log2 P (y)

)
one finds the entropy to be double that of Exercise 1, or about 3.711. This is consistent
with the interpretation of the entropy as the length of a random element of a language in
some theoretically optimal encoding.

Exercise 4.6 Let M be the strings of length 2 over {A, B, C, D} with the following frequency
distribution:

P (AA) = 5/36
P (AB) = 1/36
P (AC) = 7/72
P (AD) = 5/72

P (BA) = 0
P (BB) = 1/144
P (BC) = 1/48
P (BD) = 1/18

P (CA) = 1/12
P (CB) = 1/48
P (CC) = 1/16
P (CD) = 1/12

P (DA) = 1/9
P (DB) = 1/36
P (DC) = 5/72
P (DD) = 1/8

Show that the 1-character frequencies in this language are the same as for the language in
Exercise 2.

Solution. The 1-character frequencies can be defined as the average of the character
frequencies in the 1st and 2nd positions, but these turn out to be the same for each
character, and agree witht the frequencies of Exercise 1.

Exercise 4.7 Do you expect the entropy of the language of Exercise 3 to be greater or less
than that of Exercise 2? What is the entropy of each language?

Solution. The entropy of the language of Exercise 3 is approximately 3.633, compared to
an entropy of about 3.711 for that of Exercise 2.

The language of Exercise 2 is the most random space with given 1 character frequences.
The lower entropy in Exercise 3 could have been predicted since the probabilities agrees
with the 1 character frequencies, while additional structure (less uncertainty) is built into
the 2 character probabilities, since in general P (XY) 6= P (YX).

Exercise 4.8 Consider the infinite language of all strings over the alphabet {A}, with
probability function defined such that P (A . . . A) = 1/2n, where n is the length of the string
A . . . A. Show that the entropy of this language is 2.

Solution. One must verify the equality

∞∑
n=1

1

2n
log2(2

n) =
∞∑

n=1

n

2n
= 2.

111

We do this by first verifying the equality
∞∑

n=0

1

2n
+

∞∑
n=1

n

2n
= 2

∞∑
n=1

n

2n
,

together with the standard identity
∑∞

n=0 1/2n = 2.

Block Ciphers

We summarise the modes of operation covered in this chapter.

Electronic Codebook Mode. For a fixed key K, the output ciphertext is given by
Cj = EK(Mj) with output C1C2

Ciphertext Block Chaining Mode. For input key K, and initialization vector IV = C0,
the output ciphertext is given by Cj = EK(Cj−1 ⊕Mj), with output C0C1C2

Ciphertext Feedback Mode. Given plaintext M1M2 . . . in r-bit blocks, a key K, an
n-bit cipher EK , and an n-bit initialization vector IV = I1, the ciphertext is computed as:

Cj = Mj ⊕ Lr(EK(Ij))
Ij+1 = Rn−r(Ij) ||Cj

where Rn−r and Lr are the operators which take the right-most n−r bits and the left-most
r bits, respectively, and || is concatenation.

Output Feedback Mode. Given plaintext M1M2 . . . in r-bit blocks, a key K, an n-bit
cipher EK , and an n-bit initialization vector IV = I0, the ciphertext is computed as:

Ij = EK(Ij−1)

Cj = Mj ⊕ Lr(Ij),

where Lr is the operator which takes the left-most r bits.

Exercise 5.1 What mode of operation has been used in the assignment and in class up to
this point, and why? What are the security disadvantages of this mode of operation?

Solution. Electronic codebook mode – it leaves the cipher most open to analysis of its
statistical properties, so that we can demonstrate the methods to crack it. It is also the
most natural and näıve way to apply a block cipher.

Exercise 5.2 Let EK be the 4-bit cipher defined by:

EK(M) = (K ⊕M)

1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1

 = (X1 + X3, X2 + X4, X2 + X3, X1 + X4)

112 Appendix C. Solutions to Exercises

where X = K ⊕M = (X1, X2, X3, X4). Encipher the message M given by

11010110111001110010010001001000,

using the key K = 1011, in (i) ECB mode, in (ii) CBC mode with initialization vector
1001, and in (iii) CFB mode with initialization vector 1001 and r = 1.

Solution. The ciphertext output for each of ECB, CBC, and CFB modes is:

ECB mode: 11001010001111111100000000001111

CBC mode: 00001010000011111100111100001111

CFB mode: 00000111010000111110001011010001

Here the leading initialization vector 1001 is omitted in the CBC output.

Exercise 5.3 How many steps are required for error recovery from a ciphertext transmis-
sion error in ECB and CBC modes?

Solution. The blocks in ECB mode are independent, so error recovery is immediate, i.e.
an error affects only the block in which it occurs. In CBC mode recovery from erros occurs
after two blocks.

Exercise 5.4 If n = 64 and r = 8, how many steps in CFB mode does it take to recover
from an error in a ciphertext block? What about in OFB mode?

Solution. Recovery in CFB mode occurs after [n/r] = 64/8 = 8 blocks. In OFB mode
recovery is immediate, provided synchronization is not lost.

Stream Ciphers

Exercise 6.1 Identify each of the key stream, output, and next state functions for the
synchronous stream cipher determined by a block cipher in OFB mode of operation.

Solution. None provided.

Exercise 6.2 Identify the the key stream and output functions for the asynchronizing
stream cipher determined by a block cipher in each of CBC and 1-bit CFB modes.

113

Solution. None provided.

Linear feedback shift registers (LFSR’s) are an efficient way of describing and generating
certain sequences in hardware implementations. We derive and work with equivalent math-
ematical descriptions of the sequences produced by a LFSR, along with some generalized
sequences which do not arise in this way.

A linear feedback shift register is composed of a shift register R which contains a sequence
of bits and a feedback function f which is the bit sum (xor) of a subset of the entries of
the shift register. The shift register contains n memory cells, or stages, labelled Rn−1,. . . ,
R1, R0, each holding one bit. Each time a bit is needed the entry in stage R0 is output
while the entry in cell Ri is passed to cell Ri−1 and the top stage Rn−1 is updated with the
value f(R).

