
24 Elementary Cryptography

Block Ciphers

Data Encryption Standard

The Data Encryption Standard, or DES, is one of the most important examples of a
Feistel cryptosystem. DES was the result of a contest set by the U.S. National Bureau
of Standards (now called the NIST) in 1973, and adopted as a standard for unclassified
applications in 1977.

The winning standard was developed at IBM, as a modification of the previous sys-
tem called LUCIFER. The DES is widely used for encryption of PIN numbers, bank
transactions, and the like. DES is also specified as an Australian banking standard.

The DES is an example of a Feistel cipher, which operates on blocks of 64 bits at a
time, with an input key of 64 bits. Every 8th bit in the input key is a parity check bit
which means that in fact the key size is effectively reduced to 56 bits.

Advanced Encryption Standard

In 1997, the NIST called for submissions for a new standard to replace the aging DES.
The contest terminated in November 2000 with the selection of the Rijndael cryptosystem
as the Advanced Encryption Standard (AES).

Product ciphers and Feistel ciphers

As a precursor to the description of DES, we make the following definitions, which
describe various aspects of the constructions, specific properties, and design components
of DES.

A product cipher is a composite of two or more elementary ciphers with the goal
of producing a cipher which is more secure that any of the individual components. A
substitution-permutation network is a product cipher composed of stages, each involving
substitutions and permutations, in which the blocks can be partitioned into smaller blocks
for substitutions and recombined with permutations. An iterated block cipher is a block
cipher involving the repetition of an internal round function, which may involve a key as
input. Each of the sequential steps is termed a round.

We now describe in more detail an example of an iterated block cipher, called a Feistel
cipher. In a Feistel the input block is of even length 2t, of the form L0R0, and outputs
ciphertext of the form RrLr. For each i such that 1 ≤ i ≤ r, the round map takes Li−1Ri−1

to LiRi, where Li = Ri−1 and Ri = Li−1⊕fKi
(Ri−1), where fKi

is a cipher which depends
only on an input subkey Ki, which is derived from the cipher key K.



Block Ciphers 25

The flow of the Feistel cipher therefore looks something like:

Li−1

PPPPPPPP
Ri−1

fKi

~~}}
}}

}}
}}

}}
}

⊕
²²

Li Ri

We can eliminate the Li by defining R−1 = L0, so that the input is R−1R0, and the round
operations are of the form Ri = Ri−2 ⊕ fKi

(Ri−1), in which case the flow diagram looks
like:

ÀÀ

Ri−2

fKi−1

ÀÀ

⊕
²²

Ri−1

fKi

⊕
²²

Ri

The final output of the Feistel cipher is the inverted pair RrLr = RrRr−1, which allows
the Feistel cipher to be inverted by running through the same algorithm with the key
sequence reversed.

Exercise. Verify that reversing the internal key sequence gives the inverse cipher.

Proof. We prove this exercise for the convenience of the reader, by a comparison of the
enciphering and deciphering sequences {Ri} and {R′

j}.
Enciphering. A message M = L0R0 = R−1R0, is enciphered via the iteration:

Ri+1 = Ri−1 ⊕ fKi+1
(Ri), (1)

with respect to a key sequence K1, K2, . . . , Kr.

Deciphering. Suppose we begin with C = RrRr−1 = R′
−1R

′
0, and a reversed key se-

quence K ′
1, K

′
2 . . . , K ′

r = Kr, Kr−1 . . . , K1. The deciphering follows the same algorithm as
enciphering with respect to this key sequence:

R′
j+1 = R′

j−1 ⊕ fK′
j+1

(R′
j). (2)

Setting j = r − i − 1, we have K ′
j+1 = K ′

r−i = Ki+1. We moreover want to show the
relations

R′
−1 = Rr, R′

0 = Rr−1, . . . , R
′
r−1 = R0, R′

r = R−1.



26 Elementary Cryptography

In other words, we want to show that R′
j = Ri whenever i + j = r − 1.

Clearly this relation holds for (i, j) = (r,−1) and (i, j) = (r−1, 0). Assuming it holds
for j − 1 and j we prove that it holds for j + 1. The deciphering sequence (2) can be
replaced by

R′
j+1 = R′

j−1 ⊕ fK′
j+1

(R′
j) = R′

r−i−2 ⊕ fK′
r−i

(R′
r−i−1) = Ri+1 ⊕ fKi+1

(Ri)

The expression Ri+1 = Ri−1 ⊕ fKi+1
(Ri) in (2) can be rearranged by adding (= sub-

stracting) fKi+1
(Ri) to both sides to get Ri+1 ⊕ fKi+1

(Ri) = Ri−1. We conclude that
R′

j+1 = Ri−1, so the equality holds by induction.

