
34 Elementary Cryptography

Stream Ciphers

A stream cipher enciphers individual characters, usually bits, of a plaintext message
one at a time, with a cipher that varies with time. Block ciphers are memoryless, in the
sense that the same function is used to encipher successive blocks. Stream ciphers, in
contrast, must have memory. As such they are state functions because the current state
Si of the function is recorded in a memory buffer. We saw how various modes of operation
(CFB, OFB) turn a memoryless block cipher into a state function by feedback buffer. A
keystream is a sequence of characters generated from the key and the current state, as
input to the stream cipher.

In a synchronous stream ciphers the keystream is generated independently of the
plaintext message (or ciphertext). Given a key K, if the initial state is designated S0,
then, for each cycle i = 0, 1, 2, . . . , the following equations describe the generation of the
keystream, ciphertext, and next state:

Key stream function: ki = gK(Si)
Output function: ci = h(ki,mi)

Next state function: Si+1 = fK(Si)

An additive binary stream cipher is defined to be a synchronous stream cipher in which
h = XOR.

Exercise. Identify each of these functions for the OFB mode of operation.

A self-synchronizing or asynchronous stream cipher is a stream cipher in which the
keystream is a function of the key and a fixed number of previous ciphertext characters.
Given a key K and initial state S0 = (c−t, . . . , c−1), the keystream and ciphertext are
generated for each cycle i = 0, 1, 2, . . . as for a synchronous stream cipher:

Key stream function: ki = gK(Si)
Output function: ci = h(ki,mi)

with the next state set to Si+1 = (ci+1−t, . . . , ci).

Exercise. Identify the components of a self-synchronizing stream cipher defined by a
block cipher in CBC and 1-bit CFB modes.

Properties of Stream Ciphers

Synchronous stream ciphers.

• Synchronization: Sender and receiver are required to be synchronized in terms of
both state and key.

• Error propagation: None — a bit error in the ciphertext affects precisely one bit in
the deciphered plaintext, provided that synchronization is maintained.

Stream Ciphers 35

• Attacks and features: Property (1) means that an active adversary can use insertion,
deletion, or replay of ciphertext; property (2) implies that the affects of these changes
effect direct changes on the deciphered plaintext, which might be exploited.

Asynchronous stream ciphers.

• Synchronization: An insertion, deletion, or change in ciphertext characters results
in loss of only a fixed number of deciphered plaintext characters, after which the
deciphering self-synchronizes.

• Error propagation: A ciphertext error in transmission affects at most t characters
of the deciphered plaintext.

• Attacks and features: The error propagation makes active modification more easily
detected, while self-synchronization makes insertion, deletion, or reply of ciphertext
blocks more difficult to detect. Since each plaintext character influences subsequent
ciphertext, an asynchronous stream cipher is better at masking plaintext structure
or redundancies.

Linear Feedback Shift Registers

A linear feedback shift register implements a keystream function, and which can be
simply described by a schematic diagram of the following form:

⊕ ⊕oo oo ⊕ ⊕oo oo

c1 //⊗

OO

c2 //⊗

OO

cn−1 //⊗

OO

cn //⊗

// sn+i · //

OO

· //

OO

// si+2 · //

OO

si+1 · // si . . . s1s0

Rn−1 Rn−2 · · · R1 R0

Before discussing the mathematical definition of linear feedback shift registers (LFSR’s),
we address the question “Why?”. A LFSR is essentially an elementary algorithm for
generating a keystream, which has the following desirable properties:

1. Easy to implement in hardware.

2. Produce sequences of long period.

3. Produce sequences with good statistical properties.

4. Can be readily analyzed using algebraic techniques.

A LFSR is defined by n stages, labelled Rn−1, . . . , R1, R0, each storing one bit, and
having one input and output, and a timer which mark clock cycles i = 0, 1, 2, At the
i-th clock cycle:

36 Elementary Cryptography

1. The contents of stage 0 is output;

2. The contents of Ri moves to Ri−1, for 1 ≤ i ≤ n− 1; and

3. Stage Rn−1 is the bit sum of a prescribed subset of stages 0, 1, . . . , n− 2.

We may denote the contents of stage Rj at time i by si+j, and the algorithm for updating
the contents of stage Rn−1 gives a recurrence relation

sn+i =
n−1∑
j=0

cn−jsi+j,

where cj, 1 ≤ j ≤ n are fixed bit constants specifying the stages which contribute to the
bit sum. By setting c0 = 1 we can express the relation as

∑n
j=0 cn−jsi+j = 0.

We identify the constants ck with coefficients of a polynomial

g(x) =
n∑

k=0

ckx
k,

which we call the connection polynomial of the LFSR. Moreover, if can take the LFSR
output bits sj as the coefficients of a power series

s(x) =
∞∑

j=0

sjx
j,

then the recurrence relation expresses the fact that s(x)g(x) is a polynomial f(x) of degree
less than n. In other words, the power series takes the form s(x) = f(x)/g(x).

Exercise. Verify that the equality f(x) = s(x)g(x), for f(x) a polynomial of degree less
than n, gives rise to the the stated recurrence for the coefficients of s(x).

The LFSR is said to be nonsingular if cn 6= 0. It should be clear that the condition
cn = · · · cn−k = 0 describes a LFSR in which the feedback reduces to at most n−k terms,
hence after the initial k bits are output, reduces to a sequence which can be modelled by a
LFSR of length n− k. For this reason we hereafter assume that the LFSR is nonsingular.

We note that since the next state of the shift register (i.e. the contents of the collection
of stages) depends only on the current contents, and there are 2n possible states, it is clear
that the output sequence is eventually periodic. Since the all zero initial state maps to
itself, it is clear that the maximal period for any LFSR of length n is 2n − 1. The
connection polynomial is said to be primitive if the period of the LFSR output sequence,
beginning at any nonzero state, is 2n − 1.