Exercise 6.3 Consider the following schematic of a linear feedback shift register:

⊕ oo

// R3
//

OO

R2
// R1

// R0
//

Let the initial entries of stages Ri be si, for 0 ≤ i ≤ n. For each of the following initial
entries below:

s3 s2 s1 s0

a) 0 1 1 0
b) 1 1 1 0
c) 1 0 1 0
d) 1 1 0 0

compute the first 16 bits in the output sequence. Show that the output sequence is defined
by the initial entries and the recursion si+4 = si+3 + si.

Solution. The recursion si+4 = si+3 + si is immediately apparent as that specified by the
diagram of the LFSR. From this recursion, the given initial states expand to the following
sequences:

a) 0110010001111010. . .
b) 1110101100100011. . .
c) 1010110010001111. . .
d) 1100100011110101. . .

Exercise 6.4 Show that every linear feedback register defines and is defined by a recursion
of the form si+n =

∑n−1
j=0 cjsi+j, where the cj are bits in Z/2Z; the products cjsi+j and the

summation are operations in Z/2Z.

N.B. The ring Z/2Z is also referred to as F2, the unique finite field of two elements. Note
that the addition operation is the same xor that we have been using and the multiplication
operation is the logical and operation.)

114 Appendix C. Solutions to Exercises

Solution. The data of a LFSR diagram, of a linear recurrences relation, and of a con-
nection polynomial are equivalent — they express the same information. The connection
polynomial g(x) =

∑
j cjx

j encodes the wiring of a LFSR which implements a recurrence

relation. Thinking of xj as a shift operator acting on the sequence s0, s1, s2, . . . , the be-
haviour of g(x) in the product g(x)s(x) (below) is precisely this recurrence relation.

Exercise 6.5 For a linear feedback register of length n, define a power series

s(x) =
∞∑
i=1

six
i

from the output sequence si. Suppose that the linear feedback register defines the recursion
si+n =

∑n−1
j=0 cn−jsi+j. Define a polynomial g(x) =

∑n−1
j=0 cjx

j + 1. Show that f(x) =
g(x)s(x) is a polynomial, that is, all of its coefficients are eventually zero. What is the
polynomial f(x)?

Solution. The expression f(x) = s(x)g(x) for a polynomial f(x) of degree less than
n = deg(g(x)) is another equivalent formulation of the recurrence relation. The initial
n coefficients of s(x) are the entries of the shift register, and the n coefficients of f(x) is
a linear combination of these coefficients. Although the coefficients of f(x) are not equal
to the initial state, for a nonsingular LFSR, the initial states are in bijection with the
numerator polynomials f(x).

Exercise 6.6 In the previous exercise we showed that the power series s(x) has the form
f(x)/g(x) in the power series ring F2[[x]]. In SAGE it is possible to form power series
rings in the following way

sage: F2 = FiniteField(2)
sage: PS.<x> = PowerSeriesRing(F2)
sage: f = x^2 + x
sage: g = x^3 + x + 1
sage: f/g + O(x^16)
x + x^4 + x^5 + x^6 + x^8 + x^11 + x^12 + x^13 + x^15 + O(x^16)

Consider the linear feedback shift register at the beginning of the worksheet. Construct
the corresponding power series and verify that these are the same of the output sequences
that you computed.

Solution. The power series expansions of the first question are:

s(x) = x + x2 + x5 + x9 + x10 + x11 + x12 + x14 + · · ·
s(x) = 1 + x + x2 + x4 + x6 + x7 + x10 + x14 + x15 + · · ·
s(x) = 1 + x2 + x4 + x5 + x8 + x12 + x13 + x14 + x15 + · · ·
s(x) = 1 + x + x4 + x8 + x9 + x10 + x11 + x13 + x15 + · · ·

115

Multiplying each through by the connection polynomial g(x) = x4 + x + 1, we find the
numerator polynomials for each of the sequences:

f(x) = x + x3

f(x) = 1 + x3

f(x) = 1 + x + x2 + x3

f(x) = 1 + x2

This verifies that the sequences output are consistent with their expected structure as
coefficients of a rational power series.

Statistical Properties. The output of a linear feedback shift operator of length n has a
period, which must divide 2n − 1. The period is independent of the initial state, provided
it is non-zero. If the period equals 2n−1, the output sequence is said to be an m-sequence.
The following theorem describes the statistical properties of m-sequences.

Theorem 6.1 Let s = s0s1 . . . be an m-sequence, and let k be an integer with 1 ≤ k ≤ n.
Then in each subsequence of s of length 2n + k − 2, every finite nonzero binary sequence
of length k appears as a subsequence exactly 2n−k times, and the length k zero subsequence
appears exactly 2n−k − 1 times.

A polynomial g(x) in F2[x] is irreducible if it is not the product of two polynomials of
degree greater than zero. An irreducible polynomial g(x) of degree n is primitive if g(x)
divides xN − 1 for N = 2n − 1 and no smaller value of N . (Equivalently, g(x) is primitive
if the powers xi are distinct modulo g(x), for i with 1 ≤ i ≤ 2n − 1.)

Linear Complexity. A linear feedback shift register is said to generate a binary sequence
s if there exists some initial state for which its output sequence is s. The linear complexity
L(s) of an infinite sequence s is defined to be zero if s is the zero sequence, infinity if s is
generated by no linear feedback shift register, and otherwise equal to the minimal length of
a linear feedback shift register generating s. The linear complexity L(s) of a finite sequence
s is defined to be the minimal length of a linear feedback shift register with initial sequence
s for some initial state.

Linear Complexity Profile. For a sequence s, define Lj(s) to be the linear complexity
of the first j terms of the sequence. The linear complexity profile of an infinite sequence
s is defined to be the infinite sequence L1(s), L2(s), . . . , and for a finite sequence s =
s0s1 . . . sN−1 is defined to be the finite sequence L1(s), L2(s), . . . , Ln(s).

