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Introduction to Cryptography

Cryptography is the study of mathematical techniques for all aspects of information
security. Cryptanalysis is the complementary science concerned with the methods to
defeat these techniques. Cryptology is the study of cryptography and cryptanaylsis. The
security of information encompasses the following aspects:

• confidentiality or privacy,

• data integrity,

• authentication,

• nonrepudiation.

Each of these aspects of message security can addressed by standard methods in cryptog-
raphy. Besides exchange of messages, tools from cryptography can be applied to sharing
an access key between multiple parties so that no one person can gain access to a vault
by any two of them can. Another role is in the design of electronic forms of cash.

Definitions and Terminology

Encryption = the process of disguising a message so as to hide the information it contains;
this process can include both encoding and enciphering (see definitions below).

Protocol = an algorithm, defined by a sequence of steps, precisely specifying the actions
of multiple parties in order to achieve an objective.

Plaintext = the message to be transmitted or stored.

Ciphertext = the disguised message.

Alphabet = a collection of symbols, also referred to as characters.

Character = an element of an alphabet.

Bit = a character 0 or 1 of the binary alphabet.

String = a finite sequence of characters in some alphabet.

Example. The following are some standard alphabets.
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A, . . . , Z 26 symbols MSDOS (less punctuation)
ASCII 7-bit words (128 symbols) American standard
extended 8-bit words (256 symbols)

ISO-8859-1 8-bit words (256 symbols) European standard
Binary {0,1} Numerical alphabet base 2
Octal {0,. . . ,7} Numerical alphabet base 8
Decimal {0,. . . ,9} Numerical alphabet base 10
Hexadecimal {0,. . . ,9,a,b,c,d,e,f} Numerical alphabet base 16

Encode = to convert a message into a representation in a standard alphabet, such as to
the alphabet {A, . . . , Z} or to numerical alphabet.

Decode = to convert the encoded message back to its original alphabet and original form
— the term plaintext will apply to either the original or the encoded form. The process of
encoding a message is not an obscure process, and the result that we get can be considered
equivalent to the plaintext message.

Cipher = a map from a space of plaintext to a space of ciphertext.

Encipher = to convert plaintext into ciphertext.

Decipher = to convert ciphertext back to plaintext.

Stream cipher = a cipher which acts on the plaintext one symbol at a time.

Block cipher = a cipher which acts on the plaintext in blocks of symbols.

Substitution cipher = a stream cipher which acts on the plaintext by making a substitution
of the characters with elements of a new alphabet or by a permutation of the characters
in the plaintext alphabet.

Transposition cipher = a block cipher which acts on the plaintext by permuting the
positions of the characters in the plaintext.

Example. The following is an example of a substitution cipher:

A B C D E F G H · · · Z

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ · · · ↓ ↓
P C O N A W Y · · · L S

which takes the plaintext BAD CAFE BED to the ciphertext CPOS ANSNO.

Cryptosystems

Given an alphabet A we define A∗ to be the set of all strings over A. In order to
define a cryptosystem, we require a collection of sets:

A = plaintext alphabet A′ = ciphertext alphabet
M = plaintext space C = ciphertext space
K = (plaintext) keyspace K′ = (ciphertext) keyspace
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where M is a subset of A∗, C is a subset of A′∗, and K and K′ are sets which are generally
strings of fixed finite length over some alphabets (e.g. An or A′n). A cryptosystem or
encryption scheme is a pair (E,D) of maps

E : K ×M −→ C
D : K′× C −→ M

such that for each K in K there exists a K ′ in K′ such that

D(K ′, E(K,M)) = M

for all M in M. We write EK for the map E(K, ·) : M → C and similarly write DK′ for
D(K ′, ·) : C → M. With this notation the condition on E, D, K and K ′ is that DK′ ◦EK

is the identity map on M.