We note that the output sequence has period N if and only if (XN + 1)s(x) is a poly-
nomial of degree at most N − 1. On the other hand, since s(x) = f(x)/g(x), if f(x) and
g(x) have no common factor, then it follows by the unique factorization of polynomials
that g(x) divides XN +1. In particular, if g(x) is irreducible, since deg(f(x)) < deg(g(x)),

Stream Ciphers 37

it follows that f(x) and g(x) have no common factors. In summary, an irreducible con-
nection polynomial of a LFSR must divide xN + 1 where N is the period of any nonzero
output sequence.

The theorem below shows that in fact every polynomial g(x) in F2[x] with nonzero
constant term must divides XN +1 for some N . The special feature of irreducible connec-
tion polynomials, and especially primitive polynomials, is that we will be able to compute
the value of N and, for primitive polynomials, that it is takes the the maximal possible
value.

Lemma 2 If g(x) is not divisible by x, then there exists a polynomial u(x) such that
xu(x) mod g(x) = 1.

Proof. Since the constant term of g(x) is 1, there is a polynomial u(x) such that xu(x) =
g(x) + 1, from which the lemma follows. ¤

Theorem 3 Every polynomial g(x) in F2[x] coprime to x divides xN + 1 for some N .

Proof. Consider the sequence of remainders mod g(x):

1 mod g(x), x mod g(x), x2 mod g(x), x3 mod g(x), . . .

Since every remainder is a unique polynomial of degree at most n−1, there are at most 2n

distinct elements in this sequence. It follows that there is some N such that xi mod g(x)
equals xN+i mod g(x) for all sufficiently large i. Since g(x) is not divisible by x, it follows
from the previous lemma that we can cancel the powers of xi to obtain xN mod g(x) = 1.
We conclude that xN + 1 is divisible by g(x). ¤

Periods of LFSR’s

We begin with some theorems regarding LFSR’s and their connection polynomials.
First, we make or recall some standard definitions. We define a polynomial g(x) to be
irreducible if the only factorization g(x) = h(x)k(x) is with h(x) or k(x) equal to the
constant polynomial. We define the order of x modulo g(x) to be the smallest power
xN of x such that xN mod g(x) equals 1. A polynomial g(x) is of degree n is said to
be primitive if the order of x modulo g(x) is 2n − 1. The next theorem shows that the
definition of primitive given in the previous lecture agrees with the current one.

Theorem 4 The period of a sequence generated by a LFSR is independent of the nonzero
initial state if the connection polynomial is irreducible, and the period takes the maximal
value 2n − 1 if and only if the connection polynomial is primitive.

Since there are exactly 2n − 1 possible nonzero states, it is clear that a LFSR that
produces an output sequence with this period in fact cycles through all such states, so the

38 Elementary Cryptography

period is independent of the initial state. As a consequence of the theorem, a primitive
polynomial is irreducible. We now prove the theorem.

Proof. We first note that all possible 2n−1 output sequences are given by the rational
expressions s(x) = f(x)/g(x), where f(x) runs through the all nonzero polynomials of
degree less than the connection polynomial g(x). If the g(x) is irreducible, then this
expression is minimal — f(x) and g(x) have no common factors, so there is no cancellation.

Next we note that the minimal period N of any power series s(x) is the degree of the
smallest xN + 1 for which (xN + 1)s(x) is a polynomial. If also s(x) = f(x)/g(x) is in
minimal form, then for any such xN + 1, the denominator g(x) divides xN + 1. If the
connection polynomial g(x) is irreducible, then the denominator equals g(x) independently
of s(x) and the initial state which defines it, and so also is the period constant.

Finally the last statement follows by noting that g(x) divides xN + 1 if and only if
xN mod g(x) = 1. ¤

For cryptographic purposes, it is desirable to have sequences which have very long
period. The advantage of LFSR’s in this respect is that the period grows exponentially in
the length of the shift register. For small value of n, 2, 3, or 4, the value of the maximal
possible period, N = 2n − 1, is still trivially small. But as the table below shows, with
modest values of n we are able to efficiently generate sequences with enormous period.

n 2n − 1
1 1
2 3
3 7
4 15
5 31
6 63
7 127
8 255
9 511

10 1023

n 2n − 1
11 2047
12 4095
13 8191
14 16383
15 32767
16 65535
17 131071
18 262143
19 524287
20 1048575

n 2n − 1
21 2097151
22 4194303
23 8388607
24 16777215
25 33554431
26 67108863
27 134217727
28 268435455
29 536870911
30 1073741823

As particular examples, the primitive trinomials such as x23+x5+1, x29+x2+1, x31+x3+1,
and x41 +x3 +1 define very efficiently computable recurrence relations for maximal length
LFSR’s.

Linear Complexity

In addition to practical applications for generating pseudo-random sequences, LFSR’s
are a useful theoretical tool for the characterization of other binary sequences. The linear
complexity of a binary sequence is a measure of the structure of the sequence – a low
linear complexity implies a cryptographically weak sequence.

An infinite sequence s = s0, s1, . . . is said to be generated by a LFSR if it is the
output sequence of the shift register for some initial state. The linear complexity L(s)

Stream Ciphers 39

for an infinite sequence s is defined to be 0 if s is the all zero sequence, equal to the
minimum length of a LFSR which generates it if s is periodic, and equal to ∞ otherwise.
The linear complexity L(s) of a finite sequence s = s0, s1, . . . , sn−1 is defined to be the
minimum length of a shift register which generates some sequence with initial segment
s. The linear complexity profile of an infinite sequence s is the sequence L1(s), L2(s), . . . ,
where Li(s) is the linear complexity of first i terms of s.