LFSR Cryptosystems We introduce new utilities for binary stream cryptosystems based
on linear feedback shift registers. The functions binary encoding and binary decoding

convert ASCII text into its bit sequence and back. In addition, the new binary cryptosys-
tems are:

LFSRCryptosystem

ShrinkingGeneratorCryptosystem

116 Appendix C. Solutions to Exercises

Unlike the encoding function strip encoding we have used so far, the function
binary encoding is information-preserving, taking 8-bit ASCII input and returning the
binary encoding string. The inverse function binary decoding recovers the original text.

A linear feedback shift register cryptosystem is created in SAGE using the function
LFSRCryptosystem, taking no arguments. A key is defined by means of a pair, consisting
of the connection polynomial g(x) over F2 and a initial bit sequence of length equal to the
degree of the sequence. A sample use of the cryptosystem follows. The shrinking generator
cryptosystem is a cryptosystem based on a pair of LFSR’s as defined in class.

sage: F2 = FiniteField(2)
sage: P2.<x> = PolynomialRing(F2)
sage: g = x^17 + x^5 + 1
sage: IS = [F2.random_element() for i in range(17)]
sage: LFSR = LFSRCryptosystem()
sage: PT = LFSR.encoding("The dog ate my assignment."); PT
010101000110100001100101001000000110010001101111011001110
010000001100001011101000110010100100000011011010111100100
100000011000010111001101110011011010010110011101101110011
0110101100101011011100111010000101110
sage: K = (g,IS)
sage: e = LFSR(K)
sage: CT = e(PT)
sage: PT == e(CT)
True

Note that the encoding of the message is not ciphertext – this is the standard ASCII bit
encoding.

Exercise 6.7 Consider the coefficient sequence for f(x)/g(x) in F2[[x]], where g(x) =
1 + x + x4 and f(x) = 1 + x3. Is g(x) an irreducible polynomial? A primitive polynomial?
Draw the associated linear feedback shift register. What is the initial state of the shift
register?

Solution. The polynomial x4 +x+1 is an irreducible polynomial, which is primitive. The
LFSR with this connection polynomial was given in the previous tutorial. The primitivity
follows since none of the sequences, computed last week, had a period shorter than 15.
The initial state corresponding to the polynomial f(x) = x3 +1 was the second given value
1110 of the previous tutorial.

Exercise 6.8 Compute the linear complexity of the sequences 11, 1011, 10101, 10110, and
10011.

117

Solution. The linear complexity of the sequences 11, 1011, 10101, 10110, and 10011 is 1,
2, 2, 2, and 3. The initial values follow from extending the sequences with period 1, 3, 2,
and 3, with connection polynomials x + 1, x2 + x + 1, x2 + 1, and x2 + x + 1. The third
sequence can be extended to a sequence with period no better than 4, so it generated by
no LFSR of length 2. A possible connection polynomial is x4 +1 = (x+1)4, giving a LFSR
of length 4 which generates it. However, the divisor x3 + x2 + x + 1 = (x + 1)3 defines a
recursion for a LFSR of length 3. Hence the linear complexity for this sequence is 3.

Exercise 6.9 Compute the first 8 terms of the linear complexity profile of the coefficient
sequence from Exercise 1.

Solution. The first 8 terms of the linear complexity profile for the sequence of the first
question are:

[1, 1, 1, 3, 3, 3, 4, 4].

On the other hand, since the sequence is generated by a LFSR of length 4 we know that
the full infinite sequence becomes constant at 4.

Exercise 6.10 Practice encoding and enciphering with the LFSR stream cryptosystem.
The function binary decoding easily converts this back to ASCII text. Use these functions
to verify that PT is just the binary encoding of the original plaintext message and that the
ciphertext is enciphered.

Solution. The encoding and decoding member functions associated with a LFSR are just
a wrapper around binary encoding and binary decoding:

sage: LFSR = LFSRCryptosystem()
sage: PT = LFSR.encoding(’The dog ate my assignment.’); PT
010101000110100001100101001000000110010001101111011001110
010000001100001011101000110010100100000011011010111100100
100000011000010111001101110011011010010110011101101110011
0110101100101011011100111010000101110
sage: LFSR.decoding(PT)
’The dog ate my assignment.’

We verify using that binary decoding that the binary string also returnss the ASCII
message:

sage: PT.binary_decoding()
’The dog ate my assignment.’

118 Appendix C. Solutions to Exercises

Exercise 6.11 Since the LFSR is the bitsum of the binary keystream, generated by the
connection polynomial and initial state, why must the inverse key be equal to the key itself?

Solution. Since LFSR ciphertext is the bitsum of plaintext with a keystream, a subsequent
bitsum with the same keystream gives the original plaintext:

ci + si = (mi + si) + si = mi + (si + si) = mi + 0 = mi,

Therefore enciphering map is equal to deciphering map; in particular, the enciphering and
deciphering keys are the same.

Elementary Number Theory

Reduction modulo a polynomial g(x) or modulo an integer m plays a central role in the
mathematics of cryptography. Recall that for a monic polynomial g(x) of positive degree,
we define a(x) mod g(x) to the unique polynomial a0(x) with deg a0(x) < deg g(x) such
that

a(x) = a0(x) + a1(x)g(x).

For an integer m, we define a mod m to be the unique integer a0 with 0 ≤ a0 < m such
that a = a0 + a1m.

Fermat’s little theorem. If p is a prime, then the relation ap−1 ≡ 1 mod p holds for any
integer a not divisible by p.

Note. The SAGE function mod operates on integers, with the syntax:

sage: m = 101
sage: (2^31).mod(m)
34

The

same mathematical result can be achieved with the powermod function (for modular
powering):

sage: 2.powermod(31,m)
34

The latter construction, however, is more efficient.