We will refer to EK as a cipher, and note that a cipher is necessarily injective. For
many cryptosystems, there will exist a unique inverse ciphertext key K ′ associated to
each plaintext key K. A cryptosystem for which the inverse key K ′ is K itself (hence
K = K′) is said to be symmetric. If the inverse key K ′ associated to K is neither K itself
nor easily computable function of K, then we say that the cryptosystem is asymmetric or
a public key cryptosystem.

A fundamental principle of cryptography is that the security of a cipher EK (i.e. the
difficulty in finding DK′) does not rest on the lack of knowledge of the cryptosystem
(E,D). Instead, security should be based on the secrecy of K ′.

Recall that a (cryptographic) protocol is an algorithm, defined by a sequence of steps,
precisely specifying the actions of multiple parties in order to achieve a (security) objec-
tive. An example of a cryptographic protocol, we describe the steps for message exchange
using a symmetric key cryptosystem.

1. Alice and Bob publicly agree on a cryptosystem (E,D).
2. For each message M Alice → Bob:

a) Alice and Bob agree on a secret key K.
b) Alice computes C = EK(M) and sends it to Bob.
c) Bob computes M = DK(C) to obtain the plaintext.

The difficulty of step 2.a) was one of the fundamental obstructions to cryptography
before the advent of public key cryptography. Asymmetric cryptography provides an
elegant solution to the problem of distribution of private keys.

Substitution Cryptosystems

Classically, cryptosystems were character-based algorithms. Cryptosystems would
substitute characters, permute (or transpose) characters, or do a combination of those
operations.
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Notation

Throughout the course we will denote the plaintext alphabet by A and the ciphertext

alphabet by A′. We write EK for the enciphering map and DK′ for the deciphering map,
where K and K ′ are enciphering and deciphering keys.

Substitution Ciphers

We identify four different types of substitution ciphers.

A. Simple substitution ciphers. In this cryptosystem, the algorithm is a character-
by-character substitution, with the key being the list of substitutions under the ordering
of the alphabet. In other words, a simple substitution cipher is defined by a map A → A′.

Suppose that we first encode a message by purging all nonalphabetic characters (e.g.
numbers, spaces, and punctuation) and changing all characters to uppercase. Then the
key size, which bounds the security of the system, is 26 alphabetic characters. Therefore
the total number of keys is 26!, an enormous number. Nevertheless, we will see that
simple substitution is very susceptible to cryptanalytic attacks.

Example. Consider this paragraph, encoded in this way, to obtain the plaintext:

SUPPOSETHATWEFIRSTENCODEAMESSAGEBYPURGINGALLNONALPHABETI

CCHARACTERSEGNUMBERSSPACESANDPUNCTUATIONANDCHANGINGALLCH

ARACTERSTOUPPERCASETHENTHEKEYSIZEWHICHBOUNDSTHESECURITYO

FTHESYSTEMISALPHABETICCHARACTERSTHEREFORETHETOTALNUMBERO

FKEYSISOFENORMOUSSIZENEVERTHELESSWEWILLSEETHATSIMPLESUBS

TITUTIONISVERYSUSCEPTIBLETOCRYPTANALYTICATTACKS

then using the enciphering key UVLOIDTGKXYCRHBPMZJQVWNFSAE, we encipher the plaintext
to obtain ciphertext:

QWMMPQDVKUVFDTXJQVDBOPIDUHDQQUGDLAMWJGXBGURRBPBURMKULDVX

OOKUJUOVDJQDGBWHLDJQQMUODQUBIMWBOVWUVXPBUBIOKUBGXBGURROK

UJUOVDJQVPWMMDJOUQDVKDBVKDCDAQXEDFKXOKLPWBIQVKDQDOWJXVAP

TVKDQAQVDHXQURMKULDVXOOKUJUOVDJQVKDJDTPJDVKDVPVURBWHLDJP

TCDAQXQPTDBPJHPWQQXEDBDNDJVKDRDQQFDFXRRQDDVKUVQXHMRDQWLQ

VXVWVXPBXQNDJAQWQODMVXLRDVPOJAMVUBURAVXOUVVUOCQ

Simple substitution ciphers can be easily broken because the cipher does not change the
frequencies of the symbols of the plaintext.