Example of a Feistel Cipher

Let fKi
be the block cipher, of block length 4, which is the composition of the following

maps:

1. The transposition cipher T = [4, 2, 1, 3]; followed by

2. A bit-sum with the 4-bit key Ki; followed by

3. A substitution cipher S applied to the 2-bit blocks

S(00) = 10, S(10) = 01, S(01) = 11, S(11) = 00,

i.e. b1b2b3b4 7→ S(b1b2)S(b3b4).

Let C be the 3-round Feistel cryptosystem of key length 12, where the three internal
keys K1, K2, K3 are the first, second, and third parts of the input key K, and the round
function is fKi

.

Exercise. Compute the enciphering of the text M = 11010100, using the key K =
001011110011.



AES 27

Overview of the Digital Encryption Standard

The DES is a 16-round Feistel cipher, which is preceeded and followed by an initial
permutation IP and its inverse IP−1. That is, we start with a message M , and take
L0R0 = IP (M) as input to the Feistel cipher, with output IP−1(R16L16. The 64-bits of
the key are used to generate 16 internal keys, each of 48 bits. The steps of the round
function fK is given by the following sequence, taking on 32-bit strings, expanding them
to 48-bit strings, and applying a 48-bit block function.

1. Apply a fixed expansion permutation E — this function is a permutation the 32 bits
with repetitions to generate a 48-bit block E(Ri).

2. Compute the bit-sum of E(Ri) with the 48-bit key Ki, and write this as 8 blocks
B1, . . . , B8 of 6 bits each.

3. Apply to each block Bj = b1b2b3b4b5b6 a substitution Sj. These substitutions are
specified by S-boxes, which describe the substitution as a look-up table. The output
of the substitution cipher is a 4-bit string Cj, which results in the 32-bit string
C1C2C3C4C5C6C7C8.

4. Apply a fixed 32-bit permutation P to C1C2C3C4C5C6C7C8, and output the result
as fKi

(R).

This completes the description of the round function fKi
.

Overview of the Advanced Encryption Standard

In 1997, the NIST called for submissions for a new standard to replace the aging DES.
The contest terminated in November 2000 with the selection of the Rijndael cryptosystem
as the Advanced Encryption Standard (AES).

The Rijndael cryptosystem operates on 128-bit blocks, arranged as 4 × 4 matrices
with 8-bit entries. The algorithm consists of multiple iterations of a round cipher, each
of which is the composition of the following four basic steps:

• ByteSub transformation. This step is a nonlinear substition, given by a S-box (look-
up table), designed to resist linear and differential cryptanalysis.

• ShiftRow transformation. Provides a linear mixing for diffusion of plaintext bits.

• MixColumn transformation. Provides a similar mixing as in the ShiftRow step.

• AddRoundKey transformation. Bitwise XOR with the round key.

The Advanced Encryption Standard allows Rhijndael with key lengths 128, 192, or 256
bits.



28 Elementary Cryptography

The eight-bit byte blocks which form the matrix entries are interpretted as elements
of the finite field of 28 = 256 elements. The finite field is represented by the quotient ring

F28 = F2[X]/(X8 + X4 + X3 + X + 1),

whose elements are polynomials c7X
7 + c6X

6 + c5X
5 + c4X

4 + c3X
3 + c2X

2 + c1X + c0.

We denote by BS, SR, MC, and ARK these four basic steps. There exist corresponding
inverse operations IBS, ISR, IMC, IARK. The flow of the algorithms for enciphering and
deciphering are as follows:

1. ARK

2. BS, SR, MC, ARK

...

3. BS, SR, MC, ARK

4. BS, SR, ARK

1. ARK

2. IBS, ISR, IMC, IARK

...

3. IBS, ISR, IMC, IARK

4. IBS, ISR, ARK

ByteSub. The ByteSub operation is given by the S-box look-up table. Alternatively the
S-box has a description in terms of the structure of the finite fields and linear algebra.
Let x′ be the inverse of x in F28 if x 6= 0 and set x′ = x = 0 otherwise. Then the ByteSub
step is given by x 7→ X6 + X5 + X + 1 + x′A where A is the matrix:

A =




1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1