Chinese remainder theorem. Let p and q be distinct primes, then for every integer
a and b there exists a unique integer c with 0 ≤ c < pq such that c ≡ a mod p and
c ≡ b mod q.

119

If a, b, and c are as above, then for any integral polynomial f(x), the integer f(c) satisfies
f(c) ≡ f(a) mod p and f(c) ≡ f(b) mod q. Therefore f(c) mod pq is the unique solution
to the Chinese remainder theorem.

Analogues of Fermat’s little theorem also hold for polynomials.

Polynomial analogue of Fermat. If g(x) is an irreducible polynomial of degree n over
F2, then the relation a(x)2n−1 ≡ 1 mod g(x) holds for any polynomial a(x) not divisible
by g(x).

Chinese remainder theorem. Let g(x) and h(x) be monic polynomials with no common
factors. Given any polynomials a(x) and b(x), there exists a unique polynomial c(x) such
that c(x) ≡ a(x) mod g(x) and c(x) ≡ b(x) mod h(x).

We can create and work with polynomials over F2 as demonstrated by the following
SAGE code.

sage: F2 = FiniteField(2)
sage: P2.<x> = PolynomialRing(F2)
sage: f = x^17 + x^5 + 1
sage: f.factor()
x^17 + x^5 + 1
sage: g = x^13 + x^5 + 1
sage: g.factor()
(x^2 + x + 1) * (x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^3 + x + 1)

Exercise 7.1 Let p be the prime 231− 1 = 2147483647. Use the SAGE function powermod

to verify Fermat’s little theorem for several values of a. Why would it be a bad idea to
compute ap−1 and then reduce modulo p?

Solution. The function a.powermod(e,p) computes the result of ae mod p by doing an
optimal number of squarings and multiplications, and reducing the intermediate results.
The size of the expanded result ae for large e, such as for e = p − 1 = 231 − 2, would
overflow the internal storage capacity of a computer, so it would be unwise to attempt to
structure the algorithm as a 7→ ae then to reduce modulo p.

Exercise 7.2 Let p be as above and let q = (261 + 1)/3 = 768614336404564651. Compute
ap−1 mod pq for various primes using powermod. Then reduce the result modulo p. How
do you explain the result in terms of the Chinese remainder theorem and Fermat’s little
theorem?

Solution. For primes p = 231 − 1 and q = (261 − 1)/3, we compute for a = 2 the power
2.powermod(p−1, pq) = 103161671333561841019606358. If we reduce modulo q, then result

120 Appendix C. Solutions to Exercises

is 624499148328708779 — pretty much a random number of size q. On the other hand,
if we reduce modulo p, the result is 1. This follows from Fermat’s little theorem, since
2.powermod(p− 1, pq) mod p is equal to the result 2.powermod(p− 1, p).

Exercise 7.3 Let g(x) = x17 + x5 + 1, and use the function powermod to verify the poly-
nomial analogue of Fermat’s little theorem for the polynomials x, x2 + x + 1, etc.

Solution. For the polynomial g(x) = x17 + x5 + 1, we should use exponent e = 217 − 1,
which we note is prime. We verify that each of the results x.powermod(e, g) and (x2 + x +
1)powermod(e, g) is 1. Since e is prime, this proves that g(x) is not only irreducible, but
also primitive.

Exercise 7.4 Let h(x) = x17 +x15 +x10 +x5 +1 and compute a(x)217−1 mod g(x)h(x) for
various a(x). What is the result reduced modulo g(x)? Why does the same not hold true
for a(x)217−1 mod g(x)h(x), reduced modulo h(x)?

Solution. With g(x) as above and h(x) = x17 + x15 + x10 + x5 + 1, the results
x.powermod(e,gh).mod(g) equals 1 holds as expected, exactly as in the previous exer-
cise. In this case, if h(x) is also irreducible, then the result:

x.powermod(e, gh) mod h = x16 + x15 + x14 + x11 + x10 + x8 + x6 + x3 + 1

would also have been 1. The fact that this result does not give 1 is a consequence of the
reducibility of h:

h = (x3 + x2 + 1)(x14 + x13 + x11 + x8 + x5 + x4 + x3 + x2 + 1).

Public Key Cryptography

The RSA cryptosystem is based on the difficulty of factoring large integers into its com-
posite primes.

Based on Fermat’s little theorem, we know that am ≡ 1 mod p exactly when p−1 divides
m. Therefore we recover the identity au ≡ a mod p where u is of the form 1 + (p − 1)r.
Now given any e such that e and p−1 have no common divisors, there exists a d such that
ed ≡ 1 mod p− 1. In other words, u = ed is of the form 1 + (p− 1)r. This means that the
map

a 7→ ae mod p

followed by
ae mod p 7→ (ae mod p)d mod p ≡ aed mod p = a mod p

are inverse maps. This only works for a prime p.

121

Exercise 8.5 Use SAGE to find a large prime p and to compute inverse exponentiation
pairs e and d. The following functions are of use:

random prime, gcd, xgcd, and inverse mod.

The RSA cryptosystem is based on the fact that for primes p and q and any integer e with
no common factors with p− 1 and q − 1, it is possible to find an d1 such that

ed1 ≡ 1 mod (p− 1),
ed2 ≡ 1 mod (q − 1).

Using the Chinese remainder theorem, it is possible to then find the unique d such that

d = d1 mod (p− 1) and d = d2 mod (q − 1)

in the range 1 ≤ d < (p− 1)(q − 1). This d has the property that

aed ≡ a mod n.

The send a message securely, the public key (e, n) is used. First we encoding the message as
an integer a mod n, then form the ciphertext ae mod n. The recipient recovers the message
using the secret exponent d.