Affine ciphers. A special case of simple substitution ciphers are the affine ciphers. If
we numerically encode the alphabet {A, B . . . , Z} as the elements {0, 1, . . . , 25} of Z/26Z
then we can operate on the letters by transformations of the form x 7→ ax+ b, for any a
for which GCD(a, 26) = 1. What happens if a is not coprime to 26?
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An affine cipher for which a = 1 is called a translation cipher. Enciphering in a
translation cipher is achieved by the performing b cyclic shift operations (A 7→ B, B 7→ C,
etc.) on the underlying alphabet.

A classical instance of a translation cipher is the Caesar cipher, used by Julius
Caesar, which is the translation cipher with the enciphering key b = 3. Using Caesar’s
enciphering key, we obtain the map A 7→ D, B 7→ E, . . . , Z 7→ C.

Thought Exercise. Consider the number of possible keys for the affine ciphers. Is this
sufficient to have a secure cryptosystem?

B. Homophonic substitution ciphers. In this cryptosystem the deciphering is a
function from a larger alphabet A′ to the alphabet A, but an enciphering of the plaintext
can take a character to any one of the elements in the preimage.

One way to realize a homophonic cipher is to begin with m different substitution keys,
and with each substitution, make a random choice of which key to use. For instance,
suppose we take A to be own standard 26 character alphabet, and let the cipher alphabet
A′ be the set of character pairs. Suppose now that we the pair of substitution keys in the
ciphertext alphabet:

LV MJ CW XP QO IG EZ NB YH UA DS RK TF MJ XO SL PE NU FV TC QD RK YH GW AB ZI

UD PY KG JN SH MC FT LX BQ EI VR ZA OW XP HO DJ CY RN ZV WT LA SF BM GU QK IE

as our homophonic key.

In order to encipher the message:

“Always look on the bright side of life.”

we strip it down to our plaintext alphabet to get the plaintext string:

ALWAYSLOOKONTHEBRIGHTSIDEOFLIFE

Then each of the following strings are valid ciphertext:

LVRKYHLVABZVRKHOHOVRHOXPWTLXQOMJNUYHFTNBTCFVYHJNQOHOMCZABQMCSH

UDZAYHUDQKZVZAHOXODSXOMJTCLXSHMJRNBQFTNBWTZVBQXPQOHOIGZABQMCSH

LVRKYHUDQKZVRKXOXODSHOXPTCLXQOPYRNBQEZNBTCFVBQXPSHHOIGZAYHMCSH

LVZABMUDABFVRKHOHODSHOXPWTLXQOPYRNBQEZNBTCZVBQXPQOXOIGZABQMCQO

Moreover, each uniquely deciphers back to the original plaintext.

C. Polyalphabetic substitution ciphers. A polyalphabetic substitution cipher, like
the homophonic cipher, uses multiple keys, but the choice of key is not selected randomly,
rather it is determined based on the position within the plaintext. Most polyalphabetic
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ciphers are periodic substitution ciphers, which substitutes the (mj+ i)-th plaintext char-
acter using the i-th key, where 1 ≤ i ≤ m. The number m is called the period.

Vigenère cipher. The Vigenère cipher is a polyalphabetic translation cipher, that is,
each of the m keys specifies an affine translation.

Suppose that we take our standard alphabet {A, B, . . . , Z} with the bijection with
Z/26Z = {0, 1, . . . , 25}. Then beginning with the message:

Human salvation lies in the hands

of the creatively maladjusted.