Solution. The function call random prime(2100) returns a random prime of up to 100
bits. Suppose that the primes

p = 1172991670841347272989353064539,
q = 300997517969507552061104346547,

are found with this function, and set e = 5. We want to build the inverse exponent d such
that ed ≡ 1 mod (p − 1) and ed ≡ 1 mod (q − 1). Note first that gcd(e, p − 1) = 1 and
gcd(e, q− 1) = 1, so that such a d must exist. We first compute each of d mod (p− 1) and
d mod (q − 1).

sage: p = 1172991670841347272989353064539
sage: q = 300997517969507552061104346547
sage: e = 5
sage: d1 = inverse_mod(e,p-1)
sage: d1
703795002504808363793611838723
sage: d2 = inverse_mod(e,q-1)
sage: d2
240798014375606041648883477237

The value of d can now be computed modulo the value lcm(p−1, q−1) — this is sufficient
to determine the inverse, rather than the larger value of the product (p− 1)(q − 1).

122 Appendix C. Solutions to Exercises

We would like to compute the value of d, but the SAGE function crt complains that the
moduli p− 1 and q − 1 have a common factor.

sage: gcd(p-1,q-1);
6
sage: (p-1).factor()
2 * 3^3 * 13 * 23767 * 19475307419 * 3609932889503
sage: (q-1).factor()
2 * 3 * 17 * 5297 * 22123 * 152417 * 165217231734649

We can divide q − 1 by 6 to remove the common factor, and so compute the Chinese
remainder lifting as follows. Note first that the system is consistent — d1 and d2 are the
same modulo 6 since they are both inverses to e mod 6.

sage: d1 mod 6
5
sage: d2 mod 6
5

Since (q−1)/6 is not divisible by 2 or 3, we can proceed with the Chinese remainder lifting
with p− 1 and (q − 1)/6.

sage: d = crt([d1,d2],[p-1,(q-1).div(6)])
sage: d
35306758152215111348997570443072341096420788599987705538575

Alternatively we could have computed the inverse exponent d in one step by

sage: d = inverse_mod(e,lcm(p-1,q-1))
sage: d
35306758152215111348997570443072341096420788599987705538575

Exercise 8.6 Use your exponents e, d, verify the identities mod p:

(ae)d ≡ a mod n, (ad)e ≡ a mod n, and aed ≡ a mod n,

for various random values of a.

Note that after construction of d, the primes p and q are not needed, but that without
knowing the original factorization of n, Fermat’s little theorem does not apply, and finding
the inverse exponent for e is considered a hard problem.

123

Solution. Now we can verify that e and d are inverses modulo p − 1 and modulo q − 1,
and, moreover, that they determine inverse exponential maps modulo the RSA modulus
n = pq.

sage: (e*d).mod(p-1)
1
sage: (e*d).mod(q-1)
1
sage: n = p*q
sage: m = random_prime(n)
sage: c = m.powermod(e,n)
sage: m == c.powermod(d,n)
True
sage: m == m.powermod(e*d,n)
True

We use the RSA cryptosystem in SAGE as follows. First begin with encoding ASCII text
numerically:

sage: E := RSACryptosystem(128)
sage: m = E.encoding(’The dog ate my lunch.’); m
0101010001101000011001010010000001100100011011110110011100100\
0000110000101110100011001010010000001101101011110010010000001\
1011000111010101101110011000110110100000101110
sage: E.decoding(m)
’The dog ate my lunch.’

Note that, as with LFSR cryptosystems, RSA encoding uses the information-preserving
ASCII bit encoding, and encoding and decoding are true inverses. Caution: we note that
printing “decoded” ciphertext might render an terminal nonfunctional, since the resulting
ASCII text might contain escape characters which reset the terminal display.

To encipher, first we must create a key pair:

sage: (K, L) = E.random_key_pair()
sage: K
(49338921862830381807760291818994034053, 86398677368792768067556452456311743331)

This returns a pair of inverse keys K and L. We will consider K to be the public K and L to
be the private key.

N.B. The argument to RSACryptosystem specifies the number of bits in the RSA modulus.

124 Appendix C. Solutions to Exercises

With a value of 128, the modulus is of size 2128, or about 39 decimal digits. Each of the
primes is of size approximately 20 decimal digits. This particular example can be easily
broken by the factorization:

sage: x = K[0]; x
86398677368792768067556452456311743331
sage: x.factor()
6046864213681032211 * 14288178850339607921

Exercise 8.7 Use the above factorization to reproduce the private key L (generated but not
printed above) for this K.

Solution. Given the factorization

86398677368792768067556452456311743331

= 6046864213681032211 · 14288178850339607921,

we can find the inverse to the exponent

e = 49338921862830381807760291818994034053.

sage: e = 49338921862830381807760291818994034053
sage: p = 6046864213681032211
sage: q = 14288178850339607921
sage: d = inverse_mod(e,lcm(p-1,q-1))
sage: d
285484457605725559400259141876035917

It is now possible to verify as above that (e, n) and (d, n) server as inverse RSA keys.

Exercise 8.8 Why is the choice for which key is the public key and which key is the
private key arbitrary? Practice encoding, decoding, enciphering, and deciphering with the
RSA cryptosystem. Why do the member functions enciphering and deciphering return
the same values?

Solution. Provided that e is chosen as a random number in the range

1 ≤ e ≤ lcm(p− 1, q − 1),

125

which has no common factors with p − 1 or q − 1, then its inverse is a similarly random
value in this range. Therefore after creation, the decision of which key to publish as the
public key, and which key to guard as the private key is arbitrary.

N.B. Sometimes a special value, such as 3, 5, 17, 257, or 65537, is chosen as the public
exponent. These are each of the form 2r + 1, so that the enciphering can be done rapidly
using only r squarings and one multiplication. In such a case it is clear that no such
“obvious” value is suitable for the private key, and the symmetry of the choice between
public and private keys is broken.

An ElGamal cryptosystem is based on the difficulty of the Diffie–Hellman problem:
Given a prime p, a primitive element a of (Z/pZ)∗ = {c ∈ Z/pZ : c 6= 0}, and elements
c1 = ax and c2 = ay, find the element axy in (Z/pZ)∗.