This gives the encoded plaintext:

HUMANSALVATIONLIESINTHEHANDSOFTHECREATIVELYMALADJUSTED

The with the enciphering key UVLOID, the Vigenère enciphering is given by performing
the column additions:

HUMANS ALVATI ONLIES INTHEH ANDSOF THECRE ATIVEL YMALAD JUSTED

UVLOID UVLOID UVLOID UVLOID UVLOID UVLOID UVLOID UVLOID UVLOID

--------------------------------------------------------------

BPXOVV UGGOBL IIWWMV CIEVMK UIOGWI NCPQZH UOTJMO SHLZIG DPDHMG

Recall that the addition is to be carried out in Z/26Z, with the bijection defined by the
following table:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

D. Polygram substitution ciphers. A polygram substitution cipher is a cryptosystem
in which blocks of characters are substituted in groups. For instance (for a particular key)
AA could map to NO, AB to IR, JU to AQ, etc. These cryptosystems make cryptanalysis
harder by destroying the single character frequencies, preserved under simple substitution
ciphers.

General affine ciphers. An affine cipher can be generalised to polygram ciphers. Rather
than a map m 7→ c = ma+ b, we can apply a linear transformation of vectors

u = (m1, . . . ,mn) 7→ (c1, . . . , cn) = uA+ v,

for some invertible matrix A = (aij) and vector v = (b1, . . . , bn). As before we numerically
encode an alphabet {A, B . . . , Z} as the elements {0, 1, . . . , 25} of Z/26Z. Then each n-
tuple of characters m1m2 . . .mn is identified with the vector u = (m1,m2, . . . ,mn). Note
that matrix multiplication is defined as usual, so that

cj = (
n

∑

i=1

miaij) + bj,
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with the result interpretted modulo 26 as an element of Z/26Z.

As a special case, consider 2-character polygrams, so that

AA = (0, 0), . . . , ZY = (25, 24), ZZ = (25, 25).

The matrix A given by
(

1 8
21 3

)

and vector v = (13, 14) defines a map

AA = ( 0, 0) 7→ (13, 14) = NO
...

...
ZY = (25, 24) 7→ (22, 0) = WA

ZZ = (25, 25) 7→ (17, 3) = RD

which is a simple substitution on the 2-character polygrams. Note that the number of
affine ciphers is much less than all possible substutions, but grows exponentially in the
number n of characters.
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Transposition ciphers.

Recall that a substitution cipher permutes the characters of the plaintext alphabet, or
may, more generally, map the plaintext characters into a different ciphertext alphabet. In
a transposition cipher, the symbols of the plaintext remain the same unchanged, but their
order is permuted by a permutation of the index positions. Unlike substitution ciphers,
transposition ciphers are block ciphers.

The relation between substitution ciphers and transposition ciphers is illustrated be-
low. The characters and their positions of the plaintext string ACATINTHEHAT appear in a
graph with a character axis c and a position index i for the 12 character block 1 ≤ i ≤ n.
We represented as a graph a substitution cipher (with equal plaintext and ciphertext al-
phabets) is realised as a permutation of the rows of the array, while a transposition cipher
is realised by permuting the columns in fixed size blocks, in this case 12.

Z
Y
X
W
V
U
T T T T
S
R
Q
P
O
N N
M
L
K
J
I I
H H H
G
F
E E
D
C C
B
A A A A

1 2 3 4 5 6 7 8 9 10 11 12

Permutation Groups

The symmetric group Sn is the set of all bijective maps from the set {1, . . . , n} to
itself, and we call an elements π of Sn a permutation. We denote the n-th composition of
π with itself by πn. As a function write π on the right, so that the image of j is (j)π.

Exercise. Show that for every π in Sn, there exists an positive integer m, such that πm

is the identity map, and such that m divides n!. The smallest such m is called the order
of π.

Notation for Permuations
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The map (j)π = ij can be denoted by [i1, . . . , in]. This is the way, in effect, that we
have described a key for a substitution cipher — we list the sequence of characters in
the image of A, B, C, etc. Although these permutations act on the set of the characters
A, . . . , Z rather than the integers 1, . . . , n, the principle is identical.

An element of Sn is called a transposition if and only if it exhanges exactly two
elements, leaving all others fixed.