Exercise 8.9 Recall the discrete logarithm problem: Given a prime p, a primitive element
a of (Z/pZ)∗, and an element c of (Z/pZ)∗, find an integer x such that c = ax. Explain
how a general solution to the discrete logarithm problem for p and a implies a solution to
the Diffie–Hellman problem.

Solution. Suppose that the discrete logarithm problem has an efficient solution. Then,
given a primitive element a of Fp, for every ax and ay we could solve for x = loga(a

x) and
for y = loga(a

y). It follows that we could then produce the value axy, which solves the
Diffie-Hellman problem.

Exercise 8.10 Fermat’s little theorem tells us that ap−1 = 1 for all a in (Z/pZ)∗. Recall
that a primitive element a has the property that Z/(p − 1)Z → (Z/pZ)∗ given by x 7→ ax

is a bijection.

1. Show that a is primitive if and only if ax = 1 only when p− 1 divides x.

2. Let p be prime 232 + 15. Show that a = 3 is a primitive element of (Z/pZ)∗. Use the
SAGE function log to compute discrete logarithms of elements of FiniteField(p)
with respect to a.

3. Let p be the prime 232 + 61. Show that the element a = 2 is a primitive element for
(Z/pZ)∗. Use the SAGE function log to compute discrete logarithms of elements of
FiniteField(p) with respect to a.

Solution. The statement of the definition of primitive is a formal statement equivalent to
that which follows. An element a of Z/pZ is primitive if and only if

1, a, a2, . . . , ap−2

are all distinct, and therefore enumerate all nonzero elements of Z/pZ.

126 Appendix C. Solutions to Exercises

1. Fermat’s little theorem tells us that the next value, ap−1 in this list is 1, and therefore
ax = 1 for all x = r(p− 1), and indeed, we have run out of nonzero elements so must
have a repeat at this point.

Conversely for any nonzero element a there must be some value t such that at = 1,
hence art = 1 for all r. We may assume that t divides p− 1, since if t′ = gcd(t, p− 1)
then there exist r and s such that t′ = rt + s(p− 1), so

1 = artas(p−1) = art+s(p−1) = at′ ,

and we can replace t by t′. Therefore the maximum length of a cycle 1, a, a2, . . . , at−1

divides p− 1 and is equal l to p− 1 exactly when a is primitive.

2. For p = 232 + 15, the factorization of p− 1 is 2 · 32 · 5 · 131 · 364289. We need to check
that 3x is not 1 mod p for any divisor of p− 1.

sage: p = 2^32+15
sage: m = p-1
sage: (m1, m2, m3, m4, m5) = (m.div(q) for q in (2,3,5,131,364289))
sage: powermod(3,m1,p);
4294967310
sage: powermod(3,m2,p);
2086193154
sage: powermod(3,m3,p);
239247313
sage: powermod(3,m4,p);
1859000016
sage: powermod(3,m5,p);
1338913740

How does this prove that 3 is a primitive element?

By producing random elements in Fp and computing discrete logarithms with respect
to a, we find that the time to compute discrete logarithms in Fp = Z/pZ is trivial.

sage: FF = FiniteField(p)
sage: x = FF(3)
sage: for i in range(4):
... y = FF.random_element()
... time n = log(y,x)

3. For p = 232 + 61, the factorization of p − 1 is 22 · 1073741839. We repeat the same
test as in the previous part.

127

sage: p = 2^32+61
sage: m = (p-1).quo_rem(2)[0]
sage: 2.powermod(m,p)
4294967356
sage: m = (p-1).quo_rem(1073741839)[0]
sage: 2.powermod(m,p)
16

The shows that 2 is a primitive element. Next we find that, for this prime p, that
the time to compute discrete logarithms in Fp = Z/pZ is nontrivial.

sage: FF = FiniteField(p)
sage: x = FF(2)
sage: for i in range(4):
... y = FF.random_element()
... time n = log(y,x)
816373
986893
931102
62625

Exercise 8.11 Compare the times to compute discrete logarithms in the previous exercise.
Now factor p − 1 for each p. What difference do you note? Explain the timings in terms
of the Chinese remainder theorem for Z/(p− 1)Z.

Solution. The nontrivial time for the discrete logarithm is due to the large prime divisor
of p− 1. The amount of time required to compute a discrete logarithm in Fp is dependent
on the size of the largest prime divisor of p− 1. The discrete logarithm can be computed
independently for each prime divisor of p− 1 — more correctly for prime power divisor —
and the discrete logarithm can be recovered by the Chinese remainder theorem, as is the
next example.

Exercise 8.12 Let p be the prime 2131 + 1883 and verify the factorization

p− 1 = 2 · 3 · 5 · 37 · 634466267339108669 · 3865430919824322067.

Let a = 109 and c = 1014452131230551128319928312434869768346 and set

n5 = (p− 1) div 634466267339108669

n6 = (p− 1) div 3865430919824322067.

128 Appendix C. Solutions to Exercises

Then verify that cn5 = a129n5 and cn6 = a127n6. Find similar relations for

n1 = (p− 1) div 2 n3 = (p− 1) div 5,
n2 = (p− 1) div 3 n4 = (p− 1) div 37.

and use this information to find the discrete logarithm of c with respect to a.

Solution. We set up the problem in SAGE in the following way.

sage: p = 2^131+1883
sage: fac = (p-1).factor(); fac
2 * 3 * 5 * 37 * 634466267339108669 * 3865430919824322067
sage: primes = [f[0] for f in (p-1).factor()]
sage: (p1, p2, p3, p4, p5, p6) = primes
sage: expons = ((p-1) // r for r in primes)
sage: (n1, n2, n3, n4, n5, n6) = expons

In this way, p1, p2, p3, p4, p5, and p6 are assigned to be the prime divisors of p− 1 and n1,
n2, n3, n4, n5, and n6 their cofactors.