Exercise. How many transpositions exist in Sn? Describe the elements of order 2 in Sn.
How many are there?

Exercise. Show that every element of Sn can be expressed as the composition of at most
n transpositions.

Orbit Structure and Cycle Notation

Given a permutation π in Sn there exists a unique orbit decomposition:

{1, . . . , n} =
t

∐

k=1

{(ik)π
j : j ∈ Z},

where the symbol
∐

refers to a disjoint union, that is, ik is not equal to (iℓ)π
j for any j

unless k = ℓ. The sets {(ik)π
j : j ∈ Z} are called the orbits of π, and the cycle lengths

of π are the sizes d1, . . . , dt of the orbits.

Asociated to any orbit decomposition we can express an element π as

π =
(

i1, (i1)π, . . . , (i1)π
d1−1

)

· · ·
(

it, (it)π, . . . , (it)π
dt−1

)

Note that if dk = 1, then we omit this term, and the identity permutation can be written
just as 1. This notation gives more information about the permutation π and is more
compact for simple permutations such as transpositions.

Exercise. What is the order of a permuation with cycle lengths d1, . . . , dt? How does
this solve the previous exercise concerning the order of a permuation?

Simple Columnar Transposition

The simplest example of a transposition cipher is an (r, s)-simple columnar transposi-
tion. In this cryptosystem the plaintext is written in blocks as r rows of fixed length s. The
ciphertext is read off as the columns of this array. Suppose we begin with the plaintext:
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I was riding on the Mayflower

When I thought I spied some land

I yelled for Captain Arab

I have yuh understand

Who came running to the deck

Said, "Boys, forget the whale

Look on over yonder

Cut the engines

Change the sail

Haul on the bowline"

We sang that melody

Like all tough sailors do

When they are far away at sea

Stripped to our plaintext alphbet and written in lines of 36 characters each, we have the
plaintext:

IWASRIDINGONTHEMAYFLOWERWHENITHOUGHT

ISPIEDSOMELANDIYELLEDFORCAPTAINARABI

HAVEYUHUNDERSTANDWHOCAMERUNNINGTOTHE

DECKSAIDBOYSFORGETTHEWHALELOOKONOVER

YONDERCUTTHEENGINESCHANGETHESAILHAUL

ONTHEBOWLINEWESANGTHATMELODYLIKEALLT

OUGHSAILORSDOWHENTHEYAREFARAWAYATSEA

Reading off the columns, we obtain the following ciphertext under the columnar transpo-
sition cipher:

IIHDYOOWSAEONUAPVCNTGSIEKDHHREYSEESIDUARBADSHICOIIOUDUWL

NMNBTLOGEDOTIROLEYHNSNARSEEDTNSFEWOHDTONEWEIARGSHMYNGIAE

AEDENNNYLWTEGTFLHTSTHLEOHCHEODCEHAYWFAWATAEOMHNMRRREAGEE

WCRLELFHAUETOAEPNLHDRNTNOEYAIAIOSLWTINKAIAHNGOIKYOATNLEA

UROOHATGATVALSHBHEULETIERLTA

Exercise. What is the block length m of an (r, s)-simple columnar transposition? De-
scribe the permutation. Hint: it may be easier to describe the permutation if the index
set is {0, . . . ,m− 1}.

Exercise. Show that the (r, r)-simple columnar transposition has order 2. What is the
order of the cipher for (r, s) = (3, 5)? What are the cycle lengths?

Cryptanalysis of Transposition Ciphers

A transposition cipher can easily be recognized by an analysis of character frequencies.
Iterating transposition ciphers can greatly increase security, but as with substitution
ciphers, almost all such ciphers can be broken. Although many modern cryptosystems
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incorporate transposition ciphers, the operation on large blocks has the disadvantage of
requiring a lot of memory.

Enigma and Rotor Machines

Background on rotor machines and, in particular, the Enigma, will be covered in the
lectures only.