Raising both generator a and its power c to the large exponents n1, n2, n3, and n4

reduces the solution to the discrete logarithm to one modulo p1 = 2, p2 = 3, p3 = 5, and
p4 = 37, which can be easily solved by enumerating all possibilities.

sage: FF = FiniteField(p)
sage: a = FF(109)
sage: c = FF(1014452131230551128319928312434869768346)
sage: [a^(n1*i) for i in range(2)].index(c^n1)
1
sage: [a^(n2*i) for i in range(3)].index(c^n2)
2
sage: [a^(n3*i) for i in range(5)].index(c^n3)
4
sage: [a^(n4*i) for i in range(37)].index(c^n4)
29
sage: crt([1,2,4,29],[2,3,5,37])
29

For the larger primes

p5 = 634466267339108669 and p6 = 3865430919824322067,

we verify the given discrete logarithms.

129

sage: a5 := a^n5
sage: c5 := c^n5
sage: a5^129
1106532280219457618983939634726858708298
sage: c5
1106532280219457618983939634726858708298
sage: a6 = a^n6
sage: c6 = c^n6
sage: a6^127
809579285918008980133272648385832028198
sage: c6
809579285918008980133272648385832028198

The discrete logarithm x can be recovered from the discrete logarithms xi = logai
(ci) where

ai = ani and ci = cni by using the function crt to find the Chinese remainder lifting.

sage: x = CRT([29,129,127],[2*3*5*37,p5,p6]);
sage: x
1075217203476555175652504438224037579
sage: a^x eq c
True

Digital Signatures

Secret Sharing

Exercise 10.1 Verify the correctness of the formula for the secret secret in Shamir’s secret
sharing scheme by substituting into the formula of Lagrange’s interpolation theorem.

130 Appendix C. Solutions to Exercises

APPENDIX

D

Revision Exercises

Let A be the alphabet {A, B, C, D, E}. Given the message A BAD CAB A DEAD DAD, we form
the strip–encoded plaintext

M = ABADCABADEADDAD

by removing all characters not in the alphabet.

Exercise D.1 Encipher the message M using the substitution key K = BDEAC. Find the
inverse key and verify the correctness by deciphering your ciphertext.

Solution. Recall that the key K = BDEAC specifies the map A 7→ B, B 7→ D, etc. This
results in the enciphering

M = ABADCABADEADDAD 7→ C = BDBAEBDBACBAABD.

Exercise D.2 Let A → Z/5Z be the bijection A 7→ 0, B 7→ 1, . . . , E 7→ 4. Encipher the
message M using the Vigenère key K = ADECB in ECB mode, then encipher the same
message using the same key and initialization vector BBBB, in CFB and OFB modes with
the block length n = 5 and r = 1. Rather than bit sum, use summation in Z/5Z for the
feedback. Verify the correctness of your results by then deciphering the ciphertext.

Solution. We make the identification M = ABADCABADEADDAD = 010320103403303 over
Z/5Z. In the same way, we write K = ADECB = 03421. The enciphering in ECB mode is
then 044030440001223 = AEEADAEEAAABCCD. The enciphering in CBC mode begins with
C0 = BBBBB = 11111, and since EK(Cj−1 ⊕ Mj) = Cj−1 ⊕ EK(Mj), we just add in the
previous ciphertext block to get

11111100141441410132 = BBBBBBAABEBEEBEBABDC.

131

The application of this function EK to form the state vectors Ij is particularly weak, since
only the first character of the key K and the first character of the initialization vector.
Since K = A ∗ ∗ ∗ ∗, this means Ij = B ∗ ∗ ∗ ∗, and so the ciphertext output is

BBBBBBCBEDBCBEABEEBE.

Exercise D.3 Let K = [3, 5, 4, 1, 2] be a transposition key. Encipher the message M in
ECB mode and in CBC mode. Verify the correctness of your results by deciphering the
ciphertext.

Solution. The key K = [3, 5, 4, 1, 2] specifies a transposition, under which M 7→
ACDABAEDABDDAAD in ECB mode. If we use the addition ⊕ of the previous question for the
feedback, then we get ciphertext

BBBBBACDABDADADCCAAC.

Check this work carefully for errors – no guarantees.

Exercise D.4 Which of the modes of operation leaves Vigenère ciphertext open to attack
by the Kasiski method? Which mode of operation was used for the block ciphers in the
course assignments, and why?

Solution. We made use of the ECB mode in order to preserve the structure of a Vigenère
ciphertext. This leaves this and other classical cryptosystems open to classical attacks such
as the Kasiski method.

Mathematics of LFSR’s

Next we focus on some of the mathmematical problems which arise in stream ciphers and
public key cryptography. The problems given are of a size which can be computed by hand,
with minimal effort if the proper method is used.

Exercise D.5 Let S be the set {x6+x+1, x6+x3+1, x6+x5+1, x6+x2+1} of polynomials
in F2[x].

1. Which of the polynomials are irreducible?

2. Which of the polynomials are primitive?

3. What are the periods of the linear feedback shift registers with the above connections
polynomials?

132 Appendix D. Revision Exercises

4. (∗) The polynomial g(x) = x6 + x5 + x4 + x3 + 1 is not irreducible. What is its
factorization, and what are the periods of output sequence of a linear feedback shift
register with g(x) as connection polynomial and initial states 010011, 010010, and
111111?

Solution. Let S be the set {x6 +x+1, x6 +x3 +1, x6 +x5 +1, x6 +x2 +1} of polynomials
in F2[x].

1. The polynomials x6+x+1, x6+x3+1, and x6+x5+1 are irreducible, but x6+x2+1 =
(x3 + x + 1)2.

2. Of the three irreducible polynomials, we find that x6 +x3 +1 generates LFSR output
of period 9, so is not primitive. The other two irreducible polynomials generate
output of period greater than 21 = 63/3, so must be primitive.

3. The periods are therefore 63, 9, 63, and (at most) 14. The period of 14 can be
determined for a specific value, but poor choices, like 1101001 can result in a period
of 7, since the connection polynomial is not irreducible.

4. The polynomial g(x) = x6 + x5 + x4 + x3 + 1 factors as (x2 + x + 1)(x4 + x + 1).
The LFSR outputs for initial states 010011, 010010, and 111111 with connection
polynomial g(x) are:

01001110011000001001110011000001 . . .
01001010100001101001010100001101 . . .
11111100010111011111100010111011 . . .

These each have periods 15, which equals 24− 1 (rather than 26− 1, which would be
the case if g(x) where irreducible.)

Mathematics of RSA

Exercise D.6 Let G = (Z/15Z)∗.

1. What are the elements of G?

2. Show that a = 2 is a primitive element for (Z/3Z)∗ and a = 3 is a primitive element
for (Z/5Z)∗.

3. Find an element a in Z which is primitive for both (Z/3Z)∗ and (Z/5Z)∗.

4. (∗) Why does it not make sense to speak of a primitive element for G?

133

5. (∗) How many elements a of G have the property of being primitive for both (Z/3Z)∗

and (Z/5Z)∗?

Solution.

1. The elements of (Z/15Z)∗ are

{1, 2, 4, 7, 8, 11, 13, 14},

the elements of Z/15Z coprime to 3 and 5.

2. Since {1, 2} = (Z/3Z)∗ and {1, 3, 9 = 4, 27 = 2} = (Z/5Z)∗, 2 and 3 are primitive
elements for these moduli.

3. The integer 8 is primitive in (Z/3Z)∗ and (Z/5Z)∗, since 8 is a CRT lift of the pair
(2, 3) in Z/3Z× Z/5Z, i.e. 8 ≡ 2 mod 3 and 8 ≡ 3 mod 5.

4. There is no primitive element for Z/15Z∗ since no single element generates all of
them. For instance the powers of 8 are:

1, 8, 64 = 4, 32 = 2, 16 = 1,

which generates a cycle of length only 4, whereas (Z/15Z)∗ has eight elements.

5. The elements of (Z/15Z)∗ which are primitive for both (Z/3Z)∗ and (Z/5Z)∗ are the
two CRT images of the pairs (2, 3) and (2, 2).

Mathematics of Diffie–Hellman

Exercise D.7 Let G1 = (Z/89Z)∗ and G2 = (Z/97Z)∗.

1. Show that 7 is a primitive element for G1 and for G2.

2. Solve the discrete logarithm problem log7(2) in G1 and in G2.

3. (∗) Which discrete logarithm is harder, and why?

Solution.

1. To show that 7 is a primitive element for (Z/89Z)∗ and (Z/97Z)∗, we need to show
that

744 6≡ 1 mod 89 748 6≡ 1 mod 97
78 6≡ 1 mod 89 732 6≡ 1 mod 97

These values can be computed using products of successive squares of 7, e.g. 744 =
7478732, so 74 ≡ 87 mod 89, 78 ≡ (−2)2 ≡ 4 mod 89, 716 ≡ 16 mod 89. Therefore
744 ≡ −1 mod 89, etc.

134 Appendix D. Revision Exercises

2. We find log7(2) = 48 in F89 and log7(2) = 94 in F97 using the baby-step, giant-step
method.

3. A discrete logarithm in (Z/97Z)∗ is theoretically easier to solve because 96 = 253, so
we solve the discrete logarithms using this factorization.

N.B. Verify that you can solve log7(2) using log7m(2m) where m = 32, and m =
48, 24, 12, 6, 3, and at each of the latter steps you only need to determine one additional
bit of information.

Mathematics of Shamir’s Secret Sharing Scheme

Recall the Lagrange interpolation theorem:

Theorem D.1 (Lagrange) Let k be a field and let f(x) be a polynomial over k of degree
less than t. Given t distinct elements x1, x2, . . . , xt of k, then f(x) equals

t∑
i=1

f(xi)
t∏

j=1
j 6=i

x− xj

xi − xj

Exercise D.8 Let F31 = Z/31Z be the finite field of 31 elements, and let

{(1, 1), (2, 16), (3, 25), (4, 28)}

be a set of pairs of the form (i, f(i)) for some polynomial f(x).

1. Find the value f(0) of the polynomial f(x) of degree 2 which interpolates the first
three points.

2. Find the polynomial f(x) of degree 2 which interpolates the first three points.

3. Show that the same polynomial passes through the fourth point.

4. Use the Lagrange interpolation theorem to conclude that f(x) is the unique polynomial
of degree less than 4 which passes through these four points.

Solution. Let F31 = Z/31Z be the finite field of 31 elements, and let

{(1, 1), (2, 16), (3, 25), (4, 28)}

be a set of pairs of the form (i, f(i)) for some polynomial f(x).

135

1. The value f(0) of the polynomial f(x) of degree 2 which interpolates the first three
points is given, using the first three shares, by

f(0) = 1 · (2)(3)

(2− 1)(3− 1)
+ 16 · (1)(3)

(1− 2)(3− 2)
+ 25 · (1)(2)

(1− 3)(2− 3)

= 1 · (3) + 16 · (−3) + 25 · (1) = 3 + 14 + 25 = 11.

Using the last three shares we find:

f(0) = 16 · (3)(4)

(3− 2)(4− 2)
+ 25 · (2)(4)

(2− 3)(4− 3)
+ 28 · (2)(3)

(2− 4)(3− 4)

= 16 · (6) + 25 · (−8) + 28 · (3) = 3 + 17 + 22 = 11.

N.B. Be careful to do any inversions modulo 31!!

2. Using the full formula, we get f(x) = 28x2 + 24x + 11.

3. Verify: f(4) = 28 · 42 + 24 · 4 + 11 = 14 + 3 + 11 = 28.

4. Since the polynomial f(x) agrees with the four points, this must be the unique
polynomial of degree less than four which does so.

136 Appendix D. Revision Exercises

